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Background: With the aging population, osteoporosis and sarcopenia have
emerged as two prevalent age-related degenerative diseases that pose
significant public health challenges. Although clinical studies increasingly
report the co-occurrence of these conditions, the underlying molecular
mechanisms linking them remain poorly understood.
Methods:We adopted a systems biology approach to identify key biomarkers and
explore their molecular roles in the interplay between osteoporosis and
sarcopenia. Transcriptomic datasets were systematically analyzed to identify
candidate genes. The expression patterns of core biomarkers were validated
using independent datasets and in vitro cellular models of both diseases.
Furthermore, a machine learning–based diagnostic framework was
constructed using the identified biomarkers, and model interpretability was
enhanced using Shapley Additive Explanations (SHAP).
Results:We identified DDIT4, FOXO1, and STAT3 as three central biomarkers that
play pivotal roles in the pathogenesis of both osteoporosis and sarcopenia. Their
expression patterns were consistently validated across multiple independent
transcriptomic datasets, and their differential expression was further confirmed
using quantitative reverse transcription polymerase chain reaction (RT-PCR) in
disease-relevant cellular models. A diagnostic model constructed based on
biomarker genes achieved high classification accuracy across diverse
validation cohorts. Moreover, SHAP analysis quantified the individual
contribution of each biomarker to the model’s predictive performance.
Conclusion: This study uncovers key molecular links between osteoporosis and
sarcopenia, highlighting DDIT4, FOXO1, and STAT3 as shared biomarkers. The
findings provide novel insights into their common pathophysiology and lay the
groundwork for developing more accurate diagnostic tools and targeted
therapeutic strategies.
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1 Introduction

With continuous social progress and improvements in
healthcare, human life expectancy has been steadily increasing,
making population aging a global trend. The prevalence of age-
related diseases increases exponentially with age (Belikov, 2019).
Over 50% of diseases have been identified as contributing to the
global burden in adults due to aging (Chang et al., 2019). Age-related
diseases have become a significant burden on human health; among
them, osteoporosis and sarcopenia are increasingly common and
concerning conditions (Guo et al., 2022; Yang et al., 2023).
Osteoporosis is a common systemic skeletal disorder
characterized by low bone mass and an increased propensity to
fracture (Compston et al., 2019). Osteoporosis is influenced by both
environmental and genetic factors, with genetic factors accounting
for 50%–85% of the variability (Compston et al., 2019). Genome-
wide association studies have identified approximately 100 genomic
loci associated with bone density and other related phenotypes
(Trajanoska and Rivadeneira, 2019). For example, EN1 has been
reported as a determinant of bone density and fracture risk (Zheng
et al., 2015). However, the causal mechanisms for many of these
associations remain unclear (Boudin and Van Hul, 2017).
Sarcopenia is defined as a progressive and generalized skeletal
muscle disorder involving accelerated loss of muscle mass and
function (Cruz-Jentoft and Sayer, 2019). The causes of sarcopenia
can vary and include changes in hormones and growth factors,
imbalances in protein metabolism, and inflammation. However, the
mechanisms and pathways involved are still not fully understood.
Additionally, there is no consensus on the diagnostic criteria for
sarcopenia (Bruyère et al., 2016; Cruz-Jentoft and Sayer, 2019; Evans
et al., 2024).

Notably, the coexistence of osteoporosis and sarcopenia in the
elderly population is becoming increasingly common (Kirk et al.,
2022; Laskou et al., 2022; Yang et al., 2023). Muscles and bones are
not merely connected physically; they are closely related at both the
physiological and pathological levels (Gielen et al., 2023; Kun et al.,
2023). Some even suggest that osteoporosis and sarcopenia represent
two manifestations of a single disease in different physiological
systems (Gielen et al., 2023; Chen et al., 2024b). Recently, Liu et al.
reported the involvement of STAT3 in both postmenopausal
osteoporosis and sarcopenia (Liu et al., 2024). However, current
research on the relationship between these two conditions remains
limited (Yang et al., 2023), and there is insufficient evidence to
conclusively establish molecular links between them. Furthermore,
our understanding of this relationship is still incomplete. The precise
diagnosis of osteoporosis and sarcopenia is particularly challenging
given the lack of standardized diagnostic criteria for sarcopenia.
Additionally, since identifying disease-specific biomarkers is
essential for understanding diseases and the corresponding
treatments (Byron et al., 2016; Wang et al., 2022; Mahmoodi
Chalbatani et al., 2023), there is a need for an accurate approach
to detect molecular biomarkers of osteoporosis and sarcopenia. To
address this issue, our study incorporated gene expression
microarray datasets from both osteoporosis and sarcopenia
patients to conduct a systems biology analysis, aiming to identify
the biomarkers and uncover the molecular mechanisms connecting
the two diseases. Furthermore, inspired by the success of previous
related studies (Liu et al., 2014; Lipman et al., 2022; Shu et al., 2022),

we developed a machine learning framework combined with
computational and experimental validation to enhance the
accurate identification of osteoporosis and sarcopenia.

2 Materials and methods

2.1 Overview

Figure 1 illustrates the overall workflow of this study. First, we
analyzed multiple microarray datasets from osteoporosis and
sarcopenia studies and conducted differentially expressed genes
analysis for each individual dataset. Next, we employed a robust
integration approach to rank the differentially expressed genes
(DEGs) across different datasets within each disease. By
combining data from multiple studies, we identified common
DEGs shared between osteoporosis and sarcopenia. Subsequent
network and enrichment analyses identified key biomarker genes
that may play pivotal roles in both diseases, shedding light on their
shared molecular mechanisms. Furthermore, leveraging these
biomarker genes, we developed a machine learning framework to
predict the presence of osteoporosis and sarcopenia. Finally, through
computational analysis, in vitromodeling, and RT-qPCR validation,
we confirmed the robustness of our findings, underscoring the
potential of the identified genes as diagnostic biomarkers and
therapeutic targets for these interrelated conditions.

2.2 Microarray datasets and data
preprocessing

We downloaded osteoporosis and sarcopenia microarray
datasets from the National Institutes of Health Gene Expression
Omnibus (GEO) data repository (Barrett et al., 2013; Xu et al., 2023).
‘Osteoporosis’ and ‘Sarcopenia’ were used as keywords to query
relevant datasets. We limited the entry type to ‘Series’, study type to
‘Expression profiling by array’, and top organisms to ‘Homo sapiens’
to accurately locate the datasets required for this study. We
subsequently manually reviewed the selected datasets and
excluded those involving non-target traits, non-transcriptomic
platforms, or redundancy across datasets. This step ensured that
the final dataset collection met the specific data requirements of our
study. After identifying the appropriate microarray datasets, we
downloaded the expression profile information, phenotypic data,
and metadata using the ‘GEOquery’ R package (Sean and Meltzer,
2007). We then used the ‘AnnoProbe’ package to annotate the probe
information in the expression profiles with gene names.

To minimize batch effects and ensure the reliability of the
results, we first calculated the quantiles of the gene expression set
at specified levels and assessed certain statistical properties to
determine whether log transformation was necessary. This
transformation helps stabilize the variance and makes the data
more normally distributed. We subsequently used the
‘normalizeBetweenArrays’ function from the Limma package
(Ritchie et al., 2015) to normalize the expression data. For genes
with multiple corresponding probes, we calculated the average
expression value of these probes as the overall gene expression
level. Based on the phenotypic data, we classified the samples in each
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dataset into case and control groups. Samples that were diagnosed
with neither osteoporosis nor sarcopenia, as well as those with
ambiguous phenotypic data, were classified as ‘unknown’ and
excluded from downstream analyses. To further assess data
consistency, we performed principal component analysis (PCA)
both within each individual dataset and on the merged dataset
used for machine learning model training. Any significant outliers
indicating heterogeneity would be removed from
downstream analysis.

2.3 Differential expressed genes
identification

We used the Limma package in R to conduct differential
expression analysis for each microarray dataset. Limma fits linear
models to the expression data based on case–control phenotypes and
applies empirical Bayes moderation to estimate gene-wise variances.
For each gene, it computes the log fold change (logFC), raw p-value,
and adjusted p-value to account for multiple testing. Although
DEGs in each dataset could be typically selected using default
thresholds (e.g., adjusted p-value <0.05 and |logFC|≥ 1), our
study required integration across multiple datasets, which
introduces challenges such as batch effects and incomplete or

inconsistent gene rankings. Therefore, instead of relying solely on
conventional cutoffs, we employed the robust rank aggregation
(RRA) method (Kolde et al., 2012), which evaluates the ranking
of genes by their logFC or p-value across different datasets to
identify genes that consistently rank highly in all datasets. We
used this method to combine multiple ranked lists into a single
consensus gene list and set the RRA p-value <0.05 as the significance
cutoff when defining the DEGs for downstream analysis.

2.4 Protein–protein interaction analysis and
hub gene selection

To systematically elucidate the pathogenesis of osteoporosis and
sarcopenia from a systems biology perspective and further explore
the potential connections between the two diseases, we conducted a
protein–protein interaction (PPI) analysis on the significantly
ranked genes obtained from the RRA analysis results. We used
the STRING (Szklarczyk et al., 2023) online database to analyze the
protein interactions of these significantly ranked genes. We selected
a minimum required interaction score of 0.4 (medium confidence)
as the threshold to select interacting proteins. Disconnected proteins
in the network were ignored, resulting in the final PPI network. We
then utilized the cytoHubba tool in Cytoscape to analyze the

FIGURE 1
Overall workflow. The diagram represents the core workflow implemented in this study. Created in BioRender. li, w. (2025) https://BioRender.
com/3uhunut.
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resulting PPI network (Chin et al., 2014). To identify high-
confidence key hub genes, which may serve as potential
biomarker genes for molecular diagnosis, we selected the
recommended MCC method along with two local-based methods
(DMNC and Degree) and two global-based methods (Closeness and
Betweenness). Finally, following the approach used in similar studies
(Lv et al., 2022; Zhou et al., 2024), we employed Venn diagram
analysis to identify high-confidence hub genes from the detected
hub nodes.

2.5 Functional enrichment analysis

Functional enrichment analysis is a powerful tool for identifying
and annotating the biological processes, molecular functions,
cellular components, and signaling pathways associated with a
given set of genes. We performed Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis and gene ontology (GO)
enrichment using the ‘clusterProfiler’ (Yu et al., 2012) R package on
our selected gene sets. Additionally, we conducted comprehensive
functional enrichment analysis using Metascape (Zhou et al., 2019)
to further interpret the selected gene sets.

2.6 Machine learning model and its
explainable visualization

We developed a machine learning-based framework to identify
and validate molecular biomarkers for osteoporosis and sarcopenia.
Using the selected hub genes as feature genes, we implemented
machine learning models using Scikit-learn (version 1.6.1), a widely
used Python library. We experimented with four machine learning
models, including logistic regression, support vector machine
(SVM), gradient boosting, and random forest. All models were
trained using default parameter settings provided by Scikit-learn.
Specifically, logistic regression was implemented with
L2 regularization (penalty� ′l2′) using the ‘lbfgs’ optimizer. The
SVM model utilized a radial basis function (RBF) kernel with a
regularization parameter of C � 1.0. The GradientBoostingClassifier
applied a learning rate of 0.1 and 100 estimators to achieve a balance
between model complexity and generalization. The
RandomForestClassifier was configured with 100 trees
(n estimators � 100) and used max features� ′sqrt′, a
commonly adopted strategy for classification tasks.

We trained the models using microarray expression profile
datasets from samples with confirmed osteoporosis and
sarcopenia diagnoses. We applied normalization before
integrating multiple datasets for both diseases to ensure
consistency across datasets. We randomly shuffled and split the
data into training (80%) and validation (20%) sets to train and
validate the models, respectively.

To further analyze the internal decision-making mechanisms of
the machine learning model and to provide insights into the roles
these biomarker genes play in precision diagnosis, we employed
Shapley additive explanations (SHAP) for model explainability.
SHAP is an interpretability framework based on game theory,
which calculates SHAP values by fairly distributing the model’s
output among features using all possible feature combinations

(Lundberg and Lee, 2017). We used the beeswarm summary plot
to offer a global overview of feature importance across all predictions
in the dataset.

2.7 Model performance and computational
validation

To objectively evaluate the model’s performance, we obtained
additional independent test sets. The refinedmodel was evaluated on
both the testing set and the independent datasets. Specifically, we
used the refined model to predict the probabilities that each sample
belonged to disease or control group. The state corresponding to the
maximum probability value was selected as the predicted label. We
classified a sample in the testing set as a true positive if its predicted
label matched the corresponding true label. Cases without a
matching predicted label were counted as false negatives, whereas
predicted cases without a matching true label were counted as false
positives. The performance of our model was evaluated using the
receiver operating characteristic (ROC) curves and the areas under
the curve (AUC).

In addition to validating the key genes using ROC curves, we
analyzed the expression levels of the hub genes on the independent
validation datasets. We compared the expression levels of these hub
genes between the case and control samples and performed a t-test
to statistically assess their differential expression.

2.8 In vitro modeling

To establish in vitromodels for osteoporosis and sarcopenia, we
used the mouse pre-osteoblastic cell line MC3T3-E1 and the mouse
myoblast cell line C2C12 (both from ServiceBio, China). MC3T3-E1
cells were cultured in α-MEM supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin–streptomycin at 37 °C with 5% CO2.
Upon reaching 70% confluence, cells were passaged using 0.25%
trypsin, and passages 2 to 4 were used for experiments. To simulate
osteoporotic conditions, cells were treated with dexamethasone at
concentrations of 0, 0.1, 1, 10, 20, 40, 80, 160, and 320 μg/mL for
24 h. Cell viability was evaluated using the CCK-8 assay, and
absorbance was measured at 450 nm. The optimal treatment
condition was determined to be 10 μg/mL dexamethasone for
24 h. To verify model induction, quantitative RT-PCR was
performed to assess the expression levels of osteogenic markers
RUNX2 and osteoprotegerin (OPG), as well as the
osteoclastogenesis-related factor RANKL (Liu et al., 2021).

Similarly, C2C12 myoblast cells were cultured in DMEM
supplemented with 10% heat-inactivated FBS and 1% antibiotics
under standard conditions. Upon reaching 70%–80% confluence,
differentiation was induced by medium replacement, and cells were
subsequently treated with dexamethasone at concentrations of 0,
3.125, 6.25, 12.5, 25, 50, 100, 200, and 400 μg/mL for 24 h. Cell
viability was assessed by adding 10 μL of CCK-8 reagent per well,
followed by incubation at 37 °C in the dark for 2.5 h, and absorbance
was measured at 450 nm. Based on the dose-response curve, 12.5 μg/
mL dexamethasone for 24 h was selected as the optimal treatment.
Quantitative RT-PCR was then conducted to evaluate the expression
of muscle atrophy markers Atrogin-1 and MuRF1, and the
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myogenic differentiation marker myogenin (MYOG), to confirm
successful model establishment (Li et al., 2021; Kang et al., 2024).

2.9 Experimental validation

Following model establishment, we performed reverse
transcription quantitative polymerase chain reaction (RT-qPCR)
to validate the expression levels of identified biomarker genes in the
induced osteoporosis and sarcopenia models, as well as their
respective matched controls. The RT-qPCR primers targeting the
coding regions of these genes were designed and synthesized by
GenePharma (Shanghai, China). Total RNA was extracted using
RNA extraction reagent (FastPure® Cell/Tissue Total RNA Isolation
Kit V2, RC112). In the RT-qPCR reaction, the total volume was
20 μL, including 10 µL of 2× Universal SYBR Green Fast qPCR Mix
(ABclonal), 0.8 µL of 10 nM primers, and 2 µL of diluted cDNA. All
reactions were performed in triplicate under the following
conditions: initial denaturation at 95 °C for 3 min, followed by
40 cycles of 95 °C for 5 s and 60 °C for 30s. The relative gene
expression levels were normalized and analyzed using the
2−ΔΔCt method.

3 Results

3.1 Data processing and differentially
expressed genes selection

To identify biologically relevant differences in gene expression
between disease and control groups, we aimed to identify DEGs and
calculate corresponding p-value and logFC values. For this purpose,
we sought to obtain a sufficient number of high-quality datasets to
enable an in-depth investigation of the relationship between
osteoporosis and sarcopenia. After searching public data
repositories, we found that microarray datasets were more
abundant, and these datasets had been validated by recent studies
(Chen et al., 2022; Lv et al., 2022; Zhou et al., 2022; Chen et al., 2024a;
Chen et al., 2024b; Liu et al., 2024). Consequently, we collected ten
microarray gene expression datasets comprising a total of
356 samples (including 191 cases and 165 controls) from
osteoporosis and sarcopenia cohorts (Supplementary Table S1).
To the best of our knowledge, this study represents the largest
integrated dataset to date for the co-disease analysis of osteoporosis
and sarcopenia.

We next conducted PCA to assess data homogeneity
(Supplementary Figure S1) and applied quality control
procedures. During this process, we excluded samples associated
with other diseases (e.g., from the GSE136344 dataset) to minimize
potential bias and confounding effects. Subsequently, we
independently normalized each dataset and performed differential
expression analysis using the Limma package with default
parameters to calculate p-values and logFC values.

To integrate the DEGs information across multiple datasets for
each disease, we applied the RRAmethod. Notably, the RRAmethod
aggregates DEGs rather than raw gene expression profiles. This
approach effectively reduces batch effects and mitigates
confounding issues arising from dataset integration, ensuring an

unbiased analysis. As a result, we identified a total of
1,540 significantly ranked genes across five datasets for
osteoporosis and 801 significantly ranked genes across two
datasets for sarcopenia. Finally, we found that 99 significantly
ranked genes were common between the osteoporosis and
sarcopenia datasets. These 99 intersecting genes were then
selected for downstream analysis.

To uncover the functional roles and providing insights into
biological processes, we conducted PPI network analysis of the
99 common significantly ranked genes using STRING
(Figure 2A) and identified hub genes using the cytoHubba plugin
in Cytoscape (Shannon et al., 2003; Chin et al., 2014). We next
selected the top 20 genes using the MCC, Degree, Betweenness,
DMNC, and Closeness methods (see ‘Materials and Methods’
section). Using a Venn diagram, we found that BCL6, DDIT4,
FLNA, FOXO1, FOXO3, IRS1, NFKBIA, PGK1, and STAT3 were
consistently identified by all five algorithms (Figure 2B). Analysis of
the expression levels of these nine genes across five osteoporosis
datasets and two sarcopenia datasets revealed that, with few
exceptions, these genes generally exhibited moderate differential
expression between disease and healthy samples (Figure 2C). This
suggests that further pathway analysis is warranted.

3.2 Network and enrichment analysis

To explore the potential biological mechanisms underlying these
observations, we performed KEGG pathway analysis. In addition to
providing curated biological pathways that map molecular
interactions, reactions, and relationships, the analysis revealed
significant enrichment of these nine genes in eight pathways,
including the FoxO signaling pathway, insulin resistance
pathway, and longevity regulating pathway (Figure 3A). Gene
ontology analysis revealed significant enrichment in biological
processes such as myeloid cell differentiation, regulation of
carbohydrate metabolic processes, and regulation of small
molecule metabolic processes. Additionally, these genes were
significantly enriched in molecular functions like chromatin DNA
binding and DNA-binding transcription factor binding (Figure 3B).
To enhance the reliability of our results, we also performed
enrichment analysis using Metascape. This analysis revealed
significant enrichment in pathways such as the gastrin signaling
pathway, FoxO signaling pathway, cellular response to hormone
stimulus, androgen receptor signaling pathway, DNA damage
response only ATM dependent, DNA-templated transcription,
and negative regulation of catabolic processes (Figures 3C,D).
Notably, the FoxO signaling pathway was significantly enriched
in both the KEGG and Metascape analyses.

3.3 Machine learning models and
SHAP analysis

For precise molecular diagnosis of osteoporosis and
sarcopenia, as well as validation of these identified hub genes as
common biomarkers for both diseases, we trained the machine
learning model using GSE35959, GSE62402, GSE13850,
GSE56814, GSE56815, GSE1428, and GSE136344 datasets.
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However, due to the absence of gene expression data for FOXO3 in
certain datasets (missing in GSE62402 and GSE56814), we used the
expression levels of the remaining eight consensus genes—BCL6,
DDIT4, FLNA, FOXO1, IRS1, NFKBIA, PGK1, and STAT3—as
features for the machine learning model framework. Before
training the model, we standardized the data within each
dataset to ensure comparability across different datasets. We
used the ‘StandardScaler()’ function from Scikit-learn to
normalize the samples. We used 80% of the data for training
and reserved 20% for validation. We evaluated the model’s
performance using 5-fold cross-validation.

To objectively assess model performance, we utilized the
independent test datasets GSE7429 and GSE362, which contain
data for osteoporosis and sarcopenia, respectively. The
discriminative power of the identified biomarkers was first
examined by evaluating each gene individually. Using their
expression levels as the sole feature, we assessed their ability to
distinguish between disease and healthy samples in the test datasets
(Supplementary Figures S2, S3). The results indicated that none of
the eight biomarker genes alone could provide robust classification
performance for both diseases simultaneously.

We further expanded our analysis by employing logistic
regression—a simple linear model—as a baseline approach to
evaluate the classification performance of the biomarker genes
without relying on complex machine learning techniques. As
shown in Figures 4A,B, the independent test datasets showed that
this baseline model achieved an AUC of 0.58 for osteoporosis

(GSE7429) and 0.91 for sarcopenia (GSE362), suggesting that,
while the biomarker genes collectively exhibit moderate yet
imbalanced predictive power, more advanced models may
improve classification performance. Building on this, we applied
random forest, gradient boosting, and SVM models to fully exploit
the predictive potential of these biomarkers. The results
demonstrated that integrating these genes into advanced machine
learning frameworks effectively distinguished diseases from normal
control groups (Figures 4A,B). The gradient boosting model
achieved AUCs of 0.88 and 1.00 for osteoporosis and sarcopenia,
respectively, while the SVM model attained AUCs of 0.83 and 0.96.
Notably, the random forest model provided the most balanced and
robust performance, with AUCs of 0.94 and 0.95 across the two
independent datasets. Given these results, we selected random forest
as the default model for our framework.

To quantify the contributions of biomarker genes in our random
forest model, we employed SHAP analysis to explain the model’s
performance. SHAP beeswarm summary plot presented a dense
summary of how the biomarker genes in the dataset influenced the
output of the random forest model. Specifically, the SHAP values
(on the x-axis) illustrate the impact of the biomarker genes (on the
y-axis) on the random forest model’s predictions, with each dot
representing the contribution of the gene’s expression level in a
specific sample to themodel’s classification decision. This provided a
measure of each feature’s contribution to the model’s output, with
higher means absolute SHAP values indicating greater influence. As
shown in Figure 4C, SHAP analysis revealed that DDIT4, STAT3,

FIGURE 2
Data processing and identification of consistent biomarker genes. (A) PPI network constructed based on the intersecting DEGs from the integrated
osteoporosis and sarcopenia datasets. Nodes represent genes, and edges represent experimentally supported interactions. (B) Candidate biomarker
genes (BCL6, DDIT4, FLNA, FOXO1, FOXO3, IRS1, NFKBIA, PGK1, and STAT3) were selected by intersecting the top-ranked genes identified through five
centrality algorithms (MCC, Degree, Betweenness, DMNC, and Closeness) in Cytoscape’s CytoHubba plugin. (C)Heatmap displaying the expression
profiles of the selected biomarker genes across seven independent microarray training datasets. Color gradients represent relative gene expression levels
across samples. The consistency in expression patterns supports their relevance across cohorts.
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and FOXO1 had significant impact on the model. Their effects were
positive, meaning that higher expression levels contributed to the
classification of disease, whereas lower expression levels favored the
classification of healthy samples. In contrast, IRS1 and
PGK1 exhibited an opposite trend to some extent. Moreover, we
observed that the SHAP analysis using the training dataset yielded
results consistent with our validation findings on the independent
test set. These results further support the robustness and reliability of
our machine learning model in identifying key biomarkers for
osteoporosis and sarcopenia.

3.4 Computational and experimental
validation

To verify the accuracy of the biomarker genes identified by our
machine learning model, we conducted both computational and
experimental validations. For computational validation, we assessed
the significance of the eight consensus biomarker genes across
independent datasets. Differential expression analysis in
osteoporosis and sarcopenia datasets revealed that seven
biomarkers—BCL6, DDIT4, FOXO1, IRS1, NFKBIA, PGK1, and
STAT3—were differentially expressed in the independent
osteoporosis dataset GSE84500. Meanwhile, DDIT4, FOXO1, and
STAT3 exhibited significant differential expressions in the
sarcopenia dataset GSE362 (Figure 5A).

To experimentally validate the expression patterns of eight
consensus biomarker genes, we established in vitro models of
osteoporosis and sarcopenia using MC3T3-E1 and C2C12 cell
lines, respectively. The osteoporosis model exhibited
characteristic alterations in key regulatory factors of osteogenic
differentiation (RUNX2), OPG, and RANKL, while the
sarcopenia model demonstrated specific expression changes in
MYOG and ubiquitin ligases Atrogin-1 and MuRF1. Significant
differential expressions of these molecules confirmed the validity of
model establishment (Supplementary Figure S4). Using the
established models, we performed RT-qPCR to quantify gene
expression levels in cells affected by osteoporosis and sarcopenia.
Results revealed significant differential expressions of DDIT4,
FOXO1, NFKBIA, PGK1, and STAT3 in the osteoporosis model.
Correspondingly, the sarcopenia model showed marked differential
expressions of BCL6, DDIT4, FLNA, FOXO1, NFKBIA, PGK1, and
STAT3 (Figure 5B).

Overall, our findings demonstrate the consistency between
computational validation and RT-qPCR experimental results. Our
proposed systems biology framework and machine learning model
can effectively identify reliable biomarkers. By combining
computational and experimental validations, we confirmed that
at least DDIT4, FOXO1, and STAT3 were significantly
upregulated in both osteoporosis and sarcopenia, providing
strong support for precise disease diagnosis, further exploration
of comorbidity mechanisms, and potential therapeutic

FIGURE 3
Functional enrichment analysis of osteoporosis-sarcopenia biomarker genes. (A) KEGG pathway analysis shows top enriched pathways including
FoxO signaling, insulin resistance and longevity regulation. Pathways are ranked by significance and gene count, with FoxO signaling being most
prominent. (B)GO analysis reveals key biological processes like myeloid cell differentiation andmolecular functions including chromatin DNA binding, all
statistically significant. (C) Metascape enrichment displays top terms colored by significance level, with darkest yellow indicating highest
significance. (D)Metascape network visualization groups related terms into functionalmodules, demonstrating connections between pathways like FoxO
signaling and hormone response.
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interventions. Moreover, these findings highlight the complexity of
osteoporosis and sarcopenia as age-related diseases influenced by
multiple genes, with pathway interactions and protein networks
playing critical roles in disease progression.

4 Discussion

Emerging evidence suggests a close relationship between
osteoporosis and sarcopenia; however, the molecular mechanisms
linking them remain poorly defined. To address this gap, we applied

a systems biology framework to analyze transcriptomic data from
both diseases. Our integrative analysis identified key genes—BCL6,
DDIT4, FLNA, FOXO1, IRS1, NFKBIA, PGK1, and
STAT3—potentially involved in their pathogenesis.

Functional enrichment analysis revealed that the FoxO signaling
pathway was significantly and consistently enriched across both
KEGG and Metascape platforms, highlighting its potential as a
central regulatory axis linking osteoporosis and sarcopenia. FoxO
transcription factors, particularly FOXO1, are key regulators of
cellular homeostasis and longevity. In skeletal muscle,
FOXO1 upregulates atrophy-related genes such as Atrogin1 and

FIGURE 4
Diagnostic performance and interpretability of machine learning models. (A) ROC curves for four machine learning models on the independent
osteoporosis test dataset (GSE7429). (B) ROC curves for the samemodels on the independent sarcopenia test dataset (GSE362). (C) SHAP beeswarm plot
summarizing feature contributions to random forest model predictions.
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MuRF1, thereby promoting muscle protein degradation and
contributing to sarcopenia (Sandri et al., 2004; O’Neill et al.,
2018). In bone tissue, FOXO1 also plays essential roles in
osteoblast differentiation, redox balance, and bone remodeling,
with its dysregulation associated with reduced bone mass and
impaired repair (Siqueira et al., 2011). Beyond FOXO1 itself,
DDIT4 emerged as another biomarker tightly linked to the FoxO
pathway. DDIT4 is a stress-responsive gene that negatively regulates
the mTOR pathway, thereby indirectly promoting FoxO
transcriptional activity under conditions of oxidative or metabolic
stress (Gharibi et al., 2016; Altab et al., 2025). This link may explain
how systemic stress contributes to degeneration in both muscle and
bone tissues. Additionally, STAT3, while not a canonical component
of the FoxO pathway, interacts with it via shared downstream targets
and stress response circuits. STAT3 is involved in IL-6–mediated
inflammatory signaling, which has been implicated in both muscle
wasting and bone resorption. Notably, several studies suggest
crosstalk between STAT3 and FoxO proteins in regulating
oxidative stress and cell survival, pointing toward their
convergence in age-related musculoskeletal disorders (Levy and
Loomis, 2007; Milner et al., 2015; Guadagnin et al., 2018).
Collectively, these findings underscore that FoxO signaling does
not act in isolation but rather serves as a molecular hub, integrating
multiple upstream regulators (e.g., DDIT4) and intersecting with
inflammatory pathways (e.g., STAT3), thereby contributing to the
shared pathogenesis of osteoporosis and sarcopenia. This not only

provides a mechanistic explanation for the co-occurrence of these
conditions but also suggests the FoxO pathway as a promising target
for therapeutic intervention.

To validate these findings, we examined gene expression across
independent datasets and observed consistent differential expression
of DDIT4, FOXO1, and STAT3 in both osteoporosis and sarcopenia
cohorts, confirming their relevance as shared biomarkers. This
systems-level insight not only uncovers potential mechanistic
links between the two diseases but also informs future
therapeutic targeting strategies. Moreover, we developed a
machine learning-based classification framework leveraging these
biomarkers, which achieved high accuracy in distinguishing between
the two conditions. Finally, our in vitro experiments further
validated the consistency of these findings, demonstrating that
the integration of computational biology and experimental
validation provides a robust approach for early and precise
diagnosis of age-related musculoskeletal diseases.

Although our study contributes to establishing the molecular
connection between osteoporosis and sarcopenia, it also has several
limitations. First, due to current data constraints, we were unable to
include single-cell or bulk RNA-seq transcriptomic analyses to
explore the cellular composition and origins of the observed gene
expression changes. A more fine-grained, cell-type-specific
approach could offer deeper mechanistic insights into the
pathogenesis of osteoporosis and sarcopenia. Collecting patient-
derived samples or obtaining relevant single-cell data for analysis

FIGURE 5
Computational and experimental validation of the biomarker genes. (A) Computational validation using independent test datasets. DDIT4, FOXO1,
and STAT3 were significantly differentially expressed in both the osteoporosis (GSE84500) and sarcopenia (GSE362). (B) Experimental validation using
in vitro models. RT-qPCR analysis confirmed that DDIT4, FOXO1, and STAT3 were significantly upregulated in both osteoporosis and sarcopenia
in vitro models.
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will be a key priority in our future work. Second, although we
identified several key genes potentially involved in both diseases, the
exact molecular roles of these genes in the development and
progression of osteoporosis and sarcopenia remain to be fully
clarified. Future research should include more in-depth molecular
biology experiments—such as gene editing or pathway perturbation
studies—to better elucidate their mechanistic functions in this
comorbidity. Third, our validation strategy combined
computational analysis with in vitro modeling and RT-qPCR
experiments using mouse cell lines. While MC3T3-E1 and
C2C12 cells have been widely used in bone and muscle research
and share high genetic conservation with human tissues, they cannot
fully replicate the complexity of human disease pathology. Although
in vitro systems offer the advantages of experimental control and
reproducibility, the absence of animal models or clinical samples
limits the translational applicability of our findings. Future studies
incorporating patient-derived tissues or in vivo animal models will
be essential to validate the clinical relevance of the identified
biomarkers. Despite these limitations, we believe our study
contributes to a better understanding of the shared molecular
basis of osteoporosis and sarcopenia and may inform future
research aimed at biomarker-driven diagnostics and the
development of targeted therapeutic strategies.
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