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Background:Heart failure (HF) represents the end stage of cardiovascular disease
and is the leading cause of mortality. The objective of this study was to identify
potential biomarkers and elucidate the mechanisms underlying the development
of HF across diverse populations and among different genders.
Methods: This study strictly included five datasets of HF with dilated
cardiomyopathy: GSE141910 (African American and Caucasian), GSE57345
(USA), GSE21610 (Germany), GSE17800 (Germany), and GSE42955 (Spain).
These datasets were merged and normalized as the validation set.
Differentially expressed genes (DEGs) were identified through differential
expression analysis, and module genes were identified using weighted gene
co-expression network analysis. Subsequent stratification by gender and
ethnicity (African American, Caucasian, German, and Spanish) was performed,
followed by immune infiltration analysis. Finally, the least absolute shrinkage and
selection operator (LASSO) regression, support vector machine-recursive feature
elimination (SVM-REF), and random forest (RF) models were used to screen for
Hub genes and to construct a nomogram predicting the occurrence of HF in
different populations based on these Hub genes. Additionally, GSE3585,
GSE120895, GSE5406, and GSE1145 serve as the validation set.
Results: A total of 650 samples were included (323 controls and 327 HF samples),
including 122 African American samples (44 controls and 78 HF samples),
238 Caucasian samples (122 controls and 116 HF samples), 55 German
samples (16 controls and 39 HF samples), and 17 Spanish samples (5 controls
and 12 HF samples). Functional enrichment analysis demonstrated that the
pathogenesis of HF is closely related to the inflammatory response, immune
response, vascular regulation, the Wnt signaling pathway, glutathione
metabolism, sphingolipid metabolism, and apoptosis. Immune infiltration
analysis showed that HF patients exhibited a high abundance of resting mast
cells, resting NK cells, CD8T cells, resting memory CD4 T cells, activated memory
CD4 T cells, M1 Macrophages, naive CD4 T cells, M0 Macrophages, regulatory
T cells (Tregs), follicular helper T cells, Monocytes, and activated NK cells, and a
lower abundance of plasma cells, neutrophils, and eosinophils. Multiple machine
learning analyses identified MYH6, ASPN, and COL14A1 as Hub genes, NAP1L3,
PLEKHH2, MOXD1, CCDC80, CA14, and SERPINE2 as male-specific, CX3CR1,
SYN2, and SLC25A18 as female-specific, and NQO1, KAZALD1, and UBASH3A as
African American male-specific, SYN2 as African American female-specific,
CD83, C1QTNF3, GRB14, and MOXD1 as Caucasian male-specific, CD83, VIT,
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and PODXL2 as Caucasian female-specific, LSAMP andC14orf132 as Germanmale-
specific, and LSAMP and BMP4 as German female-specific, CIART and SNORA80E
as Spanish-specific DEGs. Hub genes are strongly associated with
M1 macrophages.
Conclusion: The biomarkers of HF vary significantly across different populations
and genders. MYH6, ASPN, and COL14A1 may be potential biomarkers for HF in
dilated cardiomyopathy.
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1 Introduction

Heart failure (HF) is a clinical syndrome recognized as a global
epidemic, representing the end stage of most cardiovascular diseases,
and is one of the leading causes of death and disability. Over the past
few decades, the incidence of HF has gradually reached a stable and
decreasing trend in developed countries. For instance, the incidence
rates are 6.5 per 1,000 in Germany, 2.9–3.9 per 1,000 in Spain,
2.2–3.2 per 1,000 in America, and 0.7 per 1,000 in Hong Kong
(Conrad et al., 2018; Savarese et al., 2023). Despite this slight decline
in incidence, the prevalence of HF is gradually increasing and varies
considerably across countries and regions. The highest prevalence in
2017 was noted in Central Europe, North Africa, and the Middle
East, while lower rates were observed in Eastern Europe and
Southeast Asia. The prevalence rates range from 0.9% to 6.8% in
Spain, 3.9% in Germany, 2.4%–3.0% in America, and 0.4% in
Thailand (Savarese et al., 2023). Furthermore, HF imposes a
significant economic burden on healthcare systems worldwide,
with the total cost of treating HF in the United States projected
to rise from $31 billion to $70 billion between 2012 and 2030
(Savarese and Lund, 2017; Heidenreich et al., 2013). This escalation
undoubtedly places a substantial strain on healthcare expenditures.

