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RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in
various biological processes, influencing RNA properties and functions.
Accurate prediction of RNA ac4C sites is essential for understanding the roles
of RNA molecules in gene expression and cellular regulation. While existing
methods have made progress in ac4C site prediction, they still struggle with
limited accuracy and generalization. To address these challenges, we propose
DeepRNAac4C, a deep learning framework for RNA ac4C sites prediction.
DeepRNAac4C integrates residual neural networks, convolutional neural
networks (CNN), bidirectional long short-term memory networks (BiLSTM),
and bidirectional gated recurrent units (BiGRU) to effectively capture both
local and global sequence features. We extensively evaluated DeepRNAac4C
against state-of-the-art methods using 10-fold cross-validation and
independent tests. The results show that DeepRNAac4C outperforms existing
approaches, achieving an accuracy of 0.8410. The proposed DeepRNAac4C
improves predictive accuracy and model robustness, providing an effective
tool for identifying RNA ac4C sites and deepening our understanding of RNA
modifications and their functional roles in biological systems.
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1 Introduction

N4-acetylcytidine (ac4C) is an ancient and evolutionarily conserved RNA modification
present across a wide range of organisms, from bacteria to humans (Thalalla Gamage et al.,
2021; Zhang Y. et al.,, 2023; Igbal et al.,, 2022). It plays a critical role in various RNA
molecules, influencing multiple biological functions and significantly impacting both
normal development and disease progression (Karthiya et al, 2020). In both human
and yeast mRNA, ac4C enhances translation efficiency and stability by facilitating
precise codon recognition (Jin et al., 2020). Additionally, ac4C can also promote gene
expression by stabilizing mRNA (Zhang W. et al., 2023). Recent studies have identified
potential links between ac4C modifications and cancers such as colorectal and breast cancer,
suggesting that ac4C may serve as a promising biomarker for disease diagnosis and
therapeutic development (Yang et al., 2021). Therefore, accurately predicting ac4C sites
in mRNA is essential for advancing our understanding of RNA translation mechanisms and
exploring its implications in disease treatment.

Several approaches have been developed for ac4C site identification, including
biochemical and computational methods. Traditional biochemical techniques, such as
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high-performance liquid chromatography and mass spectrometry,
offer precise ac4C detection (Jin et al., 2020). Although these
methods provide high accuracy, they are time-consuming, labor-
intensive, and require extensive sample preparation. More recently,
chemical labeling followed by high-throughput sequencing has
emerged as an alternative for transcriptome-wide ac4C profiling.
While highly sensitive, this approach may introduce biases due to
chemical reactivity and experimental conditions.

In response to these challenges, computational methods,
including machine learning (ML) and deep learning (DL),
have been widely applied to the field of molecular biology
(Huang et al., 2022; Zheng et al., 2023). Several ML-based
models have been proposed, leveraging various sequence and
structural features. Zhao et al. developed PACES, which
integrates a random forest classifier with sequence profiles and
nucleotide frequency features (Su et al, 2023). Alam et al.
introduced XG-ac4C, an XGBoost-based model for ac4C site
identification (Alam et al., 2020). Su et al. proposed iRNA-ac4C,
which extracts features from nucleotide composition, chemical
properties, and cumulative nucleotide frequency (Su et al., 2023).
More recent deep learning models have further improved ac4C
site prediction by capturing deeper sequence representations. Lai
et al. introduced LSA-ac4C, a hybrid deep neural network
combining bidirectional long short-term memory (BiLSTM)
and self-attention mechanisms, enhanced by automated
machine learning techniques (Lai and Gao, 2023). He et al.
proposed NBCR-ac4C, incorporating pre-trained Nucleotide
Transformer and DNABERT2 models to construct contextual
embeddings and extract multi-level features using convolutional
neural networks (CNN) and Residual Network (ResNet) (He
et al, 2024). Liu et al. developed TransC-ac4C, which
integrates CNN and Transformer architectures to model both
local and global in RNA (Liu
et al., 2024).

Despite these advances, several limitations remain. Existing

dependencies sequences

models often struggle to fully capture multi-level hierarchical
features from RNA sequences. Many approaches lack effective
mechanisms for modeling long-range dependencies, which are
crucial for understanding RNA modifications. Furthermore,
previous methods may not efficiently integrate subtle feature
variations necessary for robust ac4C site prediction. To enhance
performance, advanced feature extraction strategies that leverage
both local and global sequence representations are needed.

In this study, we propose DeepRNAac4C, a novel deep learning
method for ac4C sites prediction. Our model integrates residual
neural networks, convolutional neural networks, bidirectional long
short-term memory networks, and bidirectional gated recurrent
units (BiGRU) to leverage combined features from RNA
sequence data. The residual network captures subtle features and
residual information from the input data, while the multi-scale CNN
extracts sequence features at different scales. The BiLSTM
within the RNA
sequences, enabling the model to comprehensively understand

emphasizes the temporal relationships
RNA sequences at various levels. Following feature extraction, a
classification module with multiple fully connected layers and
activation functions maps high-level features to the final
classification output. This design enhances the model’s nonlinear

modeling capabilities, making it adaptable to complex relationships.
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TABLE 1 The number of positive and negative samples in training and
testing sets.

Data type Training Testing
Positive 2,206 552
Negative 2,206 552

Through this integrated deep learning framework, DeepRNAac4C
learns rich features directly from raw RNA sequence data, leading to
improved prediction accuracy of ac4C sites. The effectiveness of our
method is demonstrated through extensive 10-fold cross-validation
and independent testing.

2 Materials and methods

2.1 Datasets

In this study, we employed the same dataset as iRNA-ac4C
(Su et al., 2023), selected for its comprehensive annotation of ac4C
sites and demonstrated effectiveness in prior research. In this
dataset, the cytidine closest to the ac4C peak was designated as
the modification site, with 100 nucleotides flanking each side to form
positive samples. Negative samples were randomly selected from
non-peak regions, ensuring that all sequences were standardized to
201 nucleotides in length.

The CD-HIT (Li and Godzik, 2006) with a sequence identity
threshold of 0.8 was used to filter out highly similar sequences. To
maintain dataset balance, an equal number of non-redundant
negative samples were selected to match the positive samples.
The dataset was partitioned into training and independent testing
sets in an 8:2 ratio, resulting in 2,206 positive and 2,206 negative
samples for training, and 552 positive and 552 negative samples for
independent testing. Table 1 provides a detailed summary of the
dataset composition.

2.2 Methodology

As illustrated in Figure 1, the DeepRNAac4C framework is
designed with three key stages: input, feature extraction, and
classification. The input stage begins with mapping RNA
sequences, each of 201 nucleotides in length, into binary vectors
using the one-hot encoding technique. This encoding captures the
intricate details of the nucleotide sequences, serving as a robust
foundation for the subsequent analysis.

