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Background: Psoriasis is a chronic immune-mediated skin disorder characterized
by excessive keratinocyte proliferation and localized inflammation. A
comprehensive understanding of its molecular mechanisms is crucial for
improving disease management and developing targeted therapies.

Objective: This study aimed to investigate the molecular mechanisms underlying
psoriasis by integrating single-cell RNA sequencing with Mendelian
randomization (MR) analysis.

Methods: Single-cell transcriptomic data from 174 skin samples (92 from
psoriasis patients and 82 from healthy controls) were obtained from the GEO
database. Data processing was conducted using the Seurat package, including
quality control, normalization, dimensionality reduction, and cell-type
annotation, ultimately identifying 11 distinct cell populations. MR analysis was
then performed using summary statistics from the EBI database (n = 484,598) to
assess the putative relationships between candidate genes and psoriasis risk.
Results: Seven genetically informed candidate genes were identified as being
significantly associated with psoriasis susceptibility. Among them, BIN2 and
CAPN12 were linked to an increased risk, while genes such as CXXC5 and
KLRD1 were associated with decreased risk. These genes were predominantly
expressed in CD4* T cells. Functional enrichment analyses, including Gene Set
Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA), revealed their
involvement in critical immune-related pathways, such as the IL-17 signaling and
NOD-like receptor signaling pathways. Immune infiltration analysis
demonstrated an elevated abundance of various immune cell types in
psoriasis lesions. Moreover, transcription factor regulatory network analysis
suggested that specific transcription factors may regulate the expression of
these core genes, thereby contributing to psoriasis pathogenesis.

Conclusion: By integrating single-cell RNA sequencing with MR analysis, we
identified seven psoriasis-related genes (BIN2, CAPN12, CXXC5, KLRC1, KLRD1,
PRF1, and SLFN5) that are highly expressed in CD4* T cells. These genes hold
promise as potential biomarkers for psoriasis diagnosis and as novel therapeutic
targets.
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Introduction

Psoriasis is a complex, chronic inflammatory skin disease
characterized by keratinocyte hyperproliferation and aberrant
differentiation (Yu et al.,, 2020). Increasing evidence indicates that
psoriasis is a systemic disorder rather than a condition limited to the
skin alone (Gisondi et al.,, 2015). Epidemiological studies estimate a
global prevalence of approximately 3%, with a gradual upward trend
over recent years. While the overall incidence is similar between
males and females, variations exist across subtypes—for example,
psoriatic arthritis is more common in men, whereas plaque psoriasis
tends to occur more frequently in women. The disease can arise at
any age, with peak onset typically occurring between 20-40 and
50-60 years of age (Yan et al,, 2022).

Current treatment strategies for psoriasis include topical agents,
systemic therapies, and phototherapy. Topical treatments—such as
corticosteroids or vitamin D analogs—are often used to reduce
inflammation and scaling. In moderate-to-severe cases, systemic
therapies such as oral or injectable immunosuppressants (e.g.,
methotrexate, biologic agents) may be employed. Phototherapy,
which involves controlled exposure to ultraviolet (UV) light, also
helps relieve symptoms in some patients (Ivanic et al,, 2021).
However, existing treatments are not curative and often fail to
prevent relapse, highlighting the need for novel therapeutic
approaches. The pathogenesis of psoriasis is multifactorial,
involving a complex interplay between genetic predisposition,
environmental triggers, and immune system dysregulation (Yu
et al, 2020). A deeper understanding of the disease’s cellular
landscape and molecular mechanisms is crucial for identifying
novel therapeutic targets, thereby improving treatment outcomes
and advancing both basic and clinical research.

Single-cell RNA sequencing (scRNA-seq) technology allows for
the comprehensive analysis of gene expression, molecular features,
and cellular states at the individual cell level. This approach is
instrumental in identifying distinct cellular subpopulations,
uncovering disease-specific biomarkers, and elucidating cellular
interactions within the disease microenvironment (Zhang et al.,
2024). For instance, Yao et al. (2023) applied multiple machine
learning algorithms in combination with scRNA-seq and identified
ADAM23 as a potential diagnostic biomarker for psoriasis.
Similarly, Gao et al. (2024) integrated single-cell sequencing data
with meta-analysis and revealed G3BP2 as an immune-related
marker gene implicated in the development and progression
of psoriasis.

While these studies provide valuable insights and highlight
promising biomarker candidates, they fall short of investigating
the relationships between these genes and psoriasis susceptibility.
Establishing such putative causal links is essential for validating
these biomarkers and understanding their mechanistic roles in
disease pathogenesis.

Mendelian randomization (MR) offers a powerful approach to
investigating potential putative causal relationships between
biomarkers and disease phenotypes. By leveraging genetic
variants as instrumental variables for specific exposures, MR
enables the estimation of putative causal effects between exposure
traits (e.g., gene expression levels) and disease outcomes. Because
genetic variants are randomly assorted at conception, the
conclusions drawn from MR analyses are inherently less prone to
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confounding and reverse causation, thereby enhancing the
robustness of putative causal inference (Chu, 2024).

In this study, we retrieved single-cell RNA sequencing data from
174 samples—including 92 psoriasis cases and 82 healthy
controls—from the GEO database. Data preprocessing and
quality control were conducted using the Seurat package,
followed by normalization, dimensionality reduction, and cell-
type annotation, resulting in the identification of 11 distinct cell
clusters in psoriasis lesions. To assess the potential putative causal
associations between gene expression and psoriasis risk, we
performed two-sample MR analysis using summary statistics
from the EBI database, which included data from
484,598 individuals. Through the integration of scRNA-seq and
MR, we identified seven genetically informed candidate genes as
potential biomarkers associated with psoriasis susceptibility.

Materials and methods
Data acquisition

The Gene Expression Omnibus (GEO) is a publicly available
gene expression database maintained by the National Center for
Biotechnology Information (NCBI) in the United States. In this
study, two datasets were retrieved from the GEO database to support
downstream analyses. The single-cell RNA sequencing dataset
GSE151177 was used for single-cell analysis. From this dataset,
we selected 18 samples with complete single-cell expression profiles,
including 13 psoriasis cases and 5 healthy controls. In addition, the
bulk transcriptomic dataset GSE54456 was utilized for comparative
gene analysis, total  of
174 samples—92 from psoriasis patients and 82 from healthy

expression comprising  a
controls. These datasets collectively provided a robust foundation
for identifying cell-type-specific gene expression patterns and
potential biomarkers associated with psoriasis.

The expression quantitative trait loci (eQTL) data used in this
study were obtained from the eQTLGen Consortium (https://www.
eqtlgen.org), specifically the Phase I whole-blood cis-eQTL meta-
analysis (summary statistics). The eQTLGen Consortium is
dedicated to exploring the genetic architecture of gene expression
in whole blood and aims to elucidate the genetic underpinnings of
complex traits (Vosa et al., 2021). While the consortium is currently
in its second phase—focusing on large-scale genome-wide meta-
analyses to identify blood eQTLs—our analyses rely exclusively on
the Phase I resource.

We attempted to repeat the MR analyses using skin-specific cis-
eQTLs from GTEx v8 (Skin—Sun Exposed [Lower leg] and
Skin—Not Sun Exposed [Suprapubic]). Instruments were defined
as independent cis-eQTLs after LD clumping and harmonization
with the psoriasis GWAS. For most candidate genes, fewer than
three independent instruments remained, precluding robust MR
estimation; therefore, the skin-based MR replication could not
be completed.

The outcome summary statistics used for Mendelian
randomization analysis were obtained from the EBI GWAS
ID:  GCST90038681). The

Bioinformatics Institute (EBI) database is a comprehensive

Catalog  (accession European

repository that centralizes and standardizes genetic variation data
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derived from genome-wide association studies (GWAS). It
encompasses extensive information on human traits and diseases,
offering datasets that include single nucleotide polymorphism (SNP)
identifiers, effect alleles, effect sizes, p-values, and sample sizes. The
data are formatted consistently to facilitate accessibility and
The
continuously updated to reflect the latest scientific discoveries

downstream analyses by researchers. database is
and serves as a valuable resource for both basic and translational
research, particularly in understanding the genetic basis of complex
traits and advancing personalized medicine (Cantelli et al., 2022). In
the psoriasis dataset used for this study, the summary statistics were
derived from 5,427 cases and 479,171 controls, providing robust

statistical power for putative causal inference.