The diagnosis of HF primarily relies on electrocardiograms,
imaging, laboratory tests, and biomarker assessments. B-type
Natriuretic Peptide (BNP) and N-terminal Pro-B-Type
Natriuretic Peptide (NT-proBNP) are widely regarded as the
most effective biomarkers for diagnosing HF due to their
significant roles in diagnosis and prognostic evaluation
(Castiglione et al., 2022). The American College of Cardiology/
American Heart Association (ACC/AHA) endorses the use of BNP
and NT-proBNP to assist in diagnosing HF (Yancy et al., 2017).
However, the European Society of Cardiology (ESC) guidelines
advocate for the use of these biomarkers to rule out HF,
considering the impact of gender, age, and comorbidities
(Ponikowski et al., 2016). Consequently, many guidelines suggest
that thresholds for biomarkers should be determined with
consideration for age, gender, and ethnic region stratification
(Kavsak et al., 2019). In terms of treatment, HF therapeutic

strategies have evolved from the traditional “Golden Triangle”-
comprising angiotensin-converting enzyme inhibitors or
angiotensin II receptor antagonists, beta-blockers, and
mineralocorticoid receptor antagonists-to the “New Quadruple
Combination,” which adds sodium-glucose cotransporter
2 inhibitors (McDonagh et al., 2021). The approach has further
advanced to the current “Five Golden Flowers,” with the addition of
soluble guanylate cyclase stimulators, such as vericiguat (Metra et al.,
2023). This progression is due to the residual risk of HF exacerbation
and death that persists even with the “New Quadruple
Combination” therapy (Docherty et al., 2020). It highlights that,
despite ongoing advancements in HF drug development, the
diagnosis and treatment of HF continue to face numerous
challenges. These challenges stem from the complexity and
refractory nature of HF, as well as its poor prognosis, and
include individual differences, comorbidity management,
medication side effects, and economic burdens.

Significant gender differences exist in HF, encompassing
symptoms, susceptibility, risk factors, pathophysiology, and
response to treatment. Studies have shown that women are
more likely to present with severe symptoms, with dyspnea
being more predominant in women and peripheral edema in
men (Maidana et al., 2023). Risk factors such as hypertension,
diabetes, smoking, and obesity make women more susceptible to
HF than men. Additionally, women face unique risk factors,
including those related to menopause, breast cancer treatments,
and pregnancy (Maidana et al., 2023; Lala et al., 2022). Biomarkers,
including NT-proBNP, CA125, high-sensitivity troponin, galectin-
3, and osteopontin, also exhibit gender-specific differences
(Maidana et al., 2023). Racial differences are equally important
factors influencing the diagnosis and prognosis of HF. Research
published in the Journal of the American Medical Association
indicates that African American individuals have nearly twice the
incidence of HF, experience an earlier onset of the disease, present
with higher severity at diagnosis, and have a higher mortality rate
among younger individuals (45–64 years) (Yancy, 2024). Age is
also a key risk factor for HF, with significant variations in
incidence, progression, and biomarker expression across
different age groups. Global Burden of Disease database analysis
indicates that the number of HF cases increases significantly with
age, particularly among individuals over 65 years old (Ran et al.,
2025; Kang et al., 2025). Multiple studies have demonstrated that
NT-proBNP levels, a marker for HF, exhibit significant variations
across different age groups and genders, with elevated levels being
more common in the general middle-aged population (Welsh
et al., 2022; Mu et al., 2023). Therefore, studies focusing on
gender, age, and racial differences may offer insights to improve

Abbreviations: AUC, Area Under the Curve; BNP, B-type Natriuretic Peptide;
DEGs, Differentially Expressed Genes; GEO, Gene Expression Omnibus; GSEA,
Gene Set Enrichment Analysis; HF, Heart Failure; LASSO, Least Absolute
Shrinkage and Selection Operator; MyHC, Myosin Heavy Chain; NT-
proBNP, N-terminal Pro-B-Type Natriuretic Peptide; RF, Random Forest;
ROC, Receiver Operating Characteristic; SVM-REF, Support Vector
Machine-Recursive Feature Elimination; TGF-β, transforming growth
factor-β; WGCNA, Weighted Gene Co-expression Network Analysis.
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the diagnosis of HF and potentially contribute to the development
of new drugs targeting HF.

Due to database limitations, specifically the lack of basic age
information, this study focused on four distinct populations:
African American, Caucasian, German, and Spain. Differential
expression analysis was employed to identify gender-specific
differentially expressed genes (DEGs) within these
populations. Enrichment analysis was utilized to explore the
potential pathogenesis of HF, while immune infiltration
analysis was applied to investigate the microenvironment of
immune infiltration across populations. Additionally,
Weighted Gene Co-expression Network Analysis (WGCNA)
was applied to identify the most relevant gene modules
associated with HF in different populations. Finally, three
machine learning models were applied to screen for gender-
specific Hub genes in different populations: the least absolute
shrinkage and selection operator (LASSO) regression, support
vector machine-recursive feature elimination (SVM-REF), and
random forest (RF). These models were used to construct
nomograms to predict the risk of HF.