The feature extraction stage employs a combination of
residual networks, multi-scale CNN, BiLSTM, and BiGRU.
The input data is first passed through a residual network
block designed to capture multi-level and abstract features,
enhancing the model’s ability to understand complex patterns
within the RNA sequences. The output from this block is then
processed through a parallel module. One branch of this module
incorporates a multi-scale convolutional block, where multiple
convolutional filters of different scales are applied in parallel,
each followed by a max-pooling layer, ReLU layer and Dropout
layer (Wu and Gu, 2015) to improve feature detection and reduce
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FIGURE 1

Architecture of the DeepRNAac4C model. Transpose refers to matrix transposition, Cancat refers to combining multiple inputs, while Dense refers

to a fully connected layer.
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FIGURE 2
Structure of the ResNet module.

overfitting. This multi-scale approach allows the model to
capture features at varying levels of granularity, a crucial
innovation for detecting subtle patterns in RNA sequences.
Simultaneously, the other branch of the parallel module utilizes
a bidirectional long short-term memory network, followed by a
bidirectional gated recurrent unit network. This combination is
specifically designed to capture temporal dependencies within the
RNA sequence data, thus enhancing the model’s ability to recognize
sequence context over time. The outputs from these two advanced
modules are then flattened, concatenated, and fed into a well-
structured classification module composed of multiple fully
connected layers and activation functions. This final stage
integrates the rich feature representations obtained from the
previous modules to deliver highly accurate classification results,
showcasing the power behind the DeepRNAac4C method.

2.2.1 One-hot encoding

One-hot encoding (Agrawal et al.,, 2022; Karthiga et al,, 2021;
Zhao et al., 2022) is highly intuitive and easy to understand, as it
enables the encoding of biological sequences (such as DNA, RNA,
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and protein sequences) into binary vectors. For instance, an RNA
sequence of length L can be mapped into an L x 4 matrix, where each
row represents a base, and each column represents a possible base
(A, G, C, U). In this matrix, only the position corresponding to the
actual base is set to 1, while other positions are set to 0. Each base has
a unique position, and each position has only two possible values
(0 or 1). Therefore, one-hot encoding preserves the information of
the original sequence. Here, we chose to use a single encoding
method rather than combining multiple encoding methods to
maintain simplicity and avoid potential complications or noise
introduced by combining different encoding strategies.

2.2.2 ResNet

The basic architecture of ResNet (Targ et al., 2016; Wu et al,,
2019), illustrated in Figure 2, is built around residual and identity
mappings. The mapping
convolutional layers, batch normalization layers (Santurkar et al.,

residual component comprises
2018), Dropout layers, and ReLU activation functions. These layers
enhance the network’s ability to extract meaningful features from

input data and improve its nonlinear modeling capacity, enabling it
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to better capture complex data patterns and relationships. Through
these layers, the network can better understand complex data
patterns and relationships. The key concept of ResNet is residual
connections, which allow information to skip connections between
network layers. This is crucial for handling very deep networks
because, in traditional deep networks, gradients may gradually
vanish or explode, leading to training difficulties (Targ et al,
2016). Residual connections enable more stable training by
allowing information to bypass some layers, enabling the training
of very deep networks (Wu et al, 2019). ResNet ensures that
information can flow through the network more effectively
without being affected by vanishing or exploding gradients. This
improves the efficiency of feature learning, allowing the network to
better understand and represent the complex features of input data.

2.2.3 CNN

Convolutional neural networks are pivotal architectures in deep
learning, widely applied in various fields such as image recognition
(Traore et al., 2018), speech recognition (Passricha and Aggarwal,
2019), and biomedical research (Xu et al., 2021), among others. With
the advancement of deep learning, CNNs have become essential
components for constructing more complex neural networks. The
core characteristic of CNN lies in convolutional operations, enabling
the network to learn high-level feature representations of input data,
hence CNNis are often referred to as feature extractors.

In CNNs, convolutional layers play a critical role. Neurons in each
convolutional layer are connected to a group of adjacent neurons from
the previous layer, termed receptive fields. The input and output of
convolutional layers are referred to as input feature maps and output
feature maps, respectively. Output feature maps represent higher-level
representations of input feature maps, generated through sliding
convolutional operations with convolutional kernels. To enhance
CNN’s nonlinearity, activation functions such as ReLU, sigmoid,
tanh, etc., are typically applied to feature maps (Traore et al,
2018). Additionally, pooling layers are utilized for nonlinear down
sampling, reducing the dimensionality of feature maps, accelerating
computation speed, and helping to prevent overfitting issues.

2.2.4 BiLSTM

Bidirectional Long Short-Term Memory Networks (Passricha and
Aggarwal, 2019; Siami-Namini et al,, 2019; Tang et al., 2022) are neural
network models designed for processing sequential data, particularly
adept at capturing contextual information within sequences. In
previous Recurrent Neural Networks (RNNs) (Pearlmutter, 1989;
DiPietro and Hager, 2020; Yin et al, 2017), although RNNs could
handle sequential data and capture contextual information, they faced
challenges with long-distance dependencies, such as vanishing or
exploding gradients. To address this issue, Long Short-Term
Memory Networks (LSTM) (Graves and Graves, 2012; Tsukiyama
etal., 2021; Senderby et al., 2015) were introduced. LSTM replaces some
hidden layers of RNN and incorporates a memory mechanism,
enabling better capture of long-term dependencies.

Specifically, LSTM selectively adds new information or removes
previously accumulated information through the addition of input
gates, forget gates, output gates, and candidate cell states, enabling
better handling of long sequence dependencies (Yu et al., 2019). The
role of the forget gate is to determine how much information from
the cell state should be retained at the current time step, thus
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deciding which previous information should be forgotten. The
output of the forget gate ranges from 0 to 1, where 0 indicates
complete forgetfulness and 1 indicates full retention. The forget gate
is calculated as Equation 1.

fi= U(Wf < [he1s %] +bf) (1)

Here, f; is the output of the forget gate, W and by are the
weight matrix and bias vector of the forget gate, /i, is the hidden
state from the previous time step, x; is the input at the current time
step, and o is the sigmoid activation function.

The input gate controls the input of new information and
determines which information to update in the cell state. The
output of the input gate also ranges from 0 to 1, determining
how much new information to add to the cell state. The input
gate is calculated as Equation 2.

ir =0 (Wi [hey, x0] + by) (2)

Here, i; is the output of the input gate, W; and b; are the weight
matrix and bias vector of the input gate.

The process of updating the cell state involves two key steps:
computing the candidate cell state and updating the cell state using
the input gate. First, LSTM computes a candidate cell state, which
contains the new information to be updated into the cell state. This
candidate cell state is obtained by using the tanh activation function
to process the linear combination of the input information and the
hidden state from the previous time step. This process is computed
as Equation 3.

Ct = tanh(We - [he_1, x] + be) (3)

Where, Ct represents the output of the candidate cell state, W¢
and b¢ are the weight matrix and bias vector used to compute the
candidate cell state.

Then, LSTM uses the input gate to control whether to add partial
information from the candidate cell state to the current cell state,
where the output #; of the input gate determines which parts should
be updated in the cell state. This is calculated as Equation 4.

Ct:ft'ct—l"’it’ét (4)

where C; represents the state at the current time step, and C;;
represents the cell state from the previous time step.

The output gate determines which parts of the current time
step’s hidden state and cell state will become the final output. The
output of the output gate is a value between 0 and 1, which weights a
portion of the cell state using the tanh function. The output gate is
calculated as Equation 5.