Single-cell data quality control

The gene expression matrix was initially imported using the
Seurat package (Gribov et al., 2010). To ensure data quality, cells
were filtered based on multiple parameters, including the total
number of unique molecular identifiers (UMIs), the number of
detected genes, and the proportion of mitochondrial gene
expression. The mitochondrial gene proportion was calculated as
the percentage of mitochondrial gene transcripts relative to the total
gene expression per cell. A high proportion of mitochondrial gene
expression is typically indicative of low RNA content and may reflect
cellular apoptosis or degradation. To eliminate low-quality or dying
cells, we implemented quality control based on the median absolute
deviation (MAD) method. Values exceeding three MADs from the
median for any given quality metric were considered outliers and
excluded from further analysis. Additionally, DoubletFinder (v2.0.4)
(McGi et al., 2019) was employed to identify and remove potential
doublets from each sample individually. These steps collectively
ensured the inclusion of only high-quality single cells for
downstream analyses.

Dimensionality reduction, clustering and
annotation of single-cell data

Gene expression data were normalized using the LogNormalize
method in Seurat. This approach adjusts the total expression of each
cell to a common scale (10,000 transcripts per cell) by applying a
scaling factor (sy), followed by logarithmic transformation to
stabilize variance. CellCycleScoring was then used to calculate
cell cycle scores, while FindVariableFeatures identified highly
variable genes for downstream analysis.

To minimize gene expression variability arising from
confounding factors—such as differences in mitochondrial gene
content, ribosomal gene content, and cell cycle states—we
employed the ScaleData function to regress out these effects.
RunPCA was subsequently used to perform linear dimensionality
reduction, and key principal components were selected for further
analyses. To address batch effects, the Harmony algorithm was
applied, enabling integration across samples. Nonlinear
dimensionality reduction was then carried out using RunUMAP,
which applies the Uniform Manifold Approximation and Projection

(UMAP) technique for visualization in two-dimensional space.
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For cell-type annotation, we referenced the CellMarker (Hu
et al,, 2023) and PanglaoDB (Franzén et al., 2019) databases and
consulted relevant literature. This was further supplemented by
automated annotation using SingleR, allowing accurate
identification of cell populations and their corresponding marker

genes within the analyzed tissue.

Determine the contribution of cell
subpopulations to disease

To evaluate the contribution of different cell subpopulations to
disease pathogenesis, we simultaneously considered changes in cell
abundance and gene expression. First, we identified characteristic
genes for each cell cluster. Specifically, we conducted bulk
differential gene expression analysis between the psoriasis and
control groups to capture the transcriptional alterations
associated with disease.

To quantify these changes, we defined a composite metric
termed FCscore, which integrates both the fold change in gene
expression and the proportional change in gene abundance within
biological processes. For a given characteristic gene i in cell cluster j,
let FCexp (i,j) represent the expression fold change, and FCprop (i,)
denote the proportional fold change in cell number. The FCscore
(i,j) for gene i in cluster j is calculated as: FCscore (i,j) = +/[FCexp
(i,j) x ECprop (i,j)] (Jin et al,, 2022).

This formulation captures the combined effect of gene
expression and cellular abundance. The overall contribution of
each cell subpopulation to psoriasis was then quantified as the

average FCscore across all characteristic genes within the cluster.

Mendelian randomization analysis

To identify potential instrumental variables (IVs) for Mendelian
randomization (MR) analysis, we selected single nucleotide
polymorphisms (SNPs) associated with each gene at a locus-wide
significance threshold of P < 1 x 107%. To ensure the independence of
selected variants, linkage disequilibrium (LD) was assessed, and only
SNPs with R* < 0.001 within a 10,000 kb clumping window
were retained.

We evaluated the MR-estimated effect of genetically proxied
gene expression on psoriasis risk using complementary MR
estimators and sensitivity tests:

1. Inverse-Variance Weighted (IVW) (random-effects): meta-
analyzes SNP-specific Wald ratios to obtain an overall
causal estimate.

2. MR-Egger regression: provides a pleiotropy-robust estimate
under the InSIDE (Instrument Strength Independent of Direct
Effect) assumption.

3. Weighted median: yields a consistent estimate if at least 50% of
the total weight comes from valid instruments.

4. Weighted mode: consistent when the largest weight cluster of
instruments identifies the same causal effect (ZEMPA), often
exhibiting lower type I error than MR-Egger in simulations.

5. Directional horizontal pleiotropy assessment: evaluated using the
MR-Egger intercept (sensitivity test rather than an estimator).
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When only one SNP was available for a gene, we applied the Wald
ratio. This multi-method framework enabled us to derive more robust
estimates of the causal effects of cis- (and selected trans-) gene
expression in whole blood on psoriasis risk. Finally, we conducted
leave-one-out analyses, sequentially removing a single SNP at a time
and re-estimating the MR effect to assess robustness.

Sensitivity test analysis

We employed leave-one-out sensitivity analysis within the
Mendelian randomization (MR) framework to evaluate the
influence of individual genetic variants on the overall MR
association between genetically proxied gene expression and
psoriasis risk (Zeng et al., 2023). This procedure removes one
single-nucleotide polymorphism (SNP) at a time and recalculates
the pooled MR estimate from the remaining instruments. By
iteratively excluding each SNP, we obtain a new point estimate
with its 95% confidence interval, quantifying each variant’s
contribution to the overall MR result.

This approach enables the identification of outlier SNPs that
may disproportionately influence the MR estimate or indicate
residual pleiotropy. Estimates from the full model (all SNPs) and
from the leave-one-out models are summarized and compared;
consistency across these estimates suggests that the MR findings
are robust and not unduly driven by any single instrument, while
discrepancies flag variants for further scrutiny.

Gene set enrichment analysis (GSEA)

Based on the expression levels of genetically informed candidate
genes, psoriasis patients were stratified into high-expression and
low-expression groups. To explore the biological differences
between these groups, GSEA was performed (Subramanian et al.,
2005). The analysis used the Molecular Signatures Database
(MSigDB, v7.0) curated canonical pathway gene sets—C2:CP:
KEGG (downloaded as c2. cp.kegg.v7.0. symbols. gmt)—as the
reference background (Liberzon, 2014). These gene sets represent
curated biological pathways and molecular processes relevant to
disease subtypes.

Differential pathway enrichment between the high- and low-
expression groups was assessed, and gene sets with an adjusted
p-value <0.05 were considered significantly enriched and ranked
accordingly. GSEA is particularly useful in studies that integrate
disease classification with functional biological interpretation,
allowing the identification of key signaling pathways potentially
associated with disease severity or molecular phenotype.

Gene set variation analysis (GSVA)

GSVA is a non-parametric, unsupervised method used to evaluate
gene set enrichment at the transcriptome level (Hédnzelmann et al.,
2013). Unlike traditional methods that focus on differential expression
of individual genes, GSVA transforms gene-level expression data into
pathway-level enrichment scores, enabling the assessment of
biological process variation across samples.
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In this study, gene sets were obtained from the MSigDB v7.0 for
GSVA, we used the HALLMARK collection (H). The GSVA
algorithm was applied to compute sample-level enrichment
scores for each gene set across all samples (R GSVA package;
default parameters unless otherwise noted), enabling evaluation
of pathway activity differences among patient groups (e.g., high-
vs. low-expression). This approach provides deeper insights into the
molecular mechanisms underlying disease heterogeneity.

Immune infiltration analysis

The CIBERSORT algorithm (Kawada et al., 2020) is a widely
adopted computational method for estimating the relative
proportions of immune cell types within complex tissue
microenvironments. Based on the principles of support vector
regression, CIBERSORT performs deconvolution analysis on bulk
gene expression data to infer the composition of immune cell
subtypes. The algorithm relies on a reference signature matrix
that
22 distinct human immune cell phenotypes, including various

containing 547 gene expression markers distinguish
subsets of T cells, B cells, plasma cells, and myeloid cells.

In this study, CIBERSORT was employed to analyze the
transcriptomic profiles of psoriasis patients, allowing for the
quantification of immune cell infiltration across samples.
Furthermore, correlation analyses were performed between the
expression levels of genetically informed candidate genes and the
inferred proportions of immune cell types, aiming to elucidate
potential immune-related regulatory mechanisms involved in

psoriasis pathogenesis.

Transcription factor regulatory network

This study used the R package “RcisTarget” (Santana et al., 2024)
to predict transcription factors. All calculations performed by
RcisTarget are based on motifs. The normalized enrichment
score (NES) of a motif depends on the total number of motifs in
the database. In addition to the motifs annotated by the source data,
we inferred further annotation files based on motif similarity and
gene sequence. The first step in estimating the overexpression of
each motif on a gene set is to calculate the area under the curve
(AUC) for each motif-motif set pair. This was performed based on
recovery curve calculations of the gene set against the ordering of the
motifs. The NES of each motif is calculated based on the AUC
distribution of all motifs in the gene set.

Pseudotime analysis

Studies at the single-cell level allow one to characterize complex
physiological processes and the transcriptional regulation of highly
heterogeneous cell populations. These studies have led to the
discovery of genes that identify specific cell subtypes, genes that
mark intermediate states of biological processes, and genes that are
in transition states between two different cell fates. In many single-
cell studies, individual cells carry out gene expression processes in an
asynchronous manner, with each cell being a moment in time of the
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TABLE 1 Primer sequences.

10.3389/fgene.2025.1634874

Gene Genbank accession Primer sequences (5'to 3’) Size (bp) Annealing (°C)
Human GAPDH 2,597 GGAGCGAGATCCCTCCAAAAT 197 616
GGCTGTTGTCATACTTCTCATGG
BIN2 51411 ACTTCCTTAGTGCAGTCAAAGTG 234 60.4
GACCCCGCTTGGCAATTCT
CAPN12 147968 TCCTGTTCCGCGACCCTTA 124 626
GGCTCAGCACAGAACTCATGG
CXXC5 51523 CCGAGCGTCGGAACAAGAG 100 627
CCACTGCTGCCAAAAGAAGAG
KLRCI 3,821 AGCTCCATTTTAGCAACTGAACA 190 60.4
CAACTATCGTTACCACAGAGGC
KLRDI 3,824 CAGGACCCAACATAGAACTCCA 92 61.1
GAAATGAAGTAACAGTTGCACC
PRF1 5,551 GGCTGGACGTGACTCCTAAG 233 617
CTGGGTGGAGGCGTTGAAG
SLEN5 162394 GAGTGTGTTGTAGATGCAGGAA 104 60
ACTGCTCGCAGGATGATTTCA

transcriptional process being studied. Monocle introduces a strategy
to sequence individual cells in pseudotime (pseudochronology),
taking advantage of the asynchronous processes of individual
cells to place them on trajectories corresponding to biological
processes such as cell differentiation.

Validation with RT-qPCR

Human epidermal keratinocyte (HaCaT) was obtained
from Wuhan Pricella. Cultured HaCaT cells were treated with
10 ng/mL of M5 (IL-22, TNF-a, IL-17A, IL-1a, and Oncostatin
M) (Pepro Tech) for 48 h (Ma et al., 2024). Untreated and treated
cells were regarded as normal control (NC) groups and psoriasis
cell model (M5) groups respectively. The RNA from the cell lines
was extracted using TRIzol reagent (Invitrogen), and the
RevertAid First-Strand ¢cDNA Synthesis Kit (Thermo Fisher
Scientific, Inc.) was used to synthesise ¢cDNA. RT-qPCR
analysis was performed using SYBR Green (Takara). The
primer sequences are summarised in Table 1.

Statistical analysis

All statistical analyzes were performed using R language (version
4.3.0), and p < 0.05 was considered statistically significant.

Results

The overall design of the study was depicted in Figure 1.

Frontiers in Genetics

Quality control, data standardization, and
cell annotation

To ensure data quality across multiple samples, cells with fewer
than 200 detected genes were excluded from downstream analysis.
The filtering criteria were defined as follows:

(nFeature_RNA >200 and percent. mt < median +3 x MAD
and nFeature_RNA < median +3 x MAD and nCount_RNA <
median +3 x MAD and percent. ribo < median +3 x MAD),
where nFeature_ RNA represents the number of detected genes,
nCount_RNA denotes the total number of unique molecular
identifiers (UMIs), percent. mt indicates the proportion of
mitochondrial transcripts, and percent. ribo represents the
proportion of ribosomal transcripts. In our dataset, these
rules yielded the following concrete thresholds: 3,849 =>
nFeature_ RNA>200 and mt<14.428 and
nCount_RNA<12829.

Subsequently, the DoubletFinder (default parameters), was

percent.

employed to remove potential doublets, resulting in a final
dataset containing 19,670 high-quality single cells. Violin plots
and scatter plots were generated to visualize the distribution of
quality control metrics. Next, 2,000 highly variable genes (HVGs)
were identified, from which the top 10 genes with the highest
standard deviation were selected for visualization. The data were
then subjected to normalization, principal component analysis
(PCA), and Dbatch effect
(Supplementary Figure SI).

correction  using Harmony
A total of 11 distinct cell clusters were identified following
UMAP dimensionality reduction and

(Figure 2A). These clusters were subsequently annotated based

clustering  analysis

on canonical marker genes and were classified into the following
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FIGURE 1

Study workflow. GEO, the Gene Expression Omnibus; scRNA-seq, Single-cell RNA sequencing; SNPs, single-nucleotide polymorphisms; MR,
Mendelian randomization; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier; GSEA, gene set enrichment analysis; GSVA,

gene set variation analysis.

cell types: keratinocytes from the stratum corneum (KC S.
Corneum), regulatory T cells (Tregs), CD161" T cells, CD8"
T cells, keratinocytes from the stratum spinosum (KC S.
Spinousm), mature dendritic cells (Mature DCs), macrophages,
keratinocytes from the stratum granulosum (KC S. Granulosm),
CD4" T cells, melanocytes, and keratinocytes from the basal layer
(KC S. Basale) (Figure 2B). A bubble plot depicting the expression of
classical marker genes across these 11 cell types is shown in
Figure 2C, while Figure 2D presents a bar plot of cell-type
proportions in psoriasis and control groups.

To investigate the contribution of each cell type to disease
pathogenesis, we analyzed both cell abundance and gene
First, expressed genes
(DEGs) between the psoriasis and control groups were
identified to reflect transcriptional alterations.
introduced a

expression changes. differentially
Next, we
which

integrates changes in cell number and the expression levels of

composite index termed FCscore,
characteristic genes involved in disease-related biological
processes. Based on this scoring system, CD4" T cells were
found to have the most prominent contribution to psoriasis
(Figure 2E). Therefore, CD4" T cells were selected as the key
cell population for downstream analyses. Marker genes with log,
fold change >0.585 and adjusted p-value <0.05 were designated

as candidate genes for subsequent investigations.
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Mendelian randomization analysis

To prioritize disease-associated candidates within the marker-
gene set, we leveraged summary-level data from a large psoriasis
GWAS (N = 484,598; 5,427 cases and 479,171 controls; outcome ID
GCST90038681). Using the TwoSampleMR functions extract_
instruments and extract_outcome_data, we derived genetic
instruments for gene expression and the corresponding outcome
associations, followed by harmonization. We then performed MR
analyses to obtain MR estimates of the association between
genetically proxied gene expression and psoriasis risk, which are
interpreted as consistent with a causal relationship only under the
standard MR assumptions (relevance, independence, and exclusion
restriction).

As a result, seven significant gene-disease associations were
identified, each exhibiting positive eQTL relationships, with IVW
p-values <0.05.

For BIN2 (Bridging Integrator 2), three independent instruments
were available (nsnp = 3). The MR estimates were directionally
consistent across methods, with significant associations under IVW
(OR = 1.0013; 95% CI 1.0002-1.0025; p = 0.026) and weighted
median (OR = 1.0013; 95% CI 1.0001-1.0026; p = 0.037), while MR-
Egger and weighted mode were not significant (Figure 3A,
Supplementary File 1).
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Annotation of cellular subtypes of single-cell samples. (A) Distribution of samples within the cell clusters. (B) SingleR automatically annotating the
11 cell clusters as 11 cell types. (C) Bubble chart of classic markers of 11 cells. (D) Histogram of cell proportions corresponding to groups. (E) Determine the
contribution of cell subpopulations to psoriasis.
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Symbol Nsnp abs(B) OR(95%Cl) Pvalue FDR
PRF1 3 0.0046 - 0.995(0.992-0.999) 0.019 0.028
CXXC5 4 0.0042 L} 0.996(0.994-0.998) <0.001 <0.001
KLRD1 3 0.0022 - 0.998(0.996-0.999) 0.007 0.016
KLRC1 5 0.0017 . 0.998(0.997-0.999) <0.001 <0.001
SLFN5 4 0.0010 . 0.999(0.998-1.000) 0.029 0.029
CAPN12 6 0.0008 . 1.001(1.000-1.002) 0.020 0.028
BIN2 3 0.0013 L] 1.001(1.000-1.002) 0.026 0.029
[ 1
0.7 1.0

Mendelian randomization analyses between 7 pairs of Marker genes and psoriasis. (A) Exposure: BIN2; Outcome: Psoriasis. (B) Exposure: CAPN12;
Outcome: Psoriasis. (C) Exposure: CXXC5; Outcome: Psoriasis. (D) Exposure: KLRC1; Outcome: Psoriasis. (E) Exposure: KLRD1; Outcome: Psoriasis. (F)
Exposure: PRF1; Outcome: Psoriasis. (G) Exposure: SLFN5; Outcome: Psoriasis. (H) Mendelian randomization forest plot for candidate genes. The x-axis
shows odds ratios (ORs) with 95% confidence intervals. Each row corresponds to one gene with the number of instruments (Nsnp), absolute effect
(Continued)

Frontiers in Genetics 08 frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1634874

Dong et al.

