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Objective: 6q terminal deletion is a rare genetic cause of prenatal brain
anomalies. We evaluated five cases of cerebral dysplasia within a familial
context for genetic diagnosis. Aims to analyze prenatal brain abnormalities
from 6q terminal deletion of DLL1 and support prenatal diagnosis and genetic
counseling.
Methods: A retrospective analysis was conducted on data from five families with
fetal brain structural dysplasia, collected at Gansu Provincial Maternity and Child-
care Hospital (Gansu Central Hospital) between January 2017 and April 2024. We
applied copy number variation sequencing (CNV-Seq) and when negative,
whole-exome sequencing (WES) to define genomic etiologies of prenatal
brain anomalies.
Results: A total of 5 fetuses were included in this study. All fetuses exhibited a
cerebellar diameter smaller than expected for their gestational age, as
determined by US, 4/5 cases underwent MRI. In fetuses 1–4, CNV-Seq
analysis identified heterozygous deletions of 1.74 Mb, 2.88 Mb, 0.72 Mb, and
21.99 Mb at the terminal region of chromosome 6q. In fetus 5, WES successfully
identified the deletion that CNV-seq had missed, likely terminal coverage drop/
binning limit.
Conclusion: Fetuses with reduced transverse cerebellar diameter and
ventriculomegaly should be evaluated for 6q terminal deletions involving
DLL1; combining CNV-seq with reflex WES reduces missed diagnoses and
informs counseling.
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Introduction

Disorders linked to DLL1 (OMIM: 618709) exhibit diverse neurodevelopmental
symptoms, including developmental delays, intellectual disabilities, autism, attention
deficits, stereotypical behaviors, and brain anomalies like hydrocephalus and dysplasia.
Common symptoms also include seizures, hypotonia, joint hyperextension, ataxia,
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scoliosis/kyphosis, and cognitive impairment (Fischer-Zirnsak et al.,
2019). Overlapping microdeletions in the 6q27 region, affecting genes
like DLL1, THBS2, PHF10, and ERMARD, linked to developmental
delay, intellectual disability, and brain malformations (Fischer-Zirnsak
et al., 2019). During embryogenesis, DLL1, expressed in neural
precursor cells, regulates differentiation through oscillatory Notch
signaling, affecting brain development by inhibiting differentiation
in adjacent cells (Fischer-Zirnsak et al., 2019; Louvi et al., 2006; Cao
et al., 2019; Shimojo et al., 2011; Artavanis-Tsakonas et al., 1999).
Research has shown that the Notch ligand DLL1 is crucial for
developing the central nervous system, somites, and lymphocytes
(Gray et al., 1999; Hrabĕ de Angelis et al., 1997; Marklund et al.,
2010; Hiraoka et al., 2013; Dunwoodie et al., 1997; Okigawa et al., 2014;
Mahler et al., 2010). Among these, DLL1 is most likely intolerant to
loss of function (LoF), suggesting its deficiency may contribute to
neurodevelopmental disorders (Fischer-Zirnsak et al., 2019;
Karczewski et al., 2020; Peddibhotla et al., 2015). Given DLL1’s role
in neurodevelopment, we investigated whether 6q terminal deletions
involving DLL1 underlie prenatal brain anomalies detected by
ultrasound/MRI. To delineate genomic causes, we applied CNV-seq
to all cases and performed reflex WES when CNV-seq was negative.

Methods

Study design and setting and participants

This study employed a retrospective analysis of a consecutive
series of fetuses referred to Gansu Provincial Maternity and Child-
care Hospital (Gansu Central Hospital) between January 2017 and
April 2024. Cases were initially identified based on prenatal
ultrasound examination suggesting structural brain anomalies,
and four cases were further assessed by prenatal magnetic
resonance imaging (MRI). From this cohort, five cases with a
confirmed genetic diagnosis of a 6q terminal deletion involving
the DLL1 gene were selected for in-depth analysis. Comprehensive
clinical, genetic, and family data were collected for all included cases.
Cases were excluded for incomplete clinical or imaging data, the
presence of major confounding comorbidities (e.g., aneuploidy,
congenital infections), or loss to follow-up.

Sample collection

Amniocentesis was performed under sterile conditions to obtain
30 mL of amniotic fluid. Peripheral blood (2–3 mL) was collected
from both parents.

CNV-seq

CNV-seq libraries were prepared using a commercial high-
throughput sequencing kit (BerryGenomics) according to the
manufacturer’s protocol, including DNA end repair, adapter
ligation, barcoding, and purification (Zhang et al., 2018).
Libraries were pooled and sequenced on the NextSeq
CN500 platform—a commercially available desktop
sequencer—at a minimum depth of 1× and resolution of 100 kb.

Sequencing reads were aligned to the human reference genome
GRCh37 (hg19), chosen for compatibility with major clinical
genomics databases. Quality control metrics including average
read depth, coverage uniformity, and terminal coverage behavior
were evaluated. CNV pathogenicity was assessed using DECIPHER
(https://www.deciphergenomics.org/browser), OMIM (https://
www.omim.org/), UCSC Genome Browser (https://www.genome.
ucsc.edu/), ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/), and
ClinGen (https://www.clinicalgenome.org/), and interpreted
according to ACMG guidelines (Riggs et al., 2020).

Detection of WES

Whole-exome sequencing (WES) was performed on the
BGISEQ-2000 platform (BGI, Shenzhen, China) using the BGI
Exome Capture V1 kit (BGI, Shenzhen, China). The average
sequencing depth was 200×, with 98.5% of the target regions
covered at ≥30×, 99% of the target regions covered at ≥20×.
Variant calling for single-nucleotide polymorphisms (SNPs) and
insertions/deletions (Indels) was conducted following the GATK
best practices workflow. Short-read sequencing data were aligned to
the reference genome GRCh37/hg19 using BWA-MEM, followed by
duplicate marking, base quality score recalibration, and variant
discovery using Haplotype Caller. Final variants were filtered
based on recommended quality metrics. Copy number variant
(CNV) analysis from exome data was applied in this study, the
resolution was> 100 kb. Detected variants were annotated and
interpreted according to the ACMG guidelines (Richards
et al., 2015).

Ethics

Written informed consent was obtained from all participating
families. This study received approval from the hospital’s Ethics
Committee, with the approval number (No. 2024GSFY07).

FIGURE 1
Workflow diagram.
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FIGURE 2
(A) Transverse ultrasound section showing the fetal cerebellum with a transverse cerebellar diameter of 27.8 mm (<–3.0 SD for gestational age). (B)
Axial ultrasound view in thetransventricular plane demonstrating bilateral ventriculomegaly with atrial widths of 12.3 mm (left) and 12.5 mm (right). (C,D)
Axial T2-weighted fetal MRI confirming reduced cerebellar size and bilateral ventriculomegaly.

FIGURE 3
(A) Transverse ultrasound section showing the fetal cerebellum; transverse cerebellar diameter measured 24.8 mm (<–3.2 SD for gestational age),
consistent with cerebellar hypoplasia. (B) Axial ultrasound view in the transventricular plane demonstrating bilateral ventriculomegaly, with atrial widths of
10.6 mm (left) and 11.2 mm (right). (C,D) Axial T2-weighted fetal MRI confirming cerebellar hypoplasia and bilateral ventriculomegaly.
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Results

Cohort description

A total of five fetuses were included in this study. The gestational
age at initial diagnosis ranged from 21.56 to 27.14 (24.45 ± 1.89)
weeks by ultrasound (US). Fetuses exhibited a cerebellar diameter
smaller than expected for their gestational age, as determined by US
and MRI (US in all, MRI in 4/5), Figure 1.

Imaging findings

All fetuses exhibited a transverse cerebellar diameter smaller
than expected for their gestational age, as determined by US, 4/
5 cases underwent MRI (Figures 2–5). Common complications
included mild lateral ventricle dilatation (5/5 cases), corpus
callosum abnormalities (1/5 cases) and low positioning of the

conus medullaris (2/5 cases) in a clean Table 1. Among them,
fetus 4 was first found at 21 + 4 weeks of gestation with multiple
system malformations, Included were fetal growth restriction,
double outlet right ventricle, Nuchal fold thickened, scoliosis,
hand deformities.

Genetic findings

A heterozygous deletion was identified in all fetuses, with the
deletion region located at the terminal end of chromosome 6q,
encompassing the haploinsufficiency-sensitive gene DLL1 (2A,
1 score). The total score for fragment deletion was ≥0.99,
classifying it as a pathogenic variation (Tables 1 and 2). Notably,
in fetus 5, CNV-seq negative, the pregnant woman opted for further
WES, this analysis revealed a heterozygous deletion of 0.14Mb in the
Chr6:g.170460966-170604541 region, likely terminal coverage drop/
binning limit.

FIGURE 4
(A) Transverse ultrasound section showing the fetal cerebellum; transverse cerebellar diameter measured 20.2 mm (<–3.0 SD for gestational age).
(B) Axial ultrasound view in the transventricular plane demonstrating bilateral ventriculomegaly, with atrial widths of approximately 8.9 mm (left) and
10.8 mm (right). (C) Sagittal ultrasound view showing a low-lying conus medullaris.

FIGURE 5
(A) Transverse ultrasound section showing the fetal cerebellum; transverse cerebellar diameter measured 23.4 mm (<–2.6 SD for gestational age).
(B) Axial ultrasound view in the transventricular plane demonstrating bilateral ventriculomegaly, with atrial widths of 10.0mm (left) and 13.6mm (right). (C)
Sagittal ultrasound view showing an abnormally positioned conus medullaris. (D,E) Axial T2-weighted fetal MRI confirming reduced cerebellar size. (F)
Axial T2-weighted fetal MRI showing bilateral ventriculomegaly.
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TABLE 1 Clinical data and prenatal ultrasound examination results of 5 fetuses.

Fetal Age Gravidity
and parity

Gestational age
at ultrasound
diagnosis (W)

Vp left|
right
(mm)

TCD (mm) CSP CC
abnormalities

Gyration
abnormalities

CMD
(mm)

Conus
medullaris

abnormalities

Additional sings MRI

1 24 G1P0 24 + 1 13.7 | 15.1 23.4 <–3.0 SD for
gestational age

Yes Yes Yes 8.5 No No Yes

2 26 G2P0 27 + 1 12.3 | 12.5 27.8 <–3.0 SD for
gestational age

Yes No No 3.9 No No Yes

3 26 G2P0 25 + 5 10.6 | 11.2 24.8 <–3.2 SD for
gestational age

Yes No No 4.9 No No Yes

4 28 G3P0 21 + 4 8.9 | 10.8 20.2 <–3.0 SD for
gestational age

Yes No No 9.5 Yes FGR, DOVR, Nuchal
fold thickened, Scoliosis,

Hand Deformities

No

5 33 G3P0 23 + 5 10.0 | 13.6 23.4 <–2.6 SD for
gestational age

Yes No No 3.9 Yes No Yes

W, week; Vp, Ventricular width of the posterior horn; TCD, transverse cerebellar diameter; CSP, cavum septi pellucidi; CC, corpus callosum; CMD, cistern magna depth; MRI, magnetic resonance imaging; SD, standard deviation; FGR, fetal growth restriction; DOVR,

double outlet right ventricle.
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Given that fetuses with haploinsufficiency of the DLL1 gene
predominantly exhibit clinical manifestations such as intellectual
disability, brain malformations, autism, epilepsy, and other related
phenotypes, the parents of the five fetuses elected to terminate the
pregnancy following genetic counseling.

Genotype–phenotype

DLL1 deletion exhibited altered brain structures, the most
prevalent abnormalities were cerebellar dysplasia, increased
ventricle width, and corpus callosum anomalies (observed in over
70% of cases) (Lesieur-Sebellin et al., 2022). When the 6q terminal
deletion extends to 7.1 Mb, the majority of the patient’s clinical
features can be attributed to the DLL1. Deletions exceeding 7.1 Mb
result in a more severe phenotype, such as such as abnormality of the
anus, either anal atresia or an ectopic anus (Engwerda et al., 2023).

Discussion

In this study, analyze five cases of cerebral dysplasia within a familial
context for genetic diagnosis. All fetuses exhibited a cerebellar diameter
smaller than expected for their gestational age, as determined by US, 4/
5 cases underwent MRI. Common complications included mild lateral
ventricle dilatation (5/5 cases), corpus callosum abnormalities (1/5 cases)
and low positioning of the conus medullaris (2/5 cases). Among them,
fetus 4 was first found at 21 + 4 weeks of gestation with multiple system
malformations, Included were fetal growth restriction, double outlet
right ventricle, Nuchal fold thickened, scoliosis, hand deformities. We
applied CNV-seq to all cases. CNV-seq identified the 6q terminal
deletion in fetuses 1–4, however, in fetus 5, a deletion missed by
CNV-seq was detected by WES, analysis revealed a heterozygous
deletion of 0.14 Mb in the Chr6:g.170460966-170604541 region,
likely terminal coverage drop/binning limit.