Or =0(Wo - [hey, x:] + bo) (5)

where Oy is the output of the output gate, W and bg are the weight
matrix and bias vector of the output gate. The hidden state is
updated by the output gate and the cell state, which is computed
by Equation 6.

h; = O, -tanh (C;) (6)

To comprehensively capture the semantic information of
sequences in sequence analysis, BILSTM are employed, consisting
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of two LSTM units: one forward LSTM and one backward LSTM.
The forward LSTM learns representations from previous contexts,
while the backward LSTM learns representations from the opposite
direction. By running two independent LSTM units in both forward
and backward directions and concatenating their hidden states,
BiLSTM can simultaneously capture both forward and backward
information in the sequence. This structure aids in better
understanding sequence data, particularly in scenarios involving
long-distance dependencies.

2.2.5 BiGRU

BiGRU is an extension of the standard GRU that processes input
sequences in both forward and backward directions. GRU, as an
improved variant of the traditional RNN, was designed to address
the vanishing gradient problem encountered when modeling long
sequences (Chuah et al., 2024; Pham NT. et al, 2024). The key
features of GRU are summarized as follows.

a) Gating mechanism. GRU introduces two main gates: update
gate and state gate. Update gate determines how much
previous information needs to be retained in the current
state. Reset gate determines how much past information is
discarded to incorporate new inputs.

b) State update. GRU can flexibly control the inflow and outflow
of information through the computation of Update Gate and
Reset Gate, making the model perform better in capturing
long-term dependencies.

c) Simplified structure. Compared with LSTM, GRU has a
simpler structure and fewer parameters, resulting in faster
training and more efficient computation.

d) Widely used. GRU is widely used in tasks such as natural
language processing (Gupta and Noliya, 2024; Tawong et al.,
2024; Xu et al., 2024), speech recognition (Mehra et al., 2024;
Cheng et al., 2024), time series prediction (Zhang et al., 2024),
etc. It is especially suitable for scenarios that require capturing
sequence context information.

The design of BiGRU gives it better performance and efficiency
in processing long sequence data.

2.2.6 Performance evaluation

In this study, we use sensitivity (SN), specificity (SP), accuracy
(ACC), and Matthews correlation coefficient (MCC) as evaluation
metrics (He et al., 2024; Liu et al,, 2024), which are defined as
Equations 7-10.

TP
SN_TP+FN @
TN
pP=——"
S FP+TN ®
TP+TN
ACC = 9
ce TP+ FN +FP+TN ©)
TP x TN - FP x FN
MCC = X X (10)

(TP + FN) (TP + FP) (TN + FN) (TN + FP)

where TP is the number of true positive samples, TN is the number
of true negative samples, FN is the number of false negative samples,
and FP is the number of false positive samples. The values of SN, SP,
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TABLE 2 Performance comparison with different encoding methods.

Methods SN N ACC MCC AUROC
ANF + SVM 0.6251 0.7385 0.6818 0.3661 0.7575
Kmer + SVM 0.7986 0.3215 0.5599 0.2063 0.6961
ASDC + SVM 0.7584 0.7407 0.7496 0.4993 0.8201
DBE + SVM 0.6750 0.6351 0.6550 0.3105 0.6980
CKSNAP + SVM 0.7534 0.7466 0.7500 0.5003 0.8218
NCP + SVM 0.7625 0.7443 0.7534 0.5072 0.8183
One-hot + SVM 0.7661 0.7475 0.7568 0.5141 0.8201

and ACC range from 0 to 1, while the MCC spans from -1 to 1.
Larger values of these metrics indicate better performance.

Additionally, we also employed the Receiver Operating
Characteristic (ROC) curve as an evaluation metric (He et al,
2024; Liu et al, 2024). The ROC curve is constructed by
computing the true positive rate (TPR) and false positive rate
(FPR) at various thresholds. FPR is plotted on the x-axis, and
TPR is plotted on the y-axis. TPR and FPR are calculated as
Equations 11, 12, respectively.

TP
TPR= ———— 11
TP+ FN (D
FPR = kP (12)
" FP+TN

The area under the ROC curve (AUROC) varies from 0 to 1. An
AUROC of 1 indicates perfect prediction, 0.5 indicates random
prediction, and 0 indicates opposite prediction.

3 Results

3.1 Performance comparison with various
encoding methods

In research, we have chosen to use a single encoding method
rather than a combination of multiple strategies to maintain
simplicity and interpretability. We evaluated several widely used
RNA sequence encoding methods, including Accumulated
Nucleotide Frequency (ANF), Basic kmer (Kmer), Adaptive Skip
Dinucleotide Composition (ASDC), Dipeptide Binary Encoding
(DBE), k-Spaced Nucleic Acid Pairs (CKSNAP), and Nucleotide
Chemical Property (NCP) (Chen et al., 2021). These were compared
with the one-hot encoding approach to assess their impact on model
performance. For feature selection, we utilized traditional support
vector machines (SVM) (Chen et al., 2021), leveraging insights from
previous studies. SVM is a supervised learning model that constructs
an optimal separating hyperplane in a transformed feature space to
maximize the margin between distinct classes. The algorithm
operates by projecting input features into a higher-dimensional
space through kernel functions, then identifying the decision
boundary with the largest margin between support vectors.
Owing to its margin-maximization property, SVM is particularly
effective in high-dimensional data analysis. It inherently assesses
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FIGURE 3

Comparisons of models with different module combinations.

feature importance based on the weights assigned in the decision
thus
informative features.

Table 2 shows the results of the model with different encoding
strategies. It is evident that the One-hot + SVM method delivers
superior overall performance compared to other encoding

function, facilitating  the selection of the most

strategies, achieving the highest accuracy (ACC: 0.7568) and
Matthews correlation coefficient (MCC: 0.5141). These results
underscore the strength of One-hot encoding in providing
accurate and reliable predictions. While NCP + SVM (ACC:
0.7534, MCC: 0.5072) and CKSNAP + SVM (ACC: 0.7500, MCC:
0.5003) exhibit competitive modeling capabilities, they fall
slightly short of the robust performance achieved by One-hot
+ SVM. This exceptional performance of One-hot encoding can
be attributed to its ability to comprehensively represent sequence
information, delivering richer and more discriminative features
for ac4C site prediction.

In terms of sensitivity and specificity, One-hot + SVM
demonstrates balanced performance (SN: 0.7661, SP: 0.7475),
surpassing methods like Kmer + SVM, which achieves the highest
sensitivity (SN: 0.7986) at the cost of extremely low specificity
(SP: 0.3215). Additionally, while CKSNAP + SVM achieves the
highest AUROC (0.8218), indicative of strong discriminative
power, One-hot + SVM and ASDC + SVM follow closely with
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AUROC scores of 0.8201. These results highlight the consistent
and reliable performance of One-hot encoding across all
key metrics.

3.2 Model selection

3.2.1 Performance comparison with different
module combinations

We sequentially compare the performance of models with and
without ResNet, BiLSTM, BiGRU, and CNN modules. As shown in
Figure 3, the model without the ResNet module exhibited a significant
decline in ACC and AUROC, demonstrating its essential contribution
to model performance. Accordingly, we retained the ResNet module in
the finalized architecture to ensure optimal results. Subsequently, we
assessed the impact of the CNN module. The inclusion of CNN led to
improvements in ACC and AUROC, reaching 0.8411 and 0.9036,
respectively—representing gains of 0.0130 and 0.0202 over the
model without CNN.

We further evaluated the contribution of the BiLSTM and
BiGRU modules. The model with BiLSTM achieved an ACC
of 0.0169 and an AUROC
0.0067 compared to its counterpart without BiLSTM. Similarly,
the BiGRU-enhanced model demonstrated gains of 0.0104 in

improvement increase  of
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TABLE 3 The Impact of the number of multi-scale CNN branches on model
performance.

Number SN

10.3389/fgene.2025.1622899

TABLE 4 Performance comparison of DeepRNAac4C with different
convolutional kernels.

Kernel type SN

1 0.8929 0.7766 0.8359 0.6751 0.9098 kernel _135 0.8699 0.8112 0.6827 0.8411 0.9036
2 0.8801 0.7846 0.8333 0.6685 0.9011 kernel_357 0.8546 0.8112 0.6667 0.8333 ‘ 0.9077
3 0.8699 0.8112 0.8411 0.6827 0.9036 kernel 579 0.8878 0.7660 0.6596 0.8281 ‘ 0.9030
4 0.8724 0.7793 0.8268 0.6553 0.9015 kernel 157 0.8546 0.8085 0.6642 0.8320 ‘ 0.9067

ACC and 0.0063 in AUROC relative to the model without BiGRU.
These results highlight the incremental benefits of each module in
improving classification performance.

In addition, we assessed the effect of the combination of BILSTM
and BiGRU in the model by testing the combination of BILSTM +
BiLSTM and BiGRU + BiGRU, respectively. BILSTM captures long-
range dependencies by processing sequences in both forward and
backward directions, providing rich contextual information. BiGRU,
on the other hand, is more computationally efficient and excels at
modeling short-to mid-range patterns due to its simplified gating
unit. By stacking BiLSTM and BiGRU, the model benefits from a
deep
understanding, and complementary mechanisms, leading to
improved ACC and AUROC. The results show that the overall
performance of BILSTM + BiGRU is better than other combinations.

combination of bidirectional processing, contextual

3.2.2 Performance comparison of multi-scale CNN
branch configurations

The number of convolutional branches in the multi-scale
CNN module significantly influences the model’s performance.
In the proposed DeepRNAac4C model, the multi-scale CNN
module consists of multiple parallel convolutional branches,
each employing a different kernel size (e.g., 1, 3, 5, or 7),
thereby enabling the model to capture features across
multiple receptive fields. It allows the model to extract both
fine-grained and coarse-grained information from the input
feature sequence.

As shown in Table 3, increasing the number of branches from
1 to 3 leads to consistent improvements across several
performance metrics, including sensitivity, specificity,
accuracy, Matthews correlation coefficient, and area under the
ROC curve. The configuration with three branches—using kernel
sizes 1, 3, and 5—achieves the best overall performance, with an
accuracy of 0.8411 and an MCC of 0.6827. This setup effectively
balances feature diversity and computational cost, capturing a
broad range of informative patterns while avoiding redundancy.
In contrast, increasing the number of branches to 4 (with kernel
sizes 1, 3, 5, and 7) results in a slight decline in performance. This
suggests that additional branches may introduce excessive
complexity without corresponding gains in representation
power, potentially leading to overfitting or diminished
generalization.

These findings demonstrate that a three-branch multi-scale
CNN module offers an optimal trade-off between expressive
capacity and model efficiency, making it a preferred choice for
robust ac4C site prediction.
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3.3 Parameter optimization

3.3.1 Performance comparison with different
convolutional kernels

In this section, we conducted a comprehensive analysis to
evaluate the impact of different multi-scale convolutional kernel
combinations on model performance, as summarized in Table 4.
Specifically, we tested four configurations: kernel 135, kernel 357,
kernel 579, and kernel 157, where the numeric suffix denotes the
sizes of convolutional kernels used in the multi-branch structure.
For example, kernel 135 refers to the use of three parallel
convolutional kernels with sizes 1, 3, and 5; similarly, kernel_
357 includes 3, 5, and 7 kernels. Note that 1D-convolution
operations are conducted here. These kernel combinations are
designed to capture features at varying receptive fields, allowing
the model to extract fine-to-coarse details across spatial scales.

The results from our evaluation indicate that the model
employing kernel_135 achieved the highest performance metrics,
with a MCC of 0.6827 and an ACC of 0.8411. Notably, these scores
surpassed those of the next best-performing models by margins of
0.016 for MCC and 0.0078 for ACC, highlighting the effectiveness of
this particular kernel size.

Furthermore, we observed that the other kernel configurations
also demonstrated competitive performance, but none matched the
robustness exhibited by kernel_135. For instance, kernel_357, while
slightly lower in performance, still provided respectable results with
an MCC of 0.6667 and an ACC of 0.8333. Similarly, kernel _579 and
kernel _157 had MCC scores of 0.6596 and 0.6642, respectively,
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FIGURE 5
Impact of different learning rates on model performance.

illustrating that while they contributed valuable insights, they did
not achieve the same level of accuracy as kernel_135.

Based on this comprehensive evaluation, we identified kernel
sizes of 1, 3, and 5 as the optimal configuration for our multi-scale
convolutional approach. This decision is grounded in the clear
performance advantages demonstrated by kernel 135, which we
believe will significantly enhance the model’s capability to extract
meaningful features from the RNA sequence data, ultimately leading
to improved classification accuracy in our DeepRNAac4C method.

3.3.2 Impact of hyperparameter settings

The selection of hyperparameters significantly impacts the final
prediction results. Different combinations of hyperparameters may
lead to drastically varying performance of the model during both
training and testing phases. Due to the nearly limitless range of
hyperparameter values and the impracticality of testing all possible
combinations, we set some hyperparameters based on experience, as
shown in Figures 4, 5.

Firstly, regarding the model’s batch size, as depicted in Figure 4, we
compared batch sizes of 32, 64, 128, 256, and 512. Through
comprehensive comparison, the model performs best when the batch
size is 128.

Secondly, we adjusted the critical
hyperparameter, as shown in Figure 5. We tried various values
for the learning rate, including 0.1, 0.01, 0.001, and 0.0001.

According to the experimental results, the model performs best

learning rate, a

when the learning rate is set to 0.001.

Finally, based on the above analysis, we selected a batch size of
128 and a learning rate of 0.001 as the final hyperparameter
configuration to achieve optimal performance. This choice reflects a
thorough evaluation to ensure the model demonstrates outstanding
performance during both the training and testing phases.

3.4 Performance comparison with state-of-
the-art methods

To further validate the proposed DeepRNAac4C, we compared it

with existing methods of ac4C site prediction in human mRNA,
including PACES (Zhao et al, 2019), XG-ac4C (Alam et al, 2020),
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iRNA-ac4C (Su et al., 2023), LSA-ac4C (Lai and Gao, 2023), NBCR-
ac4C (He et al.,, 2024), TransC-ac4C (Liu et al., 2024), DPNN-ac4C
(Yuan et al, 2024), and ac4C-AFL (Pham NT. et al, 2024). We
conducted 10-fold cross-validation and independent testing in our
experiments.

In the 10-fold cross-validation, we randomly divided the training
set into 10 equally sized or approximately equal parts, with 9 parts
used for training and the remaining part used for testing. This process
was repeated 10 times. Table 5 presents the performance of the 10-fold
cross-validation, with DeepRNAac4C demonstrating well-balanced
performance across several key evaluation metrics. Notably,
DeepRNAac4C achieves particularly strong results in MCC and
AUROC. Although it is slightly less sensitive than XG-ac4C, it
shows significant advantages in specificity and overall accuracy,
making it well-suitable for a broad range of applications. The
results marked with asterisks (*) indicate previously published
results, and the values in bold represent the best performance
across models. Compared with other methods, DeepRNAac4C
excels in all aspects, especially in tasks that require high positive
sample detection rates and improved negative sample differentiation.
This indicates that DeepRNAac4C provides both high accuracy and
stability in predicting ac4C sites in human mRNA.

In independent testing, we trained the model on the training set and
evaluated its performance on the test set. As shown in Table 6, the
accuracy of DeepRNAac4C in independent testing is comparable to its
performance during cross-validation, indicating strong generalization
across different datasets, which is essential for real-world applications.
Additionally, while DeepRNAac4C may not excel in certain metrics
such as SN and SP, a comprehensive evaluation of all five performance
metrics highlights its strengths in other critical aspects. Firstly,
DeepRNAac4C demonstrates outstanding accuracy with a prediction
accuracy of 0.8410, surpassing all current state-of-the-art methods. This
signifies the significant capability of DeepRNAac4C in accurately
predicting ac4C sites, which is vital for biological research and
medical applications. Secondly, DeepRNAac4C’s MCC is particularly
impressive, achieving the highest MCC value among existing prediction
methods. MCC is widely regarded as a comprehensive evaluation of
classification model performance as it simultaneously considers true
positives, true negatives, false positives, and false negatives. This
indicates DeepRNAac4C’s excellent ability to balance various
performance metrics. Lastly, AUROC is a common metric for
evaluating  binary and DeepRNAac4C
demonstrates high-level performance in this aspect as well. Its
AUROC value surpasses all prediction methods, highlighting its
outstanding performance across different thresholds.

In conclusion, DeepRNAac4C
performance across various performance metrics, as well as its

classification  models,

excels in its balanced
outstanding performance in key aspects such as accuracy, MCC,
and AUROC. This provides a powerful tool for in-depth exploration
of the biological mechanisms of RNA modification and its crucial
role in gene expression regulation.

3.5 Visualization with UMAP

To further explore the potential and capabilities of our model in
distinguishing ac4C sites, we utilized the Uniform Manifold
Approximation and Projection (UMAP) (Mclnnes et al., 2018)
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TABLE 5 Performance comparison with state-of-the-art methods based on the 10-fold cross-validation of the training set.

Model SN SP ACC MCC AUROC
PACES* 0.7838 + 0.7575 + 0.7706 + 0.5420 + 0.8484 +
0.0186 0.0295 0.0113 0.0219 0.0128
XG-ac4C* 0.9338 + 0.5476 + 0.7407 £ 0.5222 + 0.8524 +
0.0123 0.0203 0.0087 0.0162 0.0122
iRNA-ac4C* 0.7702 0.8301 0.8003 0.6010 0.8750
LSA-ac4C* 0.8554 + 0.7851 + 0.8203 + 0.6431 + 0.8797 +
0.0317 0.0313 0.0149 0.0294 0.0118
DeepRNAac4C 0.8717 + 0.7693 + 0.8281 + 0.6472 + 0.8840 +
0.0211 0.0347 0.0135 0.0283 0.0187

The “+” symbol represents the mean + standard deviation, and bold values indicate the best performance. Models marked with an asterisk (*) refer to previously published results [see (Lai and

Gao, 2023)]. iRNA-ac4C does not include standard deviation values in the original study.

TABLE 6 Performance comparison with state-of-the-art methods on the
independent test set.

Model SN SP ACC MCC AUROC
PACES 0.7971 0.7790 0.7880 0.5762 0.8648
XG-ac4C 0.9257 0.5978 0.7618 0.5542 0.8713
iRNA-ac4C 0.7670 0.8291 0.7981 0.5970 0.8800
LSA-ac4C 0.8713 0.7826 0.8270 0.6566 0.8953
NBCR-ac4C 0.8496 0.8207 0.8351 0.6706 0.8958
ac4C-AFL 0.844 0.803 0.823 0.647 0.895
TransC-ac4C 0.8094 0.8045 0.8069 0.6146 0.8691
DPNN-ac4C 0.8178 0.8478 0.8278 0.6578 0.9103
DeepRNAac4C 0.8732 0.8078 0.8410 0.6829 0.8971

The bold values indicate the best performance across models.

technique for visual analysis. UMAP is a powerful method for
dimensionality reduction and visualization, enabling us to
examine the distribution and clustering of model features in
different feature spaces, further explaining the sensitivity and
discriminative ability regarding ac4C sites.

As shown in Figure 6, the UMAP plots for different stages of
training demonstrate the model’s ability to progressively capture
and separate the positive (ac4C) and negative (non-ac4C) samples. In
the early stages of training (Figure 6a), the raw data is scattered
without clear clustering, indicating that the model is still learning basic
features. As the model advances through layers (Figures 6b-e), the
feature space becomes more structured, and we see clearer clusters
forming (Figures 6b-f). This reflects the model’s ability to learn
higher-level, which
distinguishing between ac4C sites and non-ac4C sites. Compared

more discriminative features, aids in
to other methods, the progressive improvement in clustering and
sample separation in our model demonstrates the superior
discriminative power of our approach. This can be particularly
attributed to the hybrid architecture of DeepRNAac4C, which
combines multi-scale CNNs and sequential models (BiLSTM +
BiGRU). These architectures allow our model to capture both local
sequence features and long-range dependencies, providing more

informative and distinguishable features than traditional models.
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3.6 Robustness analysis of DeepRNAac4C

The robustness of DeepRNAac4C is crucial to ensure the
method’s stability. In real-world application, training data may
contain noise. The method sensitive to noise could not be applied
in practice. Therefore, a test for robustness is essential.

In this study, we performed mutation operations (base
substitutions) on a portion of positive sample sequences in
the training set. The mutation process involved the following
rule: randomly selecting 5%, 10%, 15%, and 20% of the positive
sample sequences from the training set. Within each selected
sequence, we randomly choose an initial position and replace
the base at that position and the subsequent bases. We
introduced mutations by replacing 10, 20, 30, 40, 50, and
60 consecutive bases, with each base being substituted
randomly with one of the four valid bases (A, G, C, U). This
process introduced noise into the model training. Subsequently,
the model was evaluated on the test set.

Figure 7 shows the model’s performance after adding noise to
the dataset. The horizontal axis represents the number of
consecutive base mutations, and the vertical axis represents the
model’s prediction accuracy. The different colored bars indicate
sequences with varying mutation rates (5%, 10%, 15%, 20%). From
Figure 7, it can be observed that after adding noise to the dataset,
the model’s prediction accuracy fluctuates between 0.79 and 0.84.
Initially, the accuracy decreases slightly with the addition of noise
but remains within an acceptable range. This indicates that the
model possesses a degree of robustness and can maintain high
accuracy even in noisy environments. In addition, the number of
consecutive base mutations shows a different trend in terms of
their effect on performance. As the number of consecutive base
mutations increases, the prediction accuracy of each mutation rate
changes differently. For example, when the number of consecutive
base mutations is 50-60, the overall performance slightly
decreases, but the overall accuracy remains above 0.79.

In conclusion, the DeepRNAac4C model maintains
high prediction accuracy even when dealing with noisy,
mutated datasets. Although mutation rates and the number
of consecutive base mutations can impact the model’s
performance, its overall performance stable,
demonstrating a commendable level of noise resistance and
adaptability.

remains
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FIGURE 6
UMAP visualizations based on various layers of the final model. (a) depicts a UMAP plot of the raw data. (b) depicts the UMAP plot of the output from

the ResNet layer. (c) depicts the UMAP plot of the output from the CNN layer. (d) depicts the UMAP plot of the output from the BiLSTM layer. (e) depicts
the UMAP plot of the output from the BiGRU layer. (f) depicts the UMAP plot of the output from the Dense layer.
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FIGURE 7
Performance of the DeepRNAac4C model on predicting mutated datasets.

3.7 Web server intuitive interface and straightforward operation. The following is a
brief overview of the usage steps:
To facilitate researchers in using the DeepRNAac4C tool more
conveniently, we have developed and launched a user-friendly web a) Submit RNA sequences: Users can submit RNA sequences in
server, as shown in Figure 8. The DeepRNAac4C server features an FASTA format by either pasting them directly into the input
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DeepRNAac4C: Predicting N4-acetylcytidine Sites in Human mRNA Based on

Deep Learning Methods

HOME WRVE-HISNU-C3 DATASET HELP

Input fasta format sequence(s):(two approaches are presented)

1. Paste your sequences with fasta format below (click here for example)

2, Upload a File
no file selected

Reset

Submit

guohuahhn@163.com

If you use DeepRNAac4C for research, please cite this paper

FIGURE 8
The webserver of DeepRNAac4C.

text box or uploading a file. Once the sequences are entered,

click the “Submit” button to initiate the prediction process.
b) Wait for prediction results: The server processes the
submitted

within a few minutes. The computation time varies

sequences and returns prediction results
depending on the number of sequences submitted, as it
is proportional to the input size.

Re-submit sequences and dataset download: To re-submit
sequences, users can simply click the “Reset” button.
Additionally, all experimental datasets can be downloaded

by selecting the “Dataset” option on the server.

We believe that the DeepRNAac4C server will be a valuable tool
for research on RNA chemical modifications, gene expression
regulation, and cell biology, helping scientists make significant
advancements in these critical fields.

4 Discussion

DeepRNAac4C advances the prediction of N4-acetylcytidine
sites in human mRNA by integrating residual neural networks,
convolutional neural networks, bidirectional long short-term
memory networks, and bidirectional gated recurrent units. This
hybrid architecture effectively captures both local and long-range
dependencies, overcoming the limitations of previous models that
relied on isolated feature extraction mechanisms. The incorporation
of residual networks enhances feature extraction by preserving
subtle and complex sequence patterns, while multi-scale CNNs
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enable learning at multiple levels of granularity. Meanwhile,
BiLSTM and BiGRU modules strengthen the model’s ability to
capture sequential dependencies, improving the prediction of
ac4C sites. Experimental evaluations, including 10-fold cross-
that
DeepRNAac4C achieves high predictive accuracy, outperforming
existing methods. Its high MCC and AUROC indicate a well-
balanced performance across positive and negative samples,

validation and independent testing, demonstrate

reinforcing the model’s robustness. Beyond ac4C prediction, the
model holds potential for broader applications in biomedical
research, particularly in gene regulation, disease mechanisms, and
transcriptomics.

Despite the promising results of DeepRNAac4C, several
limitations warrant further discussion. First, the current model is
trained and evaluated exclusively on human RNA data, raising
concerns about its generalizability across species. Given the
biological diversity in RNA modification patterns among
different organisms, the model’s robustness on non-human
to be wvalidated. Second,

framework relies solely on primary sequence information,

datasets remains the predictive
without incorporating RNA secondary structure or chemical
modification features, both of which are known to influence the
biological functionality of ac4C sites. Third, although the model
integrates architectural optimizations such as residual connections
and lightweight modules, its hybrid multi-branch design remains
computationally intensive. This may limit its scalability in large-
in  resource-constrained

scale applications

environments. Addressing these limitations will require the

or deployment

integration of additional biological modalities, cross-species
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validation, and further architectural streamlining to improve
efficiency without compromising predictive performance.

5 Conclusion

This study presents DeepRNAac4C, a deep learning-based approach
for accurate ac4C site prediction in human mRNA. By integrating CNNs,
residual networks, BILSTMs, and BiGRUs, DeepRNAac4C effectively
captures multi-scale sequence dependencies, addressing key challenges in
RNA modification prediction. Extensive evaluations confirm that
DeepRNAac4C  surpasses demonstrating  high
accuracy and robust classification performance. The model provides a

existing models,

valuable tool for advancing research on RNA modifications and their
biological significance.

Future work will focus on enhancing model generalizability,
integrating RNA secondary structures, and improving computational
efficiency to support large-scale transcriptomic analyses. With these
advancements, DeepRNAac4C holds promise for broader applications
in RNA biology, disease research, and precision medicine.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

GH: Conceptualization, Methodology, Writing — review and
editing, Supervision. RX: Data curation, Investigation, Writing -
original draft, Software. CP: Methodology, Writing — review and
editing, Validation. JJ: Writing - review and editing, Project
Validation.
administration, Writing - review and editing, Supervision.

administration, WC: Conceptualization, Project

References

Agrawal, S., Sisodia, D. S., and Nagwani, N. K. (2022). “Function characterization of
unknown protein sequences using one hot encoding and convolutional neural network
based model,” in International conference on machine intelligence and signal processing,
267-277.

Alam, W, Tayara, H., and Chong, K. T. (2020). XG-ac4C: identification of N4-
acetylcytidine (ac4C) in mRNA using eXtreme gradient boosting with electron-ion
interaction pseudopotentials. Sci. Rep. 10 (1), 20942. doi:10.1038/541598-020-
77824-2

Chen, Z., Zhao, P., Li, C, Li, F,, Xiang, D., Chen, Y.-Z,, et al. (2021). iLearnPlus: a
comprehensive and automated machine-learning platform for nucleic acid and protein
sequence analysis, prediction and visualization. Nucleic Acids Res. 49 (10), e60. doi:10.
1093/nar/gkab122

Cheng, L., Pandey, A., Xu, B., Delbruck, T., and Liu, S.-C. (2024). Dynamic gated
recurrent neural network for compute-efficient speech enhancement. 677-681. doi:10.
21437/interspeech.2024-958

Chuah, C. W.,, He, W., and Huang, D.-S. (2024). DeepBiG: a hybrid supervised CNN
and bidirectional GRU model for predicting the DNA sequence. Int. J. Adv. Comput. Sci.
and Appl. 15 (2), 375. doi:10.14569/ijacsa.2024.0150240

DiPietro, R., and Hager, G. D. (2020). “Deep learning, “RNNs and LSTM,”,” in

Handbook of medical image computing and computer assisted intervention (Elsevier),
503-519.

Frontiers in Genetics

12

10.3389/fgene.2025.1622899

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was supported
in part by the National Natural Science Foundation of China (Grant
No. 62272310), and by the Scientific Research Fund of Hunan
Provincial Education (Grant Nos. 24A0694

and 24A0701).

Department

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found
at: 10.3389/fgene.2025.1704319.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Graves, A., and Graves, A. (2012). Long short-term memory. Supervised sequence
Label. Recurr. neural Netw., 37-45. doi:10.1007/978-3-642-24797-2_4

Gupta, S., and Noliya, A. (2024). URL-based sentiment analysis of product reviews
using LSTM and GRU. Procedia Comput. Sci. 235, 1814-1823. doi:10.1016/j.procs.2024.
04.172

He, W, Han, Y., Zuo, Y., Bai, Y., and Guo, F. (2024). NBCR-ac4C: a deep learning
framework based on multivariate BERT for human mRNA N4-Acetylcytidine sites
prediction. J. Chem. Inf. Model. 64, 8074-8081. doi:10.1021/acs.jcim.4c01415

Huang, G., Luo, W., Zhang, G., Zheng, P., Yao, Y., Lyu, J., et al. (2022). Enhancer-
LSTMAtt: a Bi-LSTM and attention-based deep learning method for enhancer
recognition. Biomolecules 12 (7), 995. doi:10.3390/biom12070995

Igbal, M. S., Abbasi, R,, Bin Heyat, M. B., Akhtar, F., Abdelgeliel, A. S., Albogami, S.,
etal. (2022). Recognition of mRNA N4 acetylcytidine (ac4C) by using non-deep vs. deep
learning. Appl. Sci. 12 (3), 1344. doi:10.3390/app12031344

Jin, G., Xu, M., Zou, M., and Duan, S. (2020). The processing, gene regulation,
biological functions, and clinical relevance of N4-acetylcytidine on RNA: a systematic
review. Mol. Therapy-Nucleic Acids 20, 13-24. doi:10.1016/j.0omtn.2020.01.037

Karthiga, R., Usha, G., Raju, N., and Narasimhan, K. (2021). “Transfer learning based
breast cancer classification using one-hot encoding technique,” in 2021 international
conference on artificial intelligence and smart systems (ICAIS), 115-120.

frontiersin.org


https://doi.org/10.3389/fgene.2025.1704319
https://doi.org/10.1038/s41598-020-77824-2
https://doi.org/10.1038/s41598-020-77824-2
https://doi.org/10.1093/nar/gkab122
https://doi.org/10.1093/nar/gkab122
https://doi.org/10.21437/interspeech.2024-958
https://doi.org/10.21437/interspeech.2024-958
https://doi.org/10.14569/ijacsa.2024.0150240
https://doi.org/10.1007/978-3-642-24797-2_4
https://doi.org/10.1016/j.procs.2024.04.172
https://doi.org/10.1016/j.procs.2024.04.172
https://doi.org/10.1021/acs.jcim.4c01415
https://doi.org/10.3390/biom12070995
https://doi.org/10.3390/app12031344
https://doi.org/10.1016/j.omtn.2020.01.037
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1622899

Huang et al.

Karthiya, R, Wasil, S. M., and Khandelia, P. (2020). Emerging role of N4-
acetylcytidine modification of RNA in gene regulation and cellular functions. Mol.
Biol. Rep. 47 (11), 9189-9199. doi:10.1007/s11033-020-05963-w

Lai, F.-L., and Gao, F. (2023). LSA-ac4C: a hybrid neural network incorporating
double-layer LSTM and self-attention mechanism for the prediction of N4-
acetylcytidine sites in human mRNA. Int. J. Biol. Macromol. 253, 126837. doi:10.
1016/j.ijbiomac.2023.126837

Li, W., and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics 22 (13), 1658-1659. doi:10.
1093/bioinformatics/btl158

Liu, D, Liu, Z, Xia, Y., Wang, Z, Song, ], and Yu, D.-J. (2024). TransC-ac4C:
identification of N4-acetylcytidine (ac4C) sites in mRNA using deep learning. IEEE/
ACM Trans. Comput. Biol. Bioinforma. 21, 1403-1412. doi:10.1109/TCBB.2024.3386972

Mclnnes, L., Healy, J., and Melville, J. (2018). Uniform manifold approximation and
projection for dimension reduction. arXiv:180203426

Mehra, S., Ranga, V., and Agarwal, R. (2024). A deep learning approach to dysarthric
utterance classification with BiLSTM-GRU, speech cue filtering, and log Mel
spectrograms. J. Supercomput. 80, 14520-14547. doi:10.1007/s11227-024-06015-x

Passricha, V., and Aggarwal, R. K. (2019). A hybrid of deep CNN and bidirectional
LSTM for automatic speech recognition. J. Intelligent Syst. 29 (1), 1261-1274. doi:10.
1515/fisys-2018-0372

Pearlmutter, B. (1989). Learning state space trajectories in recurrent neural networks.
Int. 1989 Jt. Conf. Neural Netw. 362, 365-372 vol.2. doi:10.1109/ijcnn.1989.118724

Pham, N. T., Rakkiyapan, R,, Park, J., Malik, A., and Manavalan, B. (2024a). H2Opred:
a robust and efficient hybrid deep learning model for predicting 2’-O-methylation sites
in human RNA. Briefings Bioinforma. 25 (1), bbad476. doi:10.1093/bib/bbad476

Pham, N. T,, Terrance, A. T., Jeon, Y. ], Rakkiyappan, R., and Manavalan, B. (2024b).
ac4C-AFL: a high-precision identification of human mRNA N4-acetylcytidine sites
based on adaptive feature representation learning. Mol. Therapy-Nucleic Acids. 35(2)
102192. doi:10.1016/j.0omtn.2024.102192

Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A. (2018). How does batch normalization
help optimization? Adv. neural Inf. Process. Syst. 31. doi:10.48550/arXiv.1805.11604

Siami-Namini, S., Tavakoli, N., and Namin, A. S. (2019). “The performance of LSTM
and BIiLSTM in forecasting time series,” in 2019 IEEE international conference on big
data (big data), 3285-3292.

Sonderby, S. K., Senderby, C. K., Nielsen, H., and Winther, O. (2015). “Convolutional
LSTM networks for subcellular localization of proteins,” in Algorithms for
computational biology: second international conference, AlCoB 2015, Mexico City,
Mexico (Springer), 68-80.

Su, W, Xie, X.-Q,, Liu, X.-W., Gao, D., Ma, C.-Y,, Zulfiqar, H,, et al. (2023). iRNA-ac4C: a
novel computational method for effectively detecting N4-acetylcytidine sites in human
mRNA. Int. J. Biol. Macromol. 227, 1174-1181. doi:10.1016/j.ijbiomac.2022.11.299

Tang, X., Zheng, P, Li, X., Wu, H., Wei, D.-Q,, Liu, Y., et al. (2022). Deep6mAPred: a
CNN and Bi-LSTM-based deep learning method for predicting DNA Né6-
methyladenosine sites across plant species. Methods 204, 142-150. doi:10.1016/j.
ymeth.2022.04.011

Targ, S., Almeida, D., and Lyman, K. (2016). Resnet in resnet: generalizing residual
architectures. arXiv preprint arXiv:160308029.

Tawong, K., Pholsukkarn, P., Noawaroongroj, P., and Siriborvornratanakul, T.
(2024). Economic news using LSTM and GRU models for text summarization in
deep learning. J. Data, Inf. Manag. 6 (1), 29-39. doi:10.1007/542488-023-00111-y

Frontiers in Genetics

13

10.3389/fgene.2025.1622899

Thalalla Gamage, S., Sas-Chen, A., Schwartz, S., and Meier, J. L. (2021). Quantitative
nucleotide resolution profiling of RNA cytidine acetylation by ac4C-seq. Nat. Protoc. 16
(4), 2286-2307. doi:10.1038/s41596-021-00501-9

Traore, B. B., Kamsu-Foguem, B., and Tangara, F. (2018). Deep convolution neural
network for image recognition. Ecol. Inf. 48, 257-268. doi:10.1016/j.ecoinf.2018.10.002

Tsukiyama, S., Hasan, M. M., Fujii, S., and Kurata, H. (2021). LSTM-PHV: prediction
of human-virus protein-protein interactions by LSTM with word2vec. Briefings
Bioinforma. 22 (6), bbab228. doi:10.1093/bib/bbab228

Wu, H,, and Gu, X. (2015). Towards dropout training for convolutional neural
networks. Neural Netw. 71, 1-10. doi:10.1016/j.neunet.2015.07.007

Wu, Z., Shen, C,, and Van Den Hengel, A. (2019). Wider or deeper: revisiting the
resnet model for visual recognition. Pattern Recognit. 90, 119-133. doi:10.1016/j.patcog.
2019.01.006

Xu, H., Jia, P, and Zhao, Z. (2021). Deep4mC: systematic assessment and
computational prediction for DNA N4-methylcytosine sites by deep learning.
Briefings Bioinforma. 22 (3), bbaa099. doi:10.1093/bib/bbaa099

Xu, W, Chen, ], Ding, Z., and Wang, J. (2024). Text sentiment analysis and
classification based on bidirectional gated recurrent units (GRUs) model. arXiv
Prepr. arXiv:240417123. 77, 132-137. doi:10.54254/2755-2721/77/20240670

Yang, C.,, Wu, T, Zhang, J., Liy, J., Zhao, K., Sun, W., et al. (2021). Prognostic and
immunological role of mRNA ac4C regulator NAT10 in pan-cancer: new territory for
cancer research? Front. Oncol. 11, 630417. doi:10.3389/fonc.2021.630417

Yin, W., Kann, K., Yu, M., and Schiitze, H. (2017). Comparative study of CNN and
RNN for natural language processing. arXiv preprint arXiv:170201923.

Yu, Y., Si, X,, Hu, C,, and Zhang, J. (2019). A review of recurrent neural networks:
LSTM cells and network architectures. Neural Comput. 31 (7), 1235-1270. doi:10.1162/
neco_a_01199

Yuan, J., Wang, Z., Pan, Z,, Li, A., Zhang, Z., and Cui, F. (2024). DPNN-ac4C: a dual-
path neural network with self-attention mechanism for identification of N4-
acetylcytidine (ac4C) in mRNA. Bioinformatics. 40(11) btae625. doi:10.1093/
bioinformatics/btae625

Zhang, W., Gao, J., Fan, L., Wang, J., He, B., Wang, Y., et al. (2023b). ac4C acetylation
regulates mRNA stability and translation efficiency in osteosarcoma. Heliyon 9 (6),
€17103. doi:10.1016/j.heliyon.2023.e17103

Zhang, Y., Lei, Y., Dong, Y., Chen, S., Sun, S., Zhou, F,, et al. (2023a). Emerging roles
of RNA ac4C modification and NAT10 in Mammalian development and human
diseases. Pharmacol. and Ther. 253, 108576. doi:10.1016/j.pharmthera.2023.108576

Zhang, Y., Wu, R, Dascalu, S., and Harris, Jr. F. (2024). A novel extreme adaptive
GRU for multivariate time series forecasting. Sci. Rep. 14 (1), 2991. d0i:10.1038/s41598-
024-53460-y

Zhao, J., Jiang, H., Zou, G., Lin, Q., Wang, Q,, Liu, J., et al. (2022). CNNArginineMe: a
CNN structure for training models for predicting arginine methylation sites based on
the one-hot encoding of peptide sequence. Front. Genet. 13, 1036862. doi:10.3389/fgene.
2022.1036862

Zhao, W., Zhou, Y., Cui, Q.,, and Zhou, Y. (2019). PACES: prediction of N4-
acetylcytidine (ac4C) modification sites in mRNA. Sci. Rep. 9 (1), 11112. doi:10.
1038/541598-019-47594-7

Zheng, P., Zhang, G., Liu, Y., and Huang, G. (2023). MultiScale-CNN-4mCPred: a
multi-scale CNN and adaptive embedding-based method for mouse genome DNA N4-
methylcytosine prediction. BMC Bioinforma. 24 (1), 21. doi:10.1186/s12859-023-
05135-0

frontiersin.org


https://doi.org/10.1007/s11033-020-05963-w
https://doi.org/10.1016/j.ijbiomac.2023.126837
https://doi.org/10.1016/j.ijbiomac.2023.126837
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1093/bioinformatics/btl158
https://doi.org/10.1109/TCBB.2024.3386972
https://doi.org/10.1007/s11227-024-06015-x
https://doi.org/10.1515/jisys-2018-0372
https://doi.org/10.1515/jisys-2018-0372
https://doi.org/10.1109/ijcnn.1989.118724
https://doi.org/10.1093/bib/bbad476
https://doi.org/10.1016/j.omtn.2024.102192
https://doi.org/10.48550/arXiv.1805.11604
https://doi.org/10.1016/j.ijbiomac.2022.11.299
https://doi.org/10.1016/j.ymeth.2022.04.011
https://doi.org/10.1016/j.ymeth.2022.04.011
https://doi.org/10.1007/s42488-023-00111-y
https://doi.org/10.1038/s41596-021-00501-9
https://doi.org/10.1016/j.ecoinf.2018.10.002
https://doi.org/10.1093/bib/bbab228
https://doi.org/10.1016/j.neunet.2015.07.007
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1093/bib/bbaa099
https://doi.org/10.54254/2755-2721/77/20240670
https://doi.org/10.3389/fonc.2021.630417
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1162/neco_a_01199
https://doi.org/10.1093/bioinformatics/btae625
https://doi.org/10.1093/bioinformatics/btae625
https://doi.org/10.1016/j.heliyon.2023.e17103
https://doi.org/10.1016/j.pharmthera.2023.108576
https://doi.org/10.1038/s41598-024-53460-y
https://doi.org/10.1038/s41598-024-53460-y
https://doi.org/10.3389/fgene.2022.1036862
https://doi.org/10.3389/fgene.2022.1036862
https://doi.org/10.1038/s41598-019-47594-7
https://doi.org/10.1038/s41598-019-47594-7
https://doi.org/10.1186/s12859-023-05135-0
https://doi.org/10.1186/s12859-023-05135-0
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1622899

	DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.2 Methodology
	2.2.1 One-hot encoding
	2.2.2 ResNet
	2.2.3 CNN
	2.2.4 BiLSTM
	2.2.5 BiGRU
	2.2.6 Performance evaluation


	3 Results
	3.1 Performance comparison with various encoding methods
	3.2 Model selection
	3.2.1 Performance comparison with different module combinations
	3.2.2 Performance comparison of multi-scale CNN branch configurations

	3.3 Parameter optimization
	3.3.1 Performance comparison with different convolutional kernels
	3.3.2 Impact of hyperparameter settings

	3.4 Performance comparison with state-of-the-art methods
	3.5 Visualization with UMAP
	3.6 Robustness analysis of DeepRNAac4C
	3.7 Web server

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher’s note
	References