FIGURE 3 (Continued)
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size (abs(B)), nominal P value, and FDR. PRF1, CXXC5, KLRD1, KLRC1, and SLFN5 are associated with reduced risk (OR<1), whereas CAPN12 and
BIN2 are associated with increased risk (OR>1). Although ORs are close to 1, most associations remain significant after FDR correction. Abbreviations: OR,

odds ratio; Cl, confidence interval.

For CAPN12 (Calpain 12), six independent instruments were
available (nsnp = 6). MR estimates were directionally consistent
across methods, with nominally significant associations under IVW
(OR = 1.001; 95% CI ~1.000-1.002; p = 0.021) and weighted median
(OR = 1.0009; 95% CI ~1.0002-1.0017; p = 0.011), whereas MR-
Egger and weighted mode were not significant (Figure 3B,
Supplementary File 2).

For CXXC5 (CXXC-Type Zinc Finger Protein 5), four
independent instruments were available (nsnp = 4). MR
estimates were directionally consistent across methods
(protective; OR < 1), with significant associations under IVW
(OR = 0.9959; 95% CI 0.9940-0.9978; p = 2.1 x 107°) and
weighted median (OR = 0.9953; 95% CI 0.9929-0.9977; p = 1.2 x
107*), whereas MR-Egger and weighted mode were not significant
(Figure 3C, Supplementary File 3).

For KLRCI (Killer Cell Lectin Like Receptor CI), five independent
instruments were available (nsnp = 5). MR estimates were
directionally consistent across methods (protective; OR < 1), with
nominally significant associations under IVW (OR = 0.9983; 95% CI
0.9972-0.9994; p = 2.4 x 107*), weighted median (OR = 0.9983; 95%
CI10.9974-0.9993; p = 6.9 x 107*), and weighted mode (OR = 0.9983;
95% CI 0.9972-0.9994; p = 0.036), whereas MR-Egger was not
significant (Figure 3D, Supplementary File 4).

For KLRD1(Killer Cell Lectin Like Receptor D1, also known as
CD94), three independent instruments were available (nsnp = 3).
MR estimates were directionally consistent across methods
(protective; OR < 1), with significant associations under IVW
(OR = 0.9978; 95% CI 0.9962-0.9994; p = 0.0067) and weighted
median (OR = 0.9979; 95% CI 0.9968-0.9991; p = 3.7 x 107%),
whereas MR-Egger and weighted mode were not significant
(Figure 3E, Supplementary File 5).

For PRF1 (Perforin 1), three independent instruments were
available (nsnp = 3). MR estimates were directionally consistent
across methods (protective; OR < 1), with nominally significant
associations under IVW (OR = 0.9955; 95% CI 0.9917-0.9993; p =
0.019) and weighted median (OR = 0.9959; 95% CI 0.9930-0.9987;
p = 0.0046), whereas MR-Egger and weighted mode were not
significant (Figure 3F, Supplementary File 6).

For SLEN5 (Schlafen Family Member 5), four independent
instruments were available (nsnp = 4). MR estimates were
directionally consistent across methods (protective; OR < 1), with
nominal significance under IVW (OR = 09990; 95% CI
0.99805-0.99989; p = 0.0288) and weighted median (OR = 0.9990;
95% CI 0.99812-0.99997; p = 0.0421), whereas MR-Egger and weighted
mode were not significant (Figure 3G, Supplementary File 7).

In two-sample Mendelian randomization, we observed
directionally consistent associations between several genes and
disease risk that remained significant after multiple-testing
correction. Specifically, PRF1 (OR = 0.995, FDR = 0.028),

CXXC5 (0.996, FDR<0.001), KLRD1 (0.998, FDR = 0.016),
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KLRC1 (0.998, FDR<0.001), and SLEN5 (0.999, FDR = 0.029)
were associated with reduced risk, whereas CAPN12 (OR =
1.001, FDR = 0.028) and BIN2 (1.001, FDR = 0.029) were
associated with increased risk. Although the estimated effects
were small (|B| < 0.0046; Nsnp = 3-6 per gene), the associations
persisted after FDR adjustment, supporting these genes as putative
causal candidates. These findings indicate modest yet directionally
robust genetically proxied effects that warrant further functional and
clinical validation (Figure 3H).

We evaluated directional pleiotropy using the MR-Egger
intercept. For all seven genes (BIN2, CAPN12, CXXC5, KLRCI,
KLRD1, PRF1, SLENS5), the intercepts were near zero with non-
significant p values (all >0.28), indicating no evidence of directional
pleiotropy. We note that the number of instruments per gene is
limited, so power for Egger is modest (Supplementary File 8).

Across the seven candidates, BIN2 and CAPN12 show risk-
increasing IVW estimates (OR>1), whereas CXXC5, KLRCI,
KLRD1, PRF1, and SLEN5 are protective (OR<1). Directions are
broadly concordant across methods (see ‘Direction consistent across
methods’), yet effect sizes are very small (ORs near unity). IVW and
weighted median often reach nominal significance, while MR-Egger/
weighted mode do not, consistent with limited power (nsnp =
3-6 for most genes). Together with non-significant Egger
intercepts, we find no clear evidence of directional pleiotropy or
substantial heterogeneity; nevertheless, results should be interpreted
cautiously. Overall, these signals are best viewed as etiologic
prioritization for immune-regulatory pathways rather than
clinically meaningful risk effects.

To assess the robustness of these associations, leave-one-out
sensitivity analysis was conducted for each gene-trait pair. The
results demonstrated that exclusion of any single SNP had minimal
impact on the overall effect estimates, suggesting the associations are
stable and not driven by individual variants (Supplementary Figure
S2). Furthermore, heterogeneity analysis showed no significant
heterogeneity across the seven gene-psoriasis associations,
indicating statistical consistency and supporting the validity of
the MR findings (Table 2).

We tested reverse causation by treating psoriasis liability as the
exposure and gene expression as the outcome, using four LD-
clumped instruments per gene (nsnp = 4). Effects are reported
on the expression scale (B + 95% CI; two-sided p). Across the seven
genes, no robust reverse effect was detected after multiple testing
except CXXC5, which remained significant ( = 15.043; p = 2.86 x
107 FDR = 0.002; Bonferroni = 0.002). Cochran’s Q indicated no
flagged SLEN5 as
potentially single-instrument-driven, whereas other genes passed.

substantial heterogeneity. Leave-one-out
Overall, these results argue against a predominant psoriasis —
expression direction and are instead consistent with expression
— psoriasis; CXXC5 may reflect disease-driven transcriptional
feedback and warrants further validation (Supplementary File 9).
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TABLE 2 Heterogeneity tests for Mendelian randomization results.
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Exposure id.exposure Outcome id.outcome Method Q Q_df Q_pval
BIN2 ENSG00000110934 Psoriasis GCST90038681 MR Egger 0.00962502771199984 1 0.921847150021169
BIN2 ENSG00000110934 Psoriasis GCST90038681 Inverse variance weighted 0.0499845624830235 2 0.975317440239049

CAPN12 ENSG00000182472 Psoriasis GCST90038681 MR Egger 1.45185515520003 4 0.835134118981631
CAPN12 ENSG00000182472 Psoriasis GCST90038681 Inverse variance weighted 2.41556594388285 5 0.789153811819766
CXXCs5 ENSG00000171604 Psoriasis GCST90038681 MR Egger 0.365402757172705 2 0.83301687527564
CXXC5 ENSG00000171604 Psoriasis GCST90038681 Inverse variance weighted 1.72357221199169 3 0.631705932131266
KLRC1 ENSG00000134545 Psoriasis GCST90038681 MR Egger 1.81068914188342 3 0.612611625829951
KLRC1 ENSG00000134545 Psoriasis GCST90038681 Inverse variance weighted 1.82944566328652 4 0.767090912294327
KLRD1 ENSG00000134539 Psoriasis GCST90038681 MR Egger 0.0590040165967132 1 0.808077114332275
KLRD1 ENSG00000134539 Psoriasis GCST90038681 Inverse variance weighted 3.99460223583679 2 0.135701030539963
PRF1 ENSG00000180644 Psoriasis GCST90038681 MR Egger 0.221456529538924 1 0.637932350008808
PRF1 ENSG00000180644 Psoriasis GCST90038681 Inverse variance weighted 4.5642674102866 2 0.102066195046612
SLEN5 ENSG00000166750 Psoriasis GCST90038681 MR Egger 0.0706814369647002 2 0.965276472687349
SLFN5 ENSG00000166750 Psoriasis GCST90038681 Inverse variance weighted 0.907639472224874 3 0.823583848060954

To explore the cellular distribution of these genetically informed
candidate genes, we used the FeaturePlot and DotPlot functions in
the Seurat R package. As shown in Supplementary Figure S3, all
seven genes exhibited relatively high expression levels in CD4"
T cells, underscoring their potential role in the immune-mediated
pathogenesis of psoriasis.

GSEA analysis

GSEA prioritized significantly enriched pathways by normalized
enrichment score (NES) and, for each gene, displays the top three
terms (Figures 4A-G). KLRC1, KLRDI, PRF1, BIN2, and
SLEN5
inflammatory modules—including IL-17 signaling, the TNF/NE-
kB axis, and innate immune sensor pathways (NOD-, RIG-I-, and

showed enrichment concentrated in immune-

Toll-like receptors)—consistent with psoriasis-relevant Th17/innate
activation. By contrast, CAPN12 was primarily enriched for fatty
acid metabolism/unsaturated fatty acid biosynthesis and
c¢GMP-PKG signaling, pointing to potential immunometabolic
links (e.g., epidermal lipid homeostasis, vascular tone, leukocyte
trafficking). CXXC5 was enriched for cAMP and PPAR signaling,
pathways implicated in keratinocyte differentiation, lipid balance,
and anti-inflammatory responses, aligning with its putatively
protective direction of effect. Leading-edge analyses indicated that
in each panel, a compact subset of core genes drives the observed
enrichment, coherence the

supporting mechanistic across

highlighted pathways.

GSVA analysis

To further elucidate the functional relevance of the identified
genetically informed candidate genes, GSVA was performed to
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assess pathway-level activity across samples. The results revealed
distinct immune- and signaling-related pathway enrichments for
each gene, suggesting their potential roles in modulating psoriasis
progression.

Specifically, KLRC1 was enriched in pathways such as
INTERFERON_ALPHA_RESPONSE and COMPLEMENT
(Figure 5A), while KLRD1 was associated with COMPLEMENT
and INTERFERON_GAMMA_RESPONSE (Figure 5B).

CAPN12 was enriched in ANDROGEN_RESPONSE and TGF_
BETA_SIGNALING pathways (Figure 5C), and CXXC5 showed
enrichment in MYOGENESIS, NOTCH_SIGNALING, and related
pathways (Figure 5D). PRF1 was enriched in INTERFERON_

GAMMA_RESPONSE and ALLOGRAFT_REJECTION
(Figure 5E), while BIN2 also showed enrichment in
COMPLEMENT and ALLOGRAFT_REJECTION pathways

(Figure 5F). Finally, SLEN5 was enriched in COMPLEMENT and
KRAS_SIGNALING_UP (Figure 5G). These findings further
support the hypothesis that these genetically informed candidate
genes may influence psoriasis pathogenesis by modulating a range of
immune responses, interferon and

signaling, inflammatory

signaling cascades.

Immune infiltration

The tissue microenvironment—comprising fibroblasts, immune
cells, extracellular matrix components, growth factors, and
inflammatory mediators—plays a pivotal role in disease
pathogenesis, influencing diagnosis, prognosis, and treatment
responsiveness. To investigate immune dynamics in psoriasis, we
compared the immune cell infiltration landscape between disease
and control groups. The distribution and intercellular correlations of
infiltrating immune cells are shown in Figures 6A,B (Supplementary

File 10). Compared to healthy controls, psoriasis patients exhibited

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1634874

Dong et al.

10.3389/fgene.2025.1634874

KLRD1

CAPNI12 D

B s iy e — <GP s by — oty astam = = -

| EN 5 A

| R Wi

| —

E,
Hoas

00 70500
Ronk i ordred datssot

Wh T,
\\\‘ -~."/,J

FIGURE 4

Vs,

j’:{i/,,

%
"
)
2
5
)

ittt
\\\‘\\mus Wittty
) 1ty
X i,
“,

-

XA
%,
%
%
.2,

i
1

Gene set enrichment analysis. (A—G) Signaling pathways involved in different genetically informed candidate genes.

significantly higher infiltration of activated dendritic cells, MO and
M1 macrophages, monocytes, neutrophils, resting CD4" memory
T cells, CD8" T cells, follicular helper T cells, and regulatory T cells
(Tregs). In contrast, resting dendritic cells, resting mast cells,
activated NK cells, and plasma cells were significantly reduced in
the disease group (Figure 6C).

We further examined the correlation between key gene
expression immune cell infiltration 6D,

and (Figure

Supplementary File 11):

o KLRC1 expression was positively correlated with activated
CD4" memory T cells, follicular helper T cells, monocytes,
M1 macrophages, activated dendritic cells, and neutrophils,
but negatively correlated with plasma cells, resting dendritic
cells, and resting mast cells.

« KLRD1 showed positive correlations with resting and activated
CD4" memory T cells, follicular helper T cells, monocytes,
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M1 macrophages, activated dendritic cells, and neutrophils,
while negatively correlated with resting dendritic cells and
mast cells.

o CAPNI12 was positively correlated with resting dendritic cells
and mast cells, and negatively associated with CD8" T cells,
Tregs, monocytes, and MO macrophages.

o CXXC5 expression was positively associated with activated NK
cells, resting dendritic cells, and mast cells, but negatively
correlated with naive/memory B cells, CD4" T cells, follicular
helper T cells, monocytes, M1 macrophages, activated
dendritic cells, and neutrophils.

o PRF1 demonstrated strong positive correlations with naive
B cells, CD8" T cells, activated CD4* memory T cells, follicular
helper T cells, Tregs, monocytes, M0/M1 macrophages,
activated dendritic cells, and mast cells, but was negatively
associated with plasma cells, resting dendritic cells, and
mast cells.
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Gene set variation analysis (GSVA). (A-G) GSVA pathway with significant enrichment of genetically informed candidate genes: top indicates high

expression and bottom indicates low expression based on hallmarker background set.

o BIN2 expression positively correlated with naive B cells, populations and may influence psoriasis progression by
resting and activated CD4" memory T cells, follicular helper =~ modulating the immune microenvironment.
T cells, monocytes, M1 macrophages, activated dendritic cells,
and neutrophils, and showed negative correlations with resting
dendritic cells and mast cells. Relationship between genetically informed
« SLEN5 was positively associated with naive B cells, restingand ~ Candidate genes and disease-related genes
activated CD4" memory T cells, monocytes, M1l and
M2 macrophages, activated dendritic cells, and neutrophils, To further explore the relationship between candidate genes and
but negatively correlated with Tregs, activated NK cells, resting ~ known psoriasis-associated regulators, we retrieved disease-
dendritic cells, and mast cells. regulating genes from the GeneCards database and analyzed the
expression levels of the top 20 genes ranked by Relevance*Score and
These findings suggest that the identified genetically informed  transcriptomic expression. Compared to the control group, several
candidate genes are closely linked to distinct immune cell — genes—including AP1S3, CARD14, CDSN, FABP5, HLA-B, HLA-
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C, IL12B, IL17A,
TRAF3IP2—were
samples (Figure 7A).

IL23R, LTA, NOD2, PRINS, TNF, and

significantly ~ upregulated in  psoriasis

To examine potential interactions between our identified
candidate genes and established psoriasis therapeutic targets, we
performed gene co-expression analysis using bulk RNA-seq data. As
shown in Figure 7B, multiple candidate genes exhibited significant
correlations with immune-related targets such as TNF, IL17A,
IL17RA, and IL23R. Notably, BIN2 showed a strong positive
correlation with TNF (Pearson r = 0.694, p = 2.4 x 107>), while
CXXC5 was significantly negatively correlated with AP1S3 (Pearson
r=-0.73, p = 3.5 x 107°). Differential expression analysis further

revealed that both BIN2 and TNF were markedly upregulated in
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psoriatic tissues, whereas CXXC5 and AP1S3 were downregulated,
indicating potential co-expression and functional relationships in
disease pathogenesis.

Next, we evaluated the expression relationships between the
seven genetically informed candidate genes and the most relevant
disease-regulating genes at the single-cell level. The results
demonstrated that BIN2, CAPNI12, CXXC5, PRF1, KLRDI,
and KLRC1 were negatively correlated with IL36RN, AP1S3,
PSORSICI, TNF, and TRAF3IP2, while showing positive
correlations with HLA-C. In contrast, SLFN5 was positively
associated with HLA-C and TNF, but negatively correlated
with the other four disease-regulating genes (Supplementary
Figures S4-S10).
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To validate gene expression patterns, we performed qPCR to
assess mRNA levels of the seven genetically informed candidate
genes (BIN2, CAPN12, CXXC5, KLRC1, KLRD1, PRF1, and SLEN5)
in normal control (NC) and M5-treated groups. Compared to the
NC group, BIN2, KLRD1, SLEN5, and CXXC5 were significantly
upregulated in the M5 group, whereas CAPN12 and KLRCI were
significantly downregulated (Figure 8). These findings suggest that
the identified genetically informed candidate genes may participate
in psoriasis-related inflammatory responses and potentially interact
with known disease-regulating targets, providing further insight into
their roles in disease progression.
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Transcription factor regulatory network

Using the set of genetically informed candidate genes identified
in this study, we performed transcriptional regulatory analysis and
found that these genes are collectively regulated by multiple
common transcription factors (TFs) (Figure 9A). To further
investigate the regulatory conducted TF
enrichment analysis based on cumulative recovery curves. The

landscape, we

results revealed that several transcription factor motifs were

significantly enriched in association with the genetically informed
candidate genes.
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Among them, cisbp__M5911 emerged as the most significantly
enriched motif, with the highest normalized enrichment score
(NES = 5.84) across all tested motifs. The motif-TF annotation,
combined with gene prioritization analysis, underscores its potential
regulatory importance. A summary of the enriched motifs and their
corresponding transcription factors associated with key gene
regulation is presented in Figure 9B, providing further insights
into the transcriptional control mechanisms that may influence
psoriasis-related gene expression.

Pseudotime series analysis

To investigate the dynamic changes in gene expression during
cell differentiation, we first calculated the similarity between
individual cells and constructed a cell differentiation trajectory
using pseudotime analysis. This trajectory was visualized to
depict the temporal progression of cellular states, providing
insights into the development and differentiation processes. Cells
were visualized and color-coded based on Pseudotime values—a
probabilistic metric inferred by the Monocle algorithm that reflects
the temporal ordering of cells based on their gene expression
profiles—and Cell Type, which represents distinct branches or
fates along the trajectory.

Because gene expression patterns often differ significantly across
trajectory branches, global heatmaps may fail to capture these
nuanced differences. Therefore, we identified all branch points
and computed genes that exhibited marked expression differences
before and after each branching event. These genes were visualized
using a branch-specific heatmap, with the trajectory originating
from a central “pre-branch” state and diverging into two distinct
fates: “Cell fate 17 and “Cell fate 2, representing the two major
directions of differentiation. By default, differentially expressed
genes were clustered into six groups based on their expression
dynamics across branches.

Finally, we visualized the temporal expression patterns of the
genetically informed candidate genes along the pseudotime
trajectory to illustrate their potential roles during different stages
of cell development (Supplementary Figure S11).

Discussion

Psoriasis is a polygenic, immune-mediated disease closely
related to genetic variations and environmental factors. It not
only affects skin health but is also associated with multiple
comorbidities, such as metabolic syndrome, cardiovascular
diseases, and depression (Griffiths et al., 2021). In 2014, the
World Health Organization (WHO) passed a
acknowledging psoriasis as a “chronic, non-infectious, painful,

resolution

disfiguring, and disabling condition for which no cure exists.”
(Griffiths et al., 2021). Currently, the absence of disease-specific,
activity-specific, or outcome-specific biomarkers impedes effective
disease monitoring and the development of personalized treatments.
Hence, further exploration of the disease’s pathogenic mechanisms
could offer novel approaches for precision medicine.

The development of single-cell RNA sequencing and machine
learning in recent years has enabled the utilization of molecular
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genetic data to improve psoriasis diagnosis and investigate its
mechanisms. This study utilized 18 samples with complete
single-cell expression profiles and 174 transcriptome datasets for
psoriasis from the NCBI GEO public database. After quality control,
normalization, dimensionality reduction, and cell annotation,
11 distinct cellular clusters were identified, with CD4" T cells
showing the highest contribution to the disease. While the
pathophysiology of psoriasis remains incompletely understood,
the critical involvement of CD4" T «cells is established.
Pathological activation of the TNF/IL-23/IL-17 cytokine axis
drives the differentiation and activation of CD4" T cells, causing
their skin  (Natoli 2023).
Consequently, this study focused on CD4" T cells as primary

infiltration into diseased et al.,
targets for further analysis and selected relevant marker genes for
candidate gene sets.

Additional Mendelian randomization analysis pinpointed seven
marker genes linked to psoriasis: BIN2, CAPN12, CXXC5, KLRCI,
KLRD1, PRF1, and SLEN5. BIN2 and CAPN12 are linked to an
increased risk of psoriasis. BIN2 encodes a membrane-sculpting
adapter protein expressed in immune cells (leukocytes), known to
influence actin dynamics, podosome formation, cell motility, and
phagocytosis (Sanchez-Barrena et al., 2012). Despite this role in
innate immune function, BIN2 has not been prominently featured in
past psoriasis research. It has appeared as an upregulated gene
associated with innate immune pathways in inflammatory skin
conditions (de Oliveira et al., 2022), but there are no reports of
BIN2 being a psoriasis risk gene or a validated disease marker. Thus,
the identification of BIN2 in the context of psoriasis likely represents
a novel finding in the current study, with no prior direct association
in the literature.

CAPNI12 is a calcium-dependent cysteine protease expressed in
the epidermis and hair follicles, implicated in skin barrier formation
and keratinocyte differentiation (Bochner et al., 2016). Historically,
CAPN12 has not been a well-known psoriasis gene. Apart from this
study, CAPNI12’s involvement was not previously reported,
indicating that its association with psoriasis is a relatively
novel discovery.

CXXC5, KLRC1, along with five additional genes, are linked to a
reduced risk of psoriasis. CXXC5 is an epigenetic regulator that
binds unmethylated DNA; it has known roles in Wnt signaling and
immune regulation (Ma et al., 2017). Notably, CXXC5 is highly
expressed in plasmacytoid dendritic cells (pDCs) and is crucial for
robust interferon responses to TLR7/9 stimulation (pDCs are one of
the initiating immune cell types in psoriasis, as self-DNA/RNA
induced pDC activation has been implicated in psoriatic plaque
development) (Ma et al., 2017). Despite this immune relevance,
CXXC5 has not been previously linked to psoriasis in genome-wide
studies or expression profiling. There are no known psoriasis GWAS
hits or published functional studies for CXXC5 in this disease. Its
mention in the current context is therefore likely a new finding,
making CXXC5 a potentially novel gene association for psoriasis.

KLRCI and KLRD1 encode the two subunits of the CD94/
NKG2A receptor, an inhibitory receptor found on natural killer
(NK) cells and certain T cells. Prior studies have indeed implicated
this receptor pair in psoriasis immunopathology. For example, one
study on new-onset psoriasis patients found a downregulation of
CD94/NKG2A on circulating NK cells, presumably reducing
inhibitory signals and thus potentially heightening NK cell
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activity (Son et al., 2009). Conversely, in chronic plaque psoriasis,
T cells in blood and lesions were reported to express higher levels of
CD94/NKG2A (and other NK receptors) than normal, suggesting an
abnormal expression of NK receptors on T cells (Son et al., 2009).
These findings indicate that KLRC1/KLRDI are involved in the
psoriasis immune response (likely as part of dysregulated cytotoxic
cell function or feedback mechanisms). Because of such prior
evidence, KLRC1 and KLRDI are not novel to psoriasis: they
have been studied and recognized as part of the disease’s
immune dysregulation.

PRF1 encodes perforin, a key cytolytic protein used by CD8"
T cells and NK cells to kill target cells. There is substantial prior
evidence linking perforin to psoriasis. Immunohistochemistry
studies showed significantly elevated perforin expression in
psoriatic lesions (especially within the epidermis) compared to
non-lesional or healthy skin (Kastelan et al, 2004). This
skin
involvement of cytotoxic lymphocytes in forming psoriatic

upregulation of perforin in lesional suggests active
plaques. Additionally, patients with severe psoriasis have higher
proportions of perforin-positive CD8" T cells in blood than those
with mild disease, consistent with an enhanced cytotoxic immune
response in more active disease (Prpi¢ Massari et al., 2007). Overall,
PRFI has already been implicated in psoriasis pathogenesis through
these expression and functional studies, so its presence in the current
gene list is not unexpected or novel, but rather corroborates known
immune mechanisms in psoriasis (Sidore et al., 2020).

SLENS5 is a member of the Schlafen family, a group of interferon-
regulated genes involved in cell growth and immune modulation.
SLFN5 has only recently been associated with psoriasis. A
2019 proteomic study (Sobolev 2022) identified
SLEN5 among a set of new disease-associated proteins in
psoriasis, alongside other markers (ATM, ZNF512, SPATAI3,

etc.). That study, which used a high-throughput SomaScan assay

et al,

on patient serum, reported SLFN5 as one of the proteins elevated in
psoriasis patients—particularly tied to TNF-a and interferon-driven
inflammation. Aside from this report, SLEN5 has not been widely
mentioned in earlier psoriasis literature. Its implication appears to
be part of emerging research into systemic biomarkers. Thus,
SLENGS is an already implicated gene but in a very recent context,
representing a relatively novel finding that the current study is likely
expanding upon.

The seven genes span established-emerging-novel tiers:
PRF1 and KLRCI/KLRDI are established in psoriasis immunity;
SLENG is a recently reported systemic inflammatory marker; BIN2/
CXXC5/CAPNI2 lack prior links, suggesting novelty. Our findings
corroborate known immune axes and extend them with BIN2/
CXXC5/CAPNI12 as new leads.

We interpret our MR findings under the standard
instrumental-variable assumptions—relevance, independence,
and exclusion restriction. We used *1 Mb cis-eQTLs as
instruments, applied LD clumping and allele harmonization,
and reported estimates from IVW, weighted median, MR-
Egger, and weighted mode (using the Wald ratio when nsnp =
1). We also performed sensitivity diagnostics, including the MR-
Egger intercept (directional horizontal pleiotropy), Cochran’s Q
(heterogeneity), and leave-one-out analyses. In addition, to probe
bidirectionality, we conducted reverse MR (psoriasis liability —
gene expression).
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Across the seven candidates, BIN2 and CAPN12 show risk-
increasing effects in the IVW analysis, whereas CXXC5, KLRCI,
KLRD1, PRF1, and SLENS are protective; in all cases, the effect sizes
are very small (OR = 1.00). Accordingly, we treat these signals as
etiologic prioritization leads rather than clinically actionable effects.
Reverse MR revealed no robust psoriasis—expression effect, with the
sole exception of CXXC5, supporting expression—psoriasis as the
predominant direction and suggesting that CXXC5 may reflect
disease-driven transcriptional feedback. Taken together with the
MR-Egger intercepts, Cochran’s Q, and leave-one-out results, we
find no clear evidence of directional pleiotropy or substantial
heterogeneity, while still interpreting the findings cautiously.

We acknowledge that statistical power is limited: most genes
have only 3-6 instruments (nsnp), cis-eQTLs explain modest
variance in expression, true effects are very small (OR

1.000-1.005), and the cross-tissue design (using whole-blood
eQTLs for a skin disease) can bias estimates toward the null.
Future work will revisit MR using skin and single-cell eQTL
resources and undertake mechanistic validation in disease-
relevant cell types to further test and refine these genetically
prioritized leads.

The convergence of our genetic findings with established
therapeutic pathways carries important clinical implications.
Notably, strong expression correlations were observed between
several candidate genes and key inflammatory mediators central
to psoriasis pathogenesis. For instance, BIN2 expression showed a
close association with TNF levels, while other candidates
IL-17A These

relationships suggest that the identified genes are embedded

demonstrated co-variation with expression.
within the core cytokine-driven inflammatory network of psoriasis.

This alignment with clinically validated therapeutic targets, such
as TNF and IL-17A, not only reinforces the biological relevance of
these candidate genes but also highlights their potential as
biomarkers of disease activity and adjunctive therapeutic targets.
Given that anti-TNF and anti-IL-17A therapies have shown high
efficacy in treating psoriasis, our findings support the rationale for
further investigation into the mechanistic roles of these novel genes
within the cytokine-regulatory axis, as well as their utility in
improving patient stratification and guiding personalized
treatment strategies (Gupta et al., 2021).

The co-expression of our candidates alongside TNF/IL-17A
suggests that modulating these genes could influence the same
pathogenic circuits targeted by biologics, potentially enhancing or
the Mendelian

randomization evidence adds a crucial translational dimension:

refining therapeutic outcomes. Moreover,
by implicating these genes as causal contributors to psoriasis risk,
it bolsters the rationale for therapeutic targeting rather than
considering them mere downstream epiphenomena. Notably,
drug targets supported by human genetic evidence (as is the case
for our candidates) have markedly higher success rates in clinical
development (Minikel et al., 2024), underscoring the promise of
these findings.

Several of the identified genes (e.g., KLRC1, KLRD1, PRF1) also
highlight the involvement of cytotoxic lymphocyte pathways in
psoriasis—an avenue not directly addressed by current cytokine-
centric therapies but evident in lesional inflammation (perforin-
expressing cells are known to be enriched in psoriatic epidermis

(Kastelan et al., 2004). This insight raises the possibility of novel
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interventions that temper cell-mediated tissue damage in concert
with suppressing key cytokines. In summary, by integrating single-
cell transcriptomics with genetic causality, we have pinpointed seven
candidate genes whose influence spans fundamental inflammatory
pathways and therapeutic targets. These results not only deepen our
understanding of psoriasis pathogenesis but also provide a
springboard for developing more precise biomarkers and
innovative treatment strategies, potentially accelerating their
translation into high-impact clinical advances.

Although fatty acid metabolism and ¢cGMP-PKG signaling
(CAPN12) may seem peripheral to psoriasis, both map onto
clinically observed immunometabolic and vascular phenotypes.
Lipid remodeling in keratinocytes can alter barrier lipids (e.g.,
ceramides and polyunsaturated fatty acids), shaping eicosanoid
production and amplifying IL-17/TNF-driven inflammation,
thereby contributing to barrier dysfunction and epidermal
hyperproliferation (Berdyshev, 2024). In parallel, cGMP-PKG
signaling is a canonical regulator of vascular smooth muscle tone
and endothelial responses, offering a mechanistic route to the
vasodilation/erythema typical of psoriatic lesions and potentially
influencing leukocyte trafficking. Conversely, the enrichment of
PPAR and cAMP pathways (CXXC5) aligns with programs that
promote keratinocyte terminal differentiation and lipid homeostasis
(PPARa/y) and dampen NF-kB-mediated inflammation (cAMP/
PKA), consistent with a protective genetic direction and with clinical
improvements in barrier integrity and reduced hyperproliferation
(Kim and Choi, 2023). Taken together, these enrichments do not
they  highlight
immunometabolic and differentiation axes that plausibly connect

undermine  disease  relevance; rather,
our genetic findings to hallmark clinical features of psoriasis (barrier
compromise, acanthosis, and vascular dilation), while motivating
targeted functional validation in keratinocytes and endothelial/
immune compartments.

Immune infiltration studies further reveal a strong positive
correlation between the five genes (BIN2, KLRC1, KLRD1, PRF1,
SLEN5) and CD4" T cells. To further validate the biological
relevance of the seven candidate psoriasis marker genes identified
in this study, we systematically reviewed and integrated research
evidence from the past 5 years concerning the expression and
functional regulation of BIN2, CAPNI12, CXXC5, KLRCI,
KLRD1, PRF1, and SLEN5 in CD4" T cells.

BIN?2 is categorized as an immune cell-enriched gene, with high
transcriptional expression reported in T cells and NK cells, although
its direct functional role in CD4" T cells remains unconfirmed (Yu
et al, 2025). CAPN12, on the other hand, exhibits minimal
expression in immune cells, with limited evidence linking it to
tumor proliferation rather than immune regulation, implying a
likely non-immune-specific role (Xia et al., 2023).

KLRCI and KLRD1 encode the inhibitory receptor NKG2A and
its dimerization partner CD94, respectively, and were originally
thought to be predominantly expressed in natural killer (NK) cells.
However, multiple studies have demonstrated that under
pathological conditions such as chronic infection, cancer, and
inflammation, activated CD4" T cells can also induce the
expression of NKG2A/CD94 heterodimers, particularly in Thl-
skewed immune responses (Gra et al.,, 2007; Chang et al.,, 2025).
These NKG2A/CD%4-expressing CD4* T cells often exhibit

cytotoxic phenotypes or terminal differentiation characteristics
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and are closely associated with immune exhaustion in various
viral infections and autoimmune diseases. This evidence suggests
that NKG2A* CD4" T cells may play a key immunoregulatory role in
the pathological activation of CD4" T cells in psoriasis (Baird
et al., 2023).

PRF1 is a classical cytotoxic effector molecule and has been
widely recognized as a hallmark of cytotoxic CD4" T cells (CD4"
CTLs) across various pathological contexts. It primarily functions by
releasing perforin through the granule exocytosis pathway,
mediating the lysis and clearance of MHC class II" target cells.
PRF1" CD4" T cell subsets have been detected in settings such as
chronic infections, malignancies, and COVID-19. These cells play a
critical role in enhancing immune clearance and antigen
elimination, particularly in antiviral and antitumor immunity,
where they exhibit potent cytolytic capacity. However, under
conditions of immune dysregulation or chronic inflammation,
excessive activation of PRF1* CD4" T cells may also contribute
to tissue damage and immune-mediated pathology. This dual role
highlights their capacity to mediate both protective immunity and
pathological immune responses (Oh and Fong, 2021).

CXXC5 and SLEN5 represent two opposing epigenetic
regulatory mechanisms that may exert contrasting effects on
transcriptional regulation in CD4" T cells. CXXC5 functions as a
transcriptional activator, promoting the expression of exogenous
genes such as HIV-1, and may interfere with transcriptional
regulatory networks to suppress genetically informed candidate
genes associated with CD4" T cell helper functions, thereby
modulating their immune effector state (Chen et al., 2023). In
contrast, SLEN5 is highly expressed in resting CD4" T cells and
maintains cellular quiescence and antiviral defense by inhibiting the
recruitment of RNA polymerase II and inducing H3K27me3-
mediated histone modifications that silence transcription (Ding
et al,, 2022). This antagonistic regulatory pattern suggests that
CXXC5 and SLEN5 may play complementary roles in balancing
CD4" T cell activation and homeostasis, highlighting their potential
functional relevance in psoriasis and other immune-related diseases.

In summary, among the seven candidate genes identified in this
study, there is robust literature evidence supporting the expression
and immunological functions of KLRC1, KLRD1, PRFI, SLEN5, and
CXXC5 in CD4" T cells. These genes are primarily implicated in key
processes, cytotoxic  activity,
differentiation, and epigenetic regulation. Such evidence not only
the
randomization results but also indicates that these genes may
CD4*
T cell-driven inflammatory responses associated with psoriasis.
Further in vitro and in vivo experiments are warranted to

immune including terminal

strengthens biological plausibility of our Mendelian

serve as critical immunoregulatory mediators in

elucidate their mechanistic roles and evaluate their potential as
diagnostic biomarkers or therapeutic targets.

Nevertheless, a major limitation of our study lies in the absence
of clinical stratification, which stems from the lack of individual-
level metadata (e.g., sex, age, and psoriasis subtype) in the publicly
available transcriptomic datasets (GSE151177 and GSE54456).
Given the well-documented heterogeneity of psoriasis, subgroup-
specific analyses would likely yield more nuanced insights into gene
expression dynamics and differential therapeutic responses.
Consequently, we have exercised caution in extrapolating our
findings to the broader psoriasis population.
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Future investigations incorporating clinical cohorts with
comprehensive phenotypic annotations will be essential for
validating and refining the identified gene signatures across distinct
patient subgroups. Stratified validation would not only enhance the
biological and clinical relevance of our findings but also improve their
translational potential. Furthermore, integrating gene expression data
with therapeutic response profiles (e.g., to IL-17 or TNF inhibitors)
could facilitate the identification of novel predictive biomarkers and

advance personalized treatment strategies in psoriasis.

Conclusion

In this study, we applied single-cell RNA sequencing to psoriatic
skin lesions and identified 11 distinct cell subpopulations, among
which CD4" T cells exhibited the highest disease relevance. By
integrating whole blood eQTL data from the EBI database with
skin lesion-derived transcriptomic profiles, we conducted
Mendelian randomization analysis and uncovered seven putative
gene-trait associations involving BIN2, CAPN12, CXXC5, KLRC1,
KLRD1, PRF1, and SLENS5. These marker genes not only show
potential as diagnostic biomarkers but also offer a theoretical
the

mechanisms underlying psoriasis pathogenesis.

framework for exploring genetic and immunological

Our findings build upon previous biomarker discovery efforts by
incorporating a genetic instrument-based inference framework,
providing new insights into genetically regulated pathways
associated with psoriasis. However, several limitations should be
acknowledged. Notably, the integration of whole-blood eQTL data
with skin-derived expression profiles introduces cross-tissue
inference, which may be affected by tissue- and cell type-specific
regulatory mechanisms. While skin is the most disease-relevant
tissue for psoriasis, current skin eQTL resources provided
insufficient independent instruments for several target genes,
limiting MR feasibility. We therefore prioritized the well-powered
whole-blood eQTLs and explicitly acknowledge the cross-tissue
limitation; future analyses will revisit skin-based MR as larger,
better-powered skin eQTL datasets become available.

Additionally, while gene expression patterns were preliminarily
validated in a cell-line model, clinical validation using patient-
derived lesional skin samples has not yet been performed due to
limited sample access and pending ethical approval. Once obtained,
we plan to conduct RT-qPCR-based validation in clinical tissues.
Moreover, the precise biological functions of the identified genes
remain to be elucidated through further in vitro and in vivo
functional studies.

In summary, this study highlights a set of genetically informed
candidate genes with putative etiologic relevance to psoriasis and
underscores the value of integrating single-cell transcriptomics with
genetic causal inference to advance our understanding of complex
immune-mediated diseases.
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SUPPLEMENTARY FIGURE 1

Quality control and data standardization of scRNA-seq data. (A) Quality
control for each cell in scRNA seq data, displaying the number of nCount_
RNA, nFeature_RNA, percent.mt, and percent.ribo. (B) Scatter plots
showing the correlation between filtered data nCount_RNA and nFeature_
RNA, percent. mt, percent.ribo. (C) Variance analysis to select highly variable
genes in the samples (red dots represent highly variable genes, black dots
represent invariant genes). (D) Fragmentation maps for principal component
screening. (E) Principal component analysis (PCA). (F)

Harmonization analysis.

SUPPLEMENTARY FIGURE 2

Mendelian randomization leave-one-out sensitivity analysis. (A) BIN2 on
Psoriasis. (B) CAPN12 on Psoriasis. (C) CXXC5 on Psoriasis. (D) KLRC1 on
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Psoriasis. (E) KLRD1 on Psoriasis. (F) PRF1 on Psoriasis. (G) SLFN5
on Psoriasis.

SUPPLEMENTARY FIGURE 3
Key genes expression abundance. The FeaturePlot (A) and Dotplot
(B) functions were used to view the expression of key genes in single cells.

SUPPLEMENTARY FIGURE 4

Co-expression analysis of CXXC5 with disease-related genes in single-cell
sequencing samples. Scatter plots represent pearson correlation analysis
between co-expressed genes.

SUPPLEMENTARY FIGURE 5

Co-expression analysis of PRF1 with disease-related genes in single-cell
sequencing samples. Scatter plots represent pearson correlation analysis
between co-expressed genes.

SUPPLEMENTARY FIGURE 6

Co-expression analysis of KLRD1 with disease-related genes in single-cell
sequencing samples. Scatter plots represent pearson correlation analysis
between co-expressed genes.

SUPPLEMENTARY FIGURE 7

Co-expression analysis of KLRC1 with disease-related genes in single-cell
sequencing samples. Scatter plots represent pearson correlation analysis
between co-expressed genes.

SUPPLEMENTARY FIGURE 8

Co-expression analysis of BIN2 with disease-related genes in single-cell
sequencing samples. Scatter plots represent pearson correlation analysis
between co-expressed genes.

SUPPLEMENTARY FIGURE 9

Co-expression analysis of SLFN5 with disease-related genes in single-cell
sequencing samples. Scatter plots represent pearson correlation analysis
between co-expressed genes.

SUPPLEMENTARY FIGURE 10

Co-expression analysis of CAPN12 with disease-related genes in single-cell
sequencing samples. Scatter plots represent pearson correlation analysis
between co-expressed genes.

SUPPLEMENTARY FIGURE 11

Pseudo-time series analysis. (A) Pictures of cells colored by
Pseudotime values. (B) Pictures of cells colored by Cell Type.
(C) Branch heatmap. (D) The expression changes of key genes
at different periods of cell development.
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