The study of DLL1 and prenatal fetal phenotypes is relatively
limited. Research by Sanlaville (Lesieur-Sebellin et al., 2022) explored
the relationship between DLL1 and fetal phenotypes, revealing that
fetuses with a DLL1 deletion exhibited altered brain structures. The
most prevalent abnormalities were cerebellar dysplasia, increased
ventricle width, and corpus callosum anomalies (observed in over

70% of cases). Gyration abnormalities were identified in 46% of the
fetuses. Less common phenotypes included heterotopia cerebri,
vertebral malformations, and renal abnormalities. In this study,
five fetuses exhibited bilateral lateral ventricle expansion, and the
cerebellar transverse diameter was smaller than expected for the
gestational age, compared to typical clinical phenotypes. Two cases
showed isolated chamber abnormalities.

Notably, fetus number 4 had the largest terminal deletion on
chromosome 6q (21.99 Mb) and presented with the most severe
phenotype. In addition to bilateral ventriculomegaly and a cerebellar
transverse diameter smaller than expected for the gestational age, the
condition was also associated with spinal abnormalities, including
scoliosis, intrauterine growth retardation, and abnormal
development of both arms. When the 6q terminal deletion
extends to 7.1 Mb, the majority of the patient’s clinical features
can be attributed to theDLL1. Deletions exceeding 7.1 Mb result in a
more severe phenotype (Engwerda et al., 2023). DLL1
haploinsufficiency plausibly explains prenatal anomalies.

CNV-Seq analysis can detect aneuploidies as well as pathogenic/
likely pathogenic CNVs, significantly improving abnormality
detection rates (Zhang C et al., 2018). Currently, CNV-seq
achieves a resolution limit of about 100 kb. In this study, CNV-seq
successfully identified 6q terminal deletions in fetuses 1–4, but failed
to detect the 0.14 Mb deletion in fetus 5, a size within its theoretical
detection range. This miss may be due to insufficient coverage of the
6q terminal region during sequencing. WES has been widely used
clinically for diagnosingmonogenic disorders (Zhang et al., 2021), can
detect single-nucleotide variants, small insertions/deletions (≤20 bp),
certain exon-level CNVs, and copy number changes. Fetus 5, the
CNV-seq false negative was subsequently identified byWES. Thus, in
prenatal cases with findings such as hydrocephalus, ventriculomegaly,
or a small cerebellar diameter,WES successfully identified the deletion
that CNV-seq had missed. As of May 2024, the ClinVar database lists
78 pathogenic/likely pathogenic CNVs, 25 frameshift, 7 nonsense
(across 15 variants), and 4 splicing/missense mutations related to this
region. Therefore, if CNV testing is negative in fetuses with these
phenotypes, further analysis for single-base changes and small indels
should be pursued to exclude monogenic disorders.

This study was a retrospective study with a small sample size, no
postnatal phenotyping due to pregnancy terminations, imaging
variability. Future work should prioritize the establishment of

TABLE 2 Genetic diagnosis data of 5 fetuses.

Fetal Sample
type

Detection
method

CNV-seq/WES
results

Deletion
size (Mb)

Includes
Dll1

Pathogenic
assessments

Pregnancy
outcome

1 AF CNV-seq Chr6:g.169180001-
170920000del

1.74 Yes Pathogenic TOP

2 AF CNV-seq Chr6:g.168040000-
170920000del

2.88 Yes Pathogenic TOP

3 AF CNV-seq Chr6:g.170330472-
171054567del

0.72 Yes Pathogenic TOP

4 AF CNV-seq Chr6:g.149069313-
171054567del

21.99 Yes Pathogenic TOP

5 AF CNV-seq and WES Chr6:g.170460966-
170604541del

0.14 Yes Pathogenic TOP

AF, amniotic fluid; CNV-seq, copy number variation; WES, whole-exome sequencing; TOP, termination of pregnancy.
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prospective registries, harmonized imaging metrics, capture of
postnatal outcomes when pregnancies continue.

Conclusion

Fetuses with reduced transverse cerebellar diameter,
hydrocephalus, or bilateral ventriculomegaly should be evaluated for
6q terminal deletions involving DLL1. Reflex WES following negative
CNV-seq reduces missed diagnoses and improves prenatal counseling.
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