2 Materials and methods

2.1 Dataset acquisition

Five HF-related datasets were obtained from the Gene
Expression Omnibus database (GEO, https://www.ncbi.nlm.
nih.gov/geo/) (Clough and Barrett, 2016), including the
GSE141910 (Tan et al., 2020) and GSE57345 (Jia et al., 2015)
databases from the America, the GSE21610 (Schwientek et al.,
2010) and GSE17800 (Ameling et al., 2013) databases from the
Germany, and the GSE42955 (Molina-Navarro et al., 2013) from
the Spain. In addition, the German related datasets GSE3585
(Barth et al., 2006) and GSE120895 (Witt et al., 2019) and the
American related datasets GSE5406 (Hannenhalli et al., 2006)
and GSE1145 were used for external validation (Table 1). This
study, the validation cohort strictly included HF samples with
dilated cardiomyopathy and excluded those with HF secondary
to ischemic cardiomyopathy. Regarding ethnicity and
population issues, the GSE141910 dataset provided detailed
information on population ethnicity (African American and

TABLE 1 Dataset information of dilated cardiomyopathy heart failure.

Role Dataset Platform Race Source Disease Sample
size

Sample
information

Training Set GSE141910 GPL16791 United States (African
American and Caucasian)

Left Ventricle Dilated Cardiomyopathy 360 122 African American
44 control (23 female and
21 male)
78 HF (37 female and
41 male)
238 Caucasian
122 control (66 female
and 56 male)
116 HF (40 female and
76 male)

Training Set GSE57345 GPL9052 United States Left Ventricle Idiopathic Dilated
Cardiomyopathy

218 136 control (63 female
and 73 male)
82 HF (19 female and
63 male)

Training Set GSE21610 GPL570 Germany Left Ventricle Dilated Cardiomyopathy 29 8 control (2 female and
6 male)
21 HF (2 female and
19 male)

Training Set GSE17800 GPL570 Germany Endocardial
Myocardium

Dilated Cardiomyopathy 26 8 control (2 female and
6 male)
18 HF (5 female and
13 male)

Training Set GSE42955 GPL6244 Spain Left Ventricle Dilated Cardiomyopathy 17 5 control (0 female and
5 male)
12 HF (0 female and
12 male)

Validation
Set

GSE3585 GPL96 Germany Left Ventricle Dilated Cardiomyopathy 12 5 control and 7 HF.

Validation
Set

GSE120895 GPL570 Germany Endocardial
Myocardium

Dilated Cardiomyopathy 55 8 control and 47 HF.

Validation
Set

GSE5406 GPL96 United States Myocardium Dilated Cardiomyopathy 102 18 control and 86 HF.

Validation
Set

GSE1145 GPL570 United States Left Ventricle Dilated Cardiomyopathy 55 37 control and 18 HF.
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Caucasian). The GSE21610 and GSE17800 datasets were
sourced from Germany, and the GSE42955 dataset was
from Spain.

2.2 Identification of DEGs

In this study, different datasets were merged and normalized
using the “Affy” R package (Gautier et al., 2004). To address batch
effects arising from different platforms and studies, cross-platform
batch effect correction was performed using the ComBat algorithm
from the “SVA” R package (Leek et al., 2012). A model matrix
incorporating the biological condition (disease vs control) was
included as a covariate to preserve biological variance while
removing technical artifacts. The effectiveness of batch
correction was visually assessed through both Principal
Component Analysis (PCA) and Uniform Manifold
Approximation and Projection (UMAP) plots before and after
correction. DEGs were identified using the “limma” R package
with a linear modeling approach with a threshold of |log2 fold
change| >1 (2-fold differential expression) and P < 0.05 (Ritchie
et al., 2015).

2.3 Functional enrichment analysis and
construction of protein-protein
interaction network

The genes were imported into the DAVID database (https://
david.ncifcrf.gov/home.jsp) for analysis of Biological Process,
Cellular Component, Molecular Function, and Pathway.
Subsequently, the genes were imported into the STRING
database (https://cn.string-db.org/) to construct protein-protein
interaction networks.

2.4 Gene set enrichment analysis (GSEA)

The “GSEA” R package is used to calculate the correlation
between Hub genes and other genes, and then all genes are
ranked according to the correlation from the highest to the
lowest, and the enriched set of genes at the bottom of the
ranking is detected and analyzed (Subramanian et al., 2005).

2.5 Immune infiltration analysis and
correlation analysis

The relative abundance of 22 immune cell types was estimated
using the CIBERSORT deconvolution algorithm with the
LM22 signature matrix (Chen et al., 2018). To ensure robust
results, the number of permutations was set to 1000 and quantile
normalization (QN = TRUE) was applied to the input data.
Wilcoxon rank-sum tests were used for intergroup comparisons,
with FDR correction applied using the Benjamini-Hochberg
method. Subsequently, Spearman correlation analysis was
employed to reveal the relationship between Hub genes and
immune cells.

2.6 WGCNA

The “WGCNA” R package is used to remove the outlier samples
and construct a co-expression network of gene expression matrices
for the remaining samples. The soft threshold corresponding to fit
R2 = 0.8 was chosen for the construction of gene modules, while the
minimum number of module genes (minSize) was specified to be 10,
and the most relevant module for the trait was selected (Langfelder
and Horvath, 2008).

2.7 Single-gene analysis of variance

Candidate Hub genes were further screened for Hub genes in the
external validation set using the Wilcoxon rank-sum test for single-
gene difference analysis.

2.8 Machine learning models

The “glmnet” “e1071” “kernlab” “caret” “randomForest”Rpackages
R packageswere used to establishmachine learningmodels screening for
the Hub genes, including the LASSO regression, SVM-REF, and RF
model (Engebretsen and Bohlin, 2019; Van Essen, 2012). The area under
the receiver operating characteristic (ROC) curve was visualized using
the “pROC” R package (Robin et al., 2011).

2.9 Construction and validation of a
nomogram model

A nomogram model was established using the “rms” R package to
predict the probability of the occurrence of AS, and its predictive power
was estimated by using calibration curves and decision curve analysis.

2.10 Gene-drug/chemical interaction

DGIdb 5.0 integrates drug-gene interactions from multiple
databases including DrugBank, Drug Target Commons, and TTD.
Its core methodology involves associative analysis of drugs and genes,
establishing an interaction network through the integration of public
data and experimental validation (Cannon et al., 2024). However, its
predictive results contain numerous correlations that have not been
experimentally verified and should be treated with caution. CoreMine
Database is a literature-based precision data mining service platform.
The Hub genes were imported into the DGIdb database (https://
dgidb.org/) and CoreMine database (https://coremine.com/medical/
#search) to predict the corresponding Drug, Chemical, and Food.

3 Results

3.1 Identification of DEGs in different HF
populations

After merging and standardizing the five datasets to eliminate
batch effects, evaluate the merging effect using PCA and UMAP plots
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(Figures 1A–D). Differential expression analyses were first conducted
on a total of 650 samples, comprising 323 normal and 327 HF
samples, resulting in the identification of 129 DEGs (Figure 1E).
Subsequently, differential expression was analyzed separately for
samples from different regions: among African American samples,
there were 122 (44 normal and 78HF), yielding 506DEGs (Figure 1F);

amongst American Caucasian samples, there were 238 (122 normal
and 116 HF), yielding 556 DEGs (Figure 1G); amongst German
samples, there were 55 (16 normal and 39 HF), yielding 55 DEGs
(Figure 1H); amongst Spanish samples, there were 17 (5 normal and
12 HF), yielding 41 DEGs (Figure 1I). A Venn diagram analysis
identified 2 common DEGs among all populations (NPPB, STAT4),

FIGURE 1
Identification and functional enrichment analysis of DEGs in HF. (A) The principal component analysis of the five datasets and clinical characteristics.
(B) The principal component analysis of the combined dataset and clinical characteristics. (C) The UMAP of the five datasets and clinical characteristics.
(D) The UMAP of the combined dataset and clinical characteristics. (E–I) Volcano map and heatmap for differential expression analyses of (E) all, (F)
African American, (G) Caucasian, (H) German, and (I) Spanish samples. (J) The Venn diagram shows 2 common DEGs and 97 African American-
specific, 139 Caucasian-specific, 12 German-specific, and 24 Spanish-specific DEGs. (K) Protein-protein interaction network for all sample DEGs.
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as well as 97 African American-specific, 139 American Caucasian-
specific, 12 German-specific, and 24 Spanish-specific DEGs (Figures
1J,K) (Supplementary Material 1).

Functional enrichment of 129 DEGs from the all sample suggests
that the biological processes of HF are related to inflammatory
response (interleukin-1 receptor activity, positive regulation of
monocyte chemotaxis, response to bacterium, cellular response to
lipopolysaccharide), immune response (negative regulation of T cell
proliferation, type 2 immune response), vascular regulation
(regulation of blood pressure, blood vessel diameter maintenance,
cardiacmuscle contraction), theWnt signaling pathway (Wnt-protein
binding, negative regulation of Wnt signaling pathway, canonical and
non-canonical Wnt signaling pathway), cell adhesion, migration, and
proliferation (extