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Pseudogenes are genomic segments that resemble functional genes structurally
yet remain biologically inactive. MicroRNAs (miRNAs), a subclass of non-coding
RNAs, are critical regulators of various cellular mechanisms. These pseudogenes
and miRNAs interact mutually, forming competitive endogenous RNA (ceRNA)
networks alongside mRNA to influence physiological processes. Such regulatory
networks have been implicated in numerous pathological conditions.
Consequently, investigating pseudogene-miRNA associations holds promise
for advancing disease diagnostics. Nevertheless, existing approaches to
identify these relationships predominantly rely on labor-intensive experimental
techniques, demanding substantial time and financial investments. Consequently,
developing an effective computational framework that can identify new
pseudogene-miRNA associations (PMAs) is crucial. To this end, we propose an
optimal frequency graph representation learning framework namedOFGPMA, for
pseudogene-miRNA association prediction. OFGPMA enhances graph neural
network expressiveness by learning both high-frequency energy and low-
frequency energy components within the pseudogene-miRNA bipartite graph,
utilizing Rayleigh and Chebyshev pooling techniques. This approach captures the
graph’s global topology via Random Walk with Restart (RWR) and identifies
potential local substructure features through enclosing subgraph analysis,
thereby achieving a more comprehensive integration of the entire graph
information. Comprehensive experiments show that OFGPMA outperforms
state-of-the-art methods in terms of performance, while also exhibiting
excellent generalization capabilities.
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1 Introduction

Pseudogenes, also known as false genes, are non-functional remnants formed during the
evolution of gene families (Carninci et al., 2005; Shi et al., 2016). They are similar to normal
genes but are DNA sequences that have lost their normal functions and are often found in
multi-gene families of eukaryotes (Setoyama et al., 2011; Ma et al., 2021). MiRNA is one
type of non-coding RNA, with lengths between 19 and 25 nucleotides, and they account for
roughly 3% of the genome (Hydbring and Badalian-Very, 2013; Liu et al., 2016). Predicting
the correlation between the two is of crucial significance for revealing gene regulatory
networks, disease mechanisms and the development of precision medicine (Zhang et al.,
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2012; Stiegelbauer et al., 2014). A large number of studies have
demonstrated that pseudogenes and miRNAs interact with each
other and, together with mRNA, form a ceRNA network. This
network plays a role in regulating biological processes and is
associated with various diseases. Predicting pseudogene-miRNA
associations can provide advisory treatment plans for some
difficult and complicated diseases (Salmena et al., 2011; Rutnam
et al., 2014; Karreth et al., 2015).

Present miRNA-related databases only offer fundamental
information about miRNAs, such as their target genes and
genomic locations. Details regarding their connections to
diseases, which are crucial for understanding disease
mechanisms, are often overlooked. Thankfully, some researchers
have begun to recognize the significance of pseudogene–miRNA
associations (PMAs) and have compiled the currently known
associations into databases. For example, starBase v2.0 (Li et al.,
2014) includes 444 pseudogenes and 173 miRNAs, which permits
the exploration of their interactions through computational
approaches. However, most discoveries of PMA are dependent
on biological experiments that are not only time-intensive and
resource-demanding but also constrained by the limited number
of confirmed PMAs. On the other hand, predicting novel
associations between pseudogenes and miRNAs via
computational methods facilitates screening of potential PMAs.

Graph signal processing (GSP) adapts signal processing
concepts to graphs, encompassing operations such as sampling,
convolution, and filtering in the spectral domain. Graph signals are
defined as numerical or vector values on graph nodes (Ortega et al.,
2018; Hu et al., 2022). To analyze these signals, GSP employs
spectral decomposition of either the graph Laplacian or
adjacency matrix, revealing their spectral characteristics. These
characteristics describe how signal energy is distributed among
various frequency components inherent to the graph’s topology
(Dong et al., 2020). The spectral characteristics essentially describe
the degree of fit between the graph signal and the graph topology:
low-frequency energy information corresponds to a globally smooth
signal distribution (similar values at adjacent nodes), while high-
frequency energy information corresponds to local abrupt
fluctuations in the signal (differences in values at adjacent nodes)
(Sandryhaila and Moura, 2013; Gavili and Zhang, 2015;
Ramakrishna et al., 2020). Recently, the concept of graph signal
processing has found extensive use in the field of biological
networks, mainly focusing on using graph structures to model
and conduct in depth analysis of complex biological systems. For
example, Peng et al. modeled the drug response of cancer cells as a
hypergraph, and simultaneously applied low-frequency component
and high-frequency components filters to the hypergraph, effectively
extracting both common and differential features among the
hypergraph nodes (Peng et al., 2025).

Current computational approaches leveraging similarity
networks in biological applications commonly adopt a key
assumption: given a known interaction between pseudogene and
miRNA, functionally or structurally similar pseudogenes may also
engage with correspondingly similar miRNAs. For example. Zhou
et al. integrated pseudogene expression data and miRNA sequence
features to construct three similarity networks, namely Jaccard,
Cosine, and Pearson, and used Graph Autoencoder (GAE) to
aggregate node features and network topological relationships to

generate low-dimensional embedding representations (Zhou et al.,
2021). Despite its available predictive performance, PMGAE merely
utilizes the structural information of the graph itself and does not
treat label information as supervisory signals, resulting in its single
train pattern as a non-end-to-end mode. More importantly, the
GAE within PMGAE is often limited by the vanilla GCN with two
layers, making it challenging for it to aggregate the node features and
topological. Moreover, PMGAE adopts pseudogene and miRNA
similarity networks, but the similarity assumption maybe does not
hold in the association network of pseudogenes and miRNAs. A
widespread biological consensus is that minor nucleotide differences
can lead to significant variations in the functions of the proteins
transcribed and translated from them, which often casts doubt on
the availability of the similarity assumption in biological networks.

Recently, owing to its superior performance in graph
representation learning, subgraph-based GRL (SGRL) has become
a representative method for link prediction (Frasca et al., 2025; Wu
et al., 2025; Zeng et al., 2025; Bouritsas et al., 2020). Unlike
prediction models based on the similarity assumption (such as
PMGAE), SGRL only extracts closed subgraphs in bipartite
graphs and overcame the limitations of similarity assumption
(Zhang and Chen, 2019; Teru et al., 2020). For instance, Zhang
et al. proposed a link prediction model SEAL on the basis of graph
neural networks (GNN), which automatically learns heuristic
features from local closed subgraphs to address the limitations of
traditional predefined heuristic methods (Zhang and Chen, 2025).
Motivated by this method, Xu et al. put forward a subgraph-based
model and applied it to enhance the prediction of associations
between enhancers and diseases, further improving the accuracy
of candidate disease-related enhancers by capturing local closed
subgraphs of enhancers and diseases (Xu et al., 2024). Wang et al.
introduced an innovative method called KnowDDI for predicting
drug-drug interactions (DDI). It can adaptively extract and optimize
subgraphs related to specific drug pairs, thereby enhancing
prediction accuracy and interpretability (Wang J. et al., 2023).
Wang et al. proposed a meta-learning-based zero-shot drug-
target interaction (DTI) prediction framework for proteins, with
its core innovation being the introduction of a weakly supervised
subgraph information bottleneck module. This method relies solely
on global DTI labels and does not require pocket annotations. It can
identify key subgraphs in protein structures as potential binding
pockets by dynamically learning the node allocation matrix (Wang
Y. et al., 2023). Swarnkar et al. proposed a method that integrates
gene expression data with protein-protein interaction networks
(PPI) to identify key disease-related gene modules by recognizing
dense subgraphs (Swarnkar et al., 2015). These methods have all
demonstrated the effectiveness of local subgraphs and the non-
essentiality of the similarity assumption.

The above-mentioned methods overcome the limitations of
similarity-based networks. Their inductive approach uses closed
subgraphs to adaptively learn the local neighborhood subgraph
information of the target node. However, from the perspective of
extracting information from graph structure, the main limitation of
their method lies in its insufficient capture of global topological
features. Although relevant theories have demonstrated that local
subgraphs can approximate high-order heuristics, its core
mechanism still relies on the preset h-hop closed subgraph,
which is essentially a compromise of a local perspective.
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To this end, we introduce a novel optimal frequency graph
representation learning for pseudogenes and miRNA interactions
prediction (OFGPMA) to address the above problems. Our model
consists of two modules: the optimal frequency discovery (OFD)
module and the graph representation learning (GRL) module. To
enhances the expressive power of graph neural networks, The OFD
learn the optimal frequency energy features of graphs through
aligning the high-frequency components and low-frequency
components information of the graphs. Specifically, OFD
explicitly enhances the high-frequency components information in the
bipartite graph of pseudogenes and miRNAs through Rayleigh pooling,
thereby accurately capturing the key features of the graph nodes.
Meanwhile, it implicitly extracts the low-frequency components
information of the graph through Chebyshev pooling, generating
important representations that reflect the commonalities of each node.
Ultimately, by fusing the high-frequency and low-frequency energy
information, it simultaneously learns the difference and commonality
information of the graph, while resulting in a fused graph with optimal
frequency structure. Then, the GRL uses the fused graph for graph
representation learning. We use the graph extracted by the random
walk with restart (RWR) as the explicit topological structure and the
topology subgraph obtained through enclosed subgraph representation
learning as the corresponding latent substructure, with the goal of
accommodating explicit global topology. In detail, we use the RWR
algorithm to globally extract the full graph representation of
pseudogenes as explicit topological features, and simultaneously extract
the enclosed subgraph features of miRNAs as implicit substructure
features. We then fuse the global features of pseudogenes with the
local features of miRNAs. Through this method, we can not only
overcome the limitations of single local features, but also effectively
combine and balance global and local features. In summary, the key
contributions of OFGPMA can be outlined as follows:

• The OFD focuses on the processing and optimization of graph
signals in the frequency domain. By employing an original
high-frequency/low-frequency separation, enhancement, and
fusion strategy, it generates an optimal frequency graph
structure, which significantly enhances the capability of
node feature representation.

• The GRL focuses on comprehensively utilizing graph
topological information by integrating topological features
at two distinct scales: global (RWR) and local (enclosing
subgraph). This approach overcomes the limitations of a
single perspective, thereby achieving more comprehensive
network structure modeling.

• The superior performance of OFGPMA is validated through
comprehensive experiments. The importance of every
component within the model is substantiated by ablation
tests. Furthermore, case studies reveal OFGPMA’s capability
to detect previously unknown pseudogene-miRNA interactions.

2 Materials and methods

2.1 Data collection

Currently, the only database that records the association
between pseudogenes and miRNAs is starBase v2.0 (Li et al.,

2014). We get the association data of pseudogene-miRNA pairs
from the starBase database and preprocessed it using the same data
processing method as Zhou et al. Ultimately, we obtained the data
including 444 pseudogenes, 173 miRNAs and 1,884 pseudogene-
miRNA pairs.

2.2 Overview of OFGPMA

Firstly, we set pseudogene-miRNA association pairs as a
bipartite graph G � V, ξ{ }, V is node set and ξ is edge set.
Specifically, V includes pseudogene node P � p1, p2, . . . , pN{ }
and miRNA node M � m1, m2, . . . , mA{ }. ξ includes pseudogene-
miRNA association pairs. Then, we introduce an optimal frequency
graph representation learning framework named OFGPMA to infer
novel PMAs (Figure 1). Our model mainly comprises of two parts: 1)
optimal frequency discovery, which includes Rayleigh pooling and
Chebyshev Pooling around the pair (pi,mi); 2) graph representation
learning, which employs graph-level GNN to learning the
embeddings of local enclosing subgraph and global RWR graph.

The main notations used in this paper are summarized
in Table 1.

2.3 Node representation

MiRNA sequence data is represented as a string composed of
four nucleotides. In this paper, we use k-mer to represent miRNA
sequences as a 64-dimensional feature vector, where k � 3. Similarly,
pseudogenes are processed in the same way. The final feature matrix
dimension of pseudogenes (P) is 444 × 64, and that of miRAN (M) is
173 × 64. For specific details, please refer to Supplementary
Materia Section 1.

2.4 Optimal frequency graph discovery

In the OFG module, the Rayleigh pooling is proposed to extract
the high-frequency energy information of the pseudogene and
miRNA bipartite graph, and use the Chebyshev wavelet
transform to learn the low-frequency energy information of the
bipartite graph. Subsequently, by integrating the high-frequency and
low-frequency energy features while jointly capturing the distinct
and shared patterns within the graph, we derive a fused graph that
exhibits the most favorable frequency configuration. Through this
approach, OFG can significantly enhance the GNN’s ability to
express graph structure information.

2.4.1 Rayleigh pooling
The Rayleigh Quotient is an important concept in signal

processing, used to characterize the energy distribution of graph
signals on the Laplacian matrix (Li, 2004). Specifically, the Rayleigh
Quotient reflects the weighted cumulative energy of graph signals at
all frequencies. To explicitly extract the high-frequency component
spectral information of the graph, we improved the method in
(Dong et al., 2023) by introducing two parameters ϑ and μ, thereby
enabling Rayleigh pooling to be more inclined to capture high-
frequency energy information and assign higher weights to high-
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frequency features. In this way, not only can the contribution of
high-frequency components be amplified, but also features
containing high-frequency energy information can be effectively
distinguished. Through this method, the high-frequency features

HRQ of the entire graph can be extracted. For specific details, please
refer to Supplementary Materia Section 2.

The Rayleigh Pooling helps to identify significant changes within
the graph structure and improves the model’s capacity for PMA

FIGURE 1
(1) The structure of optimal frequency discovery (top). (2) The structure of graph representation learning (bottom). ES denotes enclosing subgraph,
AS denotes auxiliary graph and RWR denotes random walk restart.
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prediction by emphasizing the signal components with the greatest
information content.

2.4.2 Chebyshev pooling
Meanwhile, theChebyshevWavelet Transform (CWT) is designed to

extract the low-frequency features of graphs. The Chebyshev Wavelet
Transform is an efficient multi-scale graph signal analysis tool. Its main
objective is to capture the multi-band energy characteristics in the graph
structure while avoiding the computational bottlenecks existing in
traditional spectral methods (Du et al., 2017). As a spectral domain
filteringmethod based on polynomial approximation, the core idea of the
ChebyshevWavelet Transform lies in designingmultiple wavelet filters to
cover different frequency ranges. The Chebyshev wavelet transform
realizes a learnable low-pass component filter through polynomial
approximation. The specific implementation details are provided in
Supplementary Materia Section 3. Through this method, we can
ultimately obtain the low-frequency features HCWT of the entire graph.

2.4.3 Information fusion
After undergoing Rayleigh pooling and Chebyshev pooling, we

can obtain the high-frequency energy information HRQ and low-
frequency energy informationHCWT of the pseudogene and miRNA
network. Then, we use information fusion strategy calculated as the
embeddings Embedding:

Embeddings � πHRQ + 1 − π( )HCWT (1)
where π is the scaling factor and indicates that the model focuses on
energy information of different frequencies.

2.5 Graph representation learning

For the graph representation learning of pseudogenes-miRNA pair,
there are three steps: 1) miRNAs subgraph extraction. For miRNAs, a
closed subgraph representation learning based on local structural
features is adopted. 2) RWR graph extraction. For pseudogenes, a
random walk restart (RWR) method based on global structural
attributes is used. 3) encoder layer. GNN is employed to generate
the embeddings of the extracted graph representations, and information
fusion is conducted to obtain concise edge embeddings.

2.5.1 miRNA subgraph extraction
For miRNA, we adopt a closed subgraph representation learning

based on local structural features. The extraction of the closed
subgraph of miRNA can be divided into two steps: First,
construct the main graph Gk

(m,p) with the miRNA nodes as the
starting points; second, based on the pseudogene auxiliary nodes
related to the pseudogenes, extract the auxiliary subgraph Gk

(a,p).
Finally, the two subgraphs are merged to jointly form a local closed
subgraph for miRNA Gk

m � Gk
(m,p) ∪ Gk

(a,p). Starting from the
miRNAs, we iteratively expand the pseudogene nodes within 1-
hop and 3-hop to form the closed subgraphs Gk

(m,p) of the miRNAs.
For instance, for the path (m→p1→m1→p) and (m→p1→
m1→p2→m2→p3→m), starting from miRNA nodes, extract the
adjacent pseudogene nodes to construct a local closed subgraph. It
can be observed that in both of these two paths, the odd-numbered
jump neighbor nodes of miRNA are all pseudogenes. Algorithm 1
builds a local subgraph by iteratively expanding the k-hop neighbors
of pseudogene node preserving the topological structure closely
related to the target while avoiding the interference of the target
edge on the prediction. This process provides the subsequent graph
neural network with rich semantic local context information.

Finally, Algorithm 1 integrates motif path information to
enhance local topological coverage. After iterating Algorithm 1
for R times, the subgraph range is gradually expanded to ensure
full coverage of the high-order neighbors of the target node.

R � ⌊v �
e

√
2

⌋ (2)

where v and e represent the count of nodes and the count of edges in
a bipartite graph G, respectively.

1: Input: bipartite graph G, pseudogene-miRNA pair (m,

p), the count of k

2: Output: enclosing subgraph Gk
(m,p) or auxiliary

subgraph Gk
(a,p) about pseudogene-miRNA pair (m, p)

3: M � m{ }P � p{ }
4: for i � 1,2, . . . ,k do

5: Find all new miRNA nodes set Mnew directly connected

to the current pseudogene set P, excluding

existing nodes.

6: Find all new pseudogene nodes set Pnew directly

connected to the current miRNA set M, excluding

existing nodes.

7: P = P ∪ Pnew

8: M = M ∪ Mnew

9: Construct subgraph Gk
(m,p) or Gk

(a,p) by utilizing node

sets P, M

10: end

11: Remove edge (m, p) need to be predicted from

Gk
(m,p) or Gk

(a,p)

Algorithm 1. Enclosing Subgraph extraction.

2.5.2 RWR graph extraction
To analyze pseudogenes, we employ a random walk with restart

(RWR) approach that utilizes global network topology. The
algorithm initiates traversal from pseudogene nodes,

TABLE 1 Main notations used in this study.

Notation Description

miRNAs microRNAs

ceRNA Competitive endogenous RNA

PMA Pseudogene-miRNA association

GSP Graph signal processing

GNN Graph neural network

Graph Representation Learning GRL

SGRL Subgraph-based GRL

OFD Optimal frequency discovery

RWR Random walk with restart
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systematically identifying miRNA nodes located at odd-hop
distances. This process progressively extends to encompass all
miRNA nodes within the complete network, enabling
comprehensive characterization of pseudogene relationships
across the entire graph:

ρ � cAD−1ρ + 1 − c( )e (3)
where c ∈ (0, 1) is restart probability, ρ is adaptive parameters with
ρi denoting the probability at node i. For miRNA nodes, since
RWR samples the pseudogene-associated miRNA nodes, h-hops is
an odd number, ensuring that each sampled node is a miRNA. The
restart probability represents that the probability of choosing a
neighbor for the next hop is c, and the probability of returning to
the starting point is (1-c). e denotes starting vector and if i is
starting node, ei is set 1 else set 0. Thus, the starting vector e allows
us to preserve the node’s local topological structure and AD−1

allows us to further visit their neighborhoods. After RWR graph
extraction, we can obtain a global graph GRWR from
pseudogene sampling.

2.6 Encoder layer

To cover the neighborhood information of both the local
encolsing subgraph and the RWR global graph, we merge the
two graphs Gk

m and GRWR. Next, we use two layers of GCN to
learn topological features for Gk

m and GRWR. Finally, we can get
embeddings Znew . For specific details, please refer to Supplementary
Materia Section 4.

2.7 Model optimization

The contrastive learning loss function is used to calculate the gap
between HRQ and HCWT:

Lcl � − 1
2 V| | ∑

v∈V
log Γ HRQ,HCWT( ) + ∑

v∈V
log 1 − Γ HRQ,HCWT( )( )⎛⎝ ⎞⎠

(4)
where Γ () is the contrastive discriminator constructed by a simple
bilinear function that estimates similarities betweenHRQ andHCWT.
We use Kullback-Leibler (KL) divergence to calculate loss between
Zp and ZRWR:

Lkl � KL Zm,ZRWR( ) � ∑ log2
Zm

ZRWR
(5)

The binary cross-entropy loss is employed to
optimize OFGPMA:

Lbce � − 1
N

∑YlogŶ + 1 − Y( )log 1 − Ŷ( ) (6)

where N is the number of all pseudogene-miRNA pairs in the batch.
Y and Ŷ are the ground truth and prediction score, respectively.
Coupled with the Lcl and Lkl, OFGPMA can be trained by
minimizing the final loss which can be calculated as:

Loss � 1 − a − β( )Lcl + Lkl + Lbce (7)

where α and β are learnable parameters. The pseudo-code of
OFGPMA as follows:

1: Input: training set pseudogene-miRNA

pairs, k-hops;

2: Output: the convergent training model OFGPMA;

3: Randomly initialize model parameters;

4: Construct a bipartite graph G;

5: Repeat

6: Generate a fused graph Gf by Equation 1 and

supplementary materials Equations 1–9 from G;

7: Samples miRNA enclosing subgraph and pseudogene RWR

graph from Gf;

8: Upgrade miRNA and pseudogene representations with

two-layer GCN;

9: Update model parameters by minimizing the loss in

Equation 7;

10: Training process terminates when the model

converges or all epochs are completed;

11: Return the train OFGPMA;

Algorithm 2. OFGPMA train description.

3 Results

3.1 Evaluation criteria

In OFGPMA. we employ frequently five evaluation metrics to
evaluate its performance, including AUC, AUPR, PREC, REC and
F1-score. AUC denotes the area under the Receiver Operating
Characteristic (ROC) curve, AUPR indicates the area under the
Precision-Recall (PR) curve, PREC refers to precision, and REC
stands for recall., respectively. For the specific calculation formula,
please refer to Supplementary Materia Section 5.

3.2 Performance of OFGPMA

To assess the performance of OFGPMA, we conducted five-fold
cross-validation (5-CV). Specifically, experimentally validated
pseudogene-miRNA interactions were used as positive samples.
An equal number of negative instances were randomly selected
from unconfirmed pseudogene-miRNA pairs. The final dataset for
the 5-CV experiments was formed by combining these positive and
negative samples.

The 5-CVmethodology entailed the random division of the data
into five distinct subsets. During each iteration, a single subset was
designated as the test set, with the other four subsets combined to
form the training set. Importantly, random partitioning ensured that
both training and test data within each fold maintained an equal
balance of positive and negative samples. To account for variability
and minimize bias in the 5-CV findings, performance metrics were
averaged over all folds, and their standard deviation was calculated.
It should be noted that although AUC summarized overall model
efficacy, AUPR furnished a more nuanced perspective (Ling et al.,
2025). Consequently, AUC and AUPR were utilized as the principal
performance indicators.
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As presented in Table 2, OFGPMA achieved an AUC score of
0.8718 and an AUPR score of 0.9105 across the five folds.
Performance variations were observed: the third fold yielded a
lower AUC value compared to other folds, while the first fold
exhibited a higher AUPR value. These fluctuations were
attributable to model performance variability induced by different
random seeds. Throughout the cross-validation, Precision and
Recall metrics demonstrated minor oscillations around their
respective means, with an overall limited range of variation.
Collectively, these robust results confirmed the potential utility of
OFGPMA for predicting potential PMAs.

3.3 Comparison experiment

The efficiency of OFGPMA was assessed through two
comparative approaches: 1) direct comparison with specialized
PMA predictors such as PMAGAE; 2) Secondly, comparison
with diverse computational models including random walk, deep
learning, and matrix factorization frameworks, alongside models
designed for other biomedical entity associations. Each model was
evaluated via 5-fold cross-validation using our dataset, with final
scores representing the mean values computed over
100 experimental iterations.

3.3.1 Comparison with PMAGAE
In the first comparison method, we compared OFGPMA with

PMAGAE. PMAGAE is the first proposed computational model for
predicting the association between pseudogenes and miRNAs. It is
based on the similarity network of pseudogenes and miRNAs and is
specifically designed for identifying PMAs. PMAGAE leverages the
similarities between pseudogenes and miRNAs and calculates the
association strength by integrating the similarity features and
connections of nodes using GAE (Zhou et al., 2021). To ensure
equitable comparison, we re-implemented PMAGAE under
identical random seed conditions. Comparative results (Figure 2)
reveal PMAGAE’s AUC (0.8623) and AUPR (0.8996), aligning with
prior literature yet demonstrating inferior performance relative
to OFGPMA.

3.3.2 Comparison with other baselines
In our comparative study, we conducted performance

evaluations between OFGPMA and nine existing graph neural
network approaches that represent current methodological

standards. The compared techniques are detailed in the
following listing.

• Node2Vec (Grover and Leskovec, 2016): Node2Vec
formulates node embedding as an optimization challenge,
employing a neighborhood sampling strategy that
harmonizes local and global network exploration via a
tunable random walk process. The algorithm’s flexibility
stems from its adjustable bias parameters governing
walk behavior.

• GCN (Kipf and Welling, 2016): GCN, as a semi-supervised
framework, generates node embeddings through direct
processing of graph adjacency matrices. The model operates
on the pseudogene-miRNA bipartite network in its raw
topological form, deliberately excluding supplementary
biological feature to maintain architectural purity.

• GAT (Veličković et al., 2017): GAT enhances graph
processing through attention mechanisms, where node
relationships are dynamically weighted. The pseudogene-
miRNA bipartite graph serves as direct input to the
attention-based predictor for uncovering previously
unknown biological relationships.

• GIN (Xu et al., 2018): Renowned for its discriminative power
in graph-based prediction, GIN processes the fundamental
pseudogene-miRNA network structure to hypothesize new
functional associations between these molecular entities. The
architecture demonstrates particular efficacy in biological
network inference tasks.

• NMFMC (Zheng et al., 2022): NMFMC employs non-negative
matrix decomposition to reconstruct incomplete association
matrices, enabling the discovery of previously uncharacterized
pseudogene-miRNA interactions. The derived predictions
serve as valuable comparative data for subsequent
validation studies.

• ERMDA (Dai et al., 2022): Through an ensemble learning
framework, ERMDA constructs multiple balanced training
datasets while learning hierarchical feature representations.
Originally designed for miRNA-disease prediction, the
algorithm demonstrates transfer learning capability when
applied to pseudogene-miRNA network analysis.

• NIMGSA (Jin et al., 2022): Combining graph autoencoder
architecture with attention mechanisms, NIMGSA performs
neural matrix imputation for biological relationship
prediction. The framework demonstrates particular
effectiveness when processing sparse pseudogene-miRNA
interaction data.

• CGHCN (Liang et al., 2024): CGHCN integrates conventional
graph convolution with hypergraph neural operations,
capturing both pairwise and higher-order relationships
within biological networks. The model excels at identifying
complex interaction patterns in omics data.

• MSHGANMDA (Wang S. et al., 2023): Utilizing meta-
subgraph representations within an attention-based graph
neural framework, MSHGANMDA provides enhanced
prediction of molecular interactions. Its architectural
flexibility allows direct application to pseudogene-miRNA
association mining tasks.

TABLE 2 Performance of OFGPMA.

Fold AUC AUPR Precision Recall

1 0.8711 0.9118 0.9230 0.8993

2 0.8635 0.8996 0.9193 0.9103

3 0.8613 0.9110 0.9217 0.9005

4 0.8767 0.8998 0.9189 0.8996

5 0.8678 0.9007 0.9218 0.9076

Mean 0.8718 0.9105 0.9211 0.9015
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Using 5-fold cross-validation and AUC/AUPR scores as primary
metrics, we evaluated the proposed OFGPMA model against nine
existing approaches. Figure 3 illustrates that OFGPMA achieved

superior performance in both AUC and AUPR compared to all other
models. On the starBase dataset, OFGPMA notably achieved an
AUC value of 0.8718. GCN followed as the second-best performer,

FIGURE 2
Model performance of PMAGAE and OFGPMA.

FIGURE 3
AUC and AUPR value of OFGPMA as well as the other nine baseline models.
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though a 2.03% performance gap separates it from OFGPMA,
confirming our model’s significant contribution to improving
graph neural network expressiveness. The third-ranked model,
NMFMA, while reinforces that local structural information
(captured by enclosing subgraphs) is valuable for PMA
prediction, OFGPMA’s integration of global RWR graph context
with local information yields demonstrably stronger results. Since
the closed subgraph only captures the local subgraph information of
the pseudogene and miRNA bipartite graph, the OFGPMAmethod,
by integrating the global RWR graph information with the local
closed subgraph information, can more comprehensively represent
the information of the entire graph, which is of great significance in
information integration. CHGCN performed the worst among the
other nine models, indicating its lower applicability in the PMA
prediction task. Collectively, OFGPMA achieves top performance
across all evaluated metrics on the starBase dataset, confirming its
strong competitive edge. This enhancement is credited to the
elaborate Rayleigh pooling, Chebyshev pooling, and global RWR
strategy, which can more comprehensively represent the
information of the entire graph and capture efficient global
topological semantics, respectively.

3.4 Robustness analysis

An optimal predictive model is expected to exhibit strong
robustness and generalization capabilities. To assess the
generalization potential of OFGPMA and confirm its broader
applicability, this work applied it to several distinct association
prediction tasks. Specifically, multiple datasets encompassing
miRNA-disease, gene-disease, piRNA-disease, and microbe-
disease associations were compiled. The specific data processing
procedures are detailed in the Supplementary Materia Section 6. The
specific data quantities are shown in Table 3.

Utilizing identical random seeds and evaluation indicator as the
primary experiments, the model’s generalization performance was

systematically evaluated across these datasets (results presented in
Figure 4). The obtained AUC values were 0.9307, 0.9136, 0.9489, and
0.9064 for miRNA-disease, gene-disease, piRNA-disease, and
microbe-disease predictions, respectively. Corresponding AUPR
scores reached 0.9125, 0.9089, 0.9521, and 0.9381. These
consistently higher performance metrics across diverse biological
association tasks demonstrate OFGPMA’s stability and significant
generalization capacity. Consequently, these findings provide
additional validation for the effectiveness and robustness of the
proposed OFGPMA model.

3.5 The impact of data imbalance on model
performance

Previous experiments employed balanced datasets with equal
numbers of positive and negative samples for an initial model
evaluation. However, model performance could potentially be
influenced by variations in the positive-to-negative sample ratio.
To more comprehensively assess OFGPMA’s robustness under
class imbalance, we performed five-fold cross-validation on the
starBase dataset, specifically testing performance at positive-
negative ratios of 1:1, 1:2, 1:5, and 1:10. A visual representation
of the confusion matrix is provided in Figure 5, and detailed
performance metrics are tabulated in Table 4. Analysis reveals
that as the ratio shifts from 1:1 to 1:2, OFGPMA’s average AUC
exhibits a gradual increase, potentially attributable to the random
seed enhancing model performance. By contrast, the AUPR score
showed a significant decline, dropping from 0.9105 to 0.8994. The
AUPR metric is frequently utilized to assess classifier performance,
particularly under imbalanced data conditions. Although AUPR
values experience a significant drop, they remain within a
practically acceptable range (Ling et al., 2025; Saito and
Rehmsmeier, 2015). As illustrated in Figure 5, a substantial
increase in false negatives coincides with a marginal
improvement in accuracy, while both recall and precision
exhibit considerable declines. Overall, these results suggest that
balanced datasets, featuring an equal ratio of positive to negative
samples, yield optimal training outcomes, enabling the model to
reach peak predictive accuracy.

3.6 Hyperparameter sensitivity analysis

Hyperparameter sensitivity analyses were performed for
OFGPMA under controlled conditions, where non-target
parameters remained fixed to isolate performance impacts of
critical variables.

3.6.1 Effect of the learning rate
The learning rate, a critical hyperparameter, governs the

magnitude of adjustments applied to model weights during
optimization. Its value critically influences both the efficiency of
the training process and the ultimate performance of the model.
Excessively low learning rates impede gradient updates, extending
training duration. Conversely, excessively high learning rates risk
inducing gradient explosion, which can prevent model convergence.
Consequently, investigating the effect of learning rate variation on

TABLE 3 Datasets on miRNA-disease, gene-disease, piRNA-disease, and
microbe-disease associations.

Pair Type Number

miRNA- disease (Li et al., 2021) miRNA 156

disease 187

interaction 1,983

Gene-disease (Luo et al., 2019) gene 2,909

disease 1,154

interaction 4,432

piRNA-disease (Chen et al., 2024) piRNA 4,976

disease 28

interaction 7,939

Microbe-disease (Wang et al., 2023b) microbe 1,177

disease 134

interaction 4,499
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FIGURE 4
Performance of OFGPMA for predicting different data types.

FIGURE 5
The Confusion matrices calculated under different ratios of positive and negative samples.
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the OFGPMA model is highly pertinent. Figure 6A demonstrates a
progressive decline in OFGPMA’s performance as the learning rate
escalates. Experimental findings reveal that a learning rate of 1e-4
yields the optimal model performance, achieving an AUC of 0.8718,
AUPR of 0.9105, precision (PREC) of 0.9211, recall (REC) of 0.9015,
and F1-score of 0.9133. Therefore, the learning rate for OFGPMA
was ultimately fixed at 1e-4.

3.6.2 Effect of the batch size
Batch size represents a crucial hyperparameter in model

optimization. While smaller batches can facilitate model
convergence, they often constrain training speed and scalability.
Conversely, larger batches, despite enabling more efficient
utilization of available computational resources and enhancing
training throughput, may detrimentally affect model
generalization capability [59, 60]. To investigate the influence of
batch size on OFGPMA’s performance, we evaluated values within
the set {32, 64, 96, 128}. Performance metrics, as depicted in
Figure 6D, exhibit a declining trend with increasing batch size. A
comprehensive analysis of experimental outcomes and model
efficacy led to the selection of a batch size of 32 for conducting
subsequent experiments on the starBase dataset.

3.6.3 Effect of the hidden size
Furthermore, the dimensionality of latent representations

(hidden size) critically influences model behavior. Insufficient
hidden dimensions may result in underfitting, whereas excessive
dimensions heighten overfitting risks and prolong training duration.
To address this, we systematically evaluated OFGPMA’s

TABLE 4 Performance of OFGPMA under different positive-to-negative
ratios on starBase dataset.

Evaluation metrics Positive: Negative sample ratio

1:1 1:2 1:5 1:10

AUC 0.8718 0.8816 0.8753 0.8632

AUPR 0.9105 0.9087 0.9063 0.8994

Precision 0.9211 0.9203 0.9184 0.9103

Recall 0.9015 0.8967 0.8915 0.8834

F1_score 0.9133 0.9211 0.9033 0.8935

FIGURE 6
OFGPMA performance of AUC, AUPR, PREC and REC under different hyperparameter. (A) denotes learning rate, (B) indicates hidden size, (C)
denotes dropout, (D) indicates batch size.
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performance across hidden sizes spanning {64, 96, 128, 256}. As
evidenced in Figure 6B, the model achieves peak performance on the
starBase dataset with a hidden dimension of 64.

3.6.4 Effect of the dropout
As a regularization technique, dropout mitigates overfitting by

stochastically deactivating neural units during training. For
OFGPMA, dropout rates were evaluated across {0.3, 0.4, 0.5, 0.6,
0.7}, with performance outcomes detailed in Figure 6C. Optimal
model efficacy was observed at a dropout probability of 0.3.

3.7 Ablation experiment

The embedding representations for pseudogenes and miRNAs
in OFGPMA are learned through two core components: the Optimal
Frequency Discovery (OFD) module and the Graph Representation
Learning (GRL) module. To assess the contributions of these
modules, ablation studies were executed on the starBase dataset.
Three model variants are subsequently defined for
comparative analysis:

• OFGPMA w/o OFD: a variant without the optimal frequency
discovery (OFD) module.

• OFGPMA-RWR: a variant that incorporating random walk
with restart (RWR) for subgraph sampling in lieu of the
enclosing subgraph extraction strategy.

• OFGPMA-ES: a variant that implementing enclosing
subgraph extraction as a substitute for random walk with
restart (RWR)-based subgraph sampling.

As shown in Figure 7, results suggest that the optimal
frequency discovery (OFD) module and the graph guidance
representation learning (GRL) module are integral
components for OFGPMA. Specifically, OFGPMA
demonstrates superior performance on every metric.
OFGPMA-RWR ranks second overall, while OFGPMA without
OFD performs the worst of all models. This might be because the
optimal frequency discovery module successfully captured the
high-frequency and low-frequency energy information of the
graph, thereby significantly enhancing performance and
further verifying the effectiveness of OFD. Removing OFD (w/
o OFD) led to the largest performance drop, underscoring the
importance of frequency analysis. Using only RWR or enclosing
subgraphs (OFGPMA-RWR/ES) resulted in intermediate
performance, highlighting the value of combining global and
local perspectives.

OFGPMA outperforms OFGPMA-RWR and OFGPMA-ES,
mainly due to its adoption of a more efficient full-graph
information capture strategy, which enriches the structural
semantic information. Ablation studies reveal that the newly
introduced OFD plays a critical role in OFGPMA’s effectiveness.
The incorporation of Random Walk with Restart (RWR) and
enclosing subgraph extraction also helped boost prediction
performance.

3.8 Case study

To evaluate the performance of the OFGPMA method in
predicting pseudogene-miRNA interactions, we randomly

FIGURE 7
Ablation experiment performance for OFGPMA and three model variants.

Frontiers in Genetics frontiersin.org12

Zeng et al. 10.3389/fgene.2025.1643921

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1643921


selected two widely studied pseudogenes, RPLP0P2 and
MTND4P12, from the ground truth of the starBase database. For
every pseudogene analyzed, we deliberately masked its known
miRNA interactions during testing. The remaining candidate
miRNAs were then sorted in descending sequence using
OFGPMA’s computed prediction scores. Finally, we selected the
top-ranked miRNAs and verified their prediction accuracy through
the starBase database.

Regarding the pseudogene MTND4P12 (Table 5),
two prediction errors occurred. This oncogenic pseudogene
exhibits dysregulation in cutaneous melanoma,
functioning as a competing endogenous RNA (ceRNA) to
upregulate the oncogene AURKB [44]. Notably, Hsa-let-7e-
5p is a likely regulatory target of MTND4P12, with both
entities showing correlated expression patterns in this
malignancy.

Regarding pseudogene RPLP0P2 (Table 5), our model generated
three erroneous predictions. This non-coding sequence is implicated
in oncogenesis, particularly lung adenocarcinoma and colorectal
carcinoma. Prior research indicates that suppressing
RPLP0P2 expression reduces malignant cell proliferation and
impairs cellular adhesion mechanisms (Chen et al., 2018; Yuan
et al., 2021).

4 Conclusion

This study proposes an Optimal Frequency Graph
Representation Learning Approach (OFGPMA) for predicting
pseudogenes-miRNAs association. The model consists of two
core modules: the optimal frequency discovery module and the
graph representation learning module. In the optimal frequency
discovery module, the high-frequency and low-frequency energy
information of the given pseudogene-miRNA bipartite graph is
extracted through Rayleigh quotient pooling and Chebyshev
pooling. These high- and low-frequency spectral components
are subsequently integrated into a unified graph representation,
amplifying the representational capacity of the graph neural
network (GNN). Next, in the graph representation learning

module, we extract local closed subgraphs for pseudogenes
and global random walk restart (RWR) information for
miRNAs based on the fused graph. Subsequently, the extracted
closed subgraphs and global graphs are input into a two-layer
graph convolutional network (GCN) to obtain node
representations. Additionally, to align the high-frequency and
low-frequency energy information, a loss function between the
high-frequency and low-frequency energy information is
introduced to meet the requirements of specific biological
hypotheses. Pseudogene-miRNA interaction probabilities are
derived from the synthesized representations via MLP
transformation. Validation on the starBase dataset confirms
OFGPMA’s significant performance advantage. Furthermore,
case investigations reveal OFGPMA’s predictive power extends
to undocumented pseudogene-miRNA relationships, multiple of
which show starBase-documented biological validation.The
advantages of OFGPMA are mainly reflected in the following
three aspects: First, by learning graph information at different
frequencies, it greatly enhances the representation learning
ability of GNN; second, by combining local closed subgraphs
and global RWR to extract topological structure information of
the graph, it requires neither domain expertise nor external
datasets, significantly boosting the model’s scalability; third,
experimental results show that OFGPMA exhibits superior
transfer generalization ability in predicting the associations
between miRNAs and other biological entities, providing great
potential for its application in other related fields. Despite these
achievements, there are still some issues that need to be
addressed. Existing datasets documenting pseudogene-miRNA
interactions remain sparse, constraining model interpretability
and predictive performance. Additionally, the current model
only considers the structural information in the pseudogene-
miRNA network and ignores the roles of other biomolecules
closely related to pseudogenes and miRNAs (such as genes and
transcription factors). In future work, incorporating these
biomarkers could enable development of more comprehensive
biological knowledge graphs, capturing deeper semantic
relationships to enhance prediction accuracy of pseudogene-
miRNA interactions.

TABLE 5 Evidence identifies the top 10 miRNAs linked to pseudogenes RPLP0P2 and MTND4P12.

Rank MTND4P12 RPLP0P2

1 hsa-let-7e-5p Confirmed hsa-miR-34c-5p Confirmed

2 hsa-let-7d-5p Confirmed hsa-miR-195-5p Confirmed

3 hsa-let-7f-5p Confirmed hsa-miR-320d Confirmed

4 hsa-let-7c-5p Confirmed hsa-let-7b-5p Confirmed

5 hsa-miR-448 Unconfirmed hsa-miR-15a-5p Unconfirmed

6 hsa-let-7d-5p Confirmed hsa-miR-503-5p Confirmed

7 hsa-miR-17-5p Unconfirmed hsa-miR-3619-5p Confirmed

8 hsa-let-7b-5p Confirmed hsa-miR-16-5p Confirmed

9 hsa-let-7g-5p Confirmed hsa-miR-146a-5p Unconfirmed

10 hsa-let-7a-5p Confirmed hsa-miR-195-5p Confirmed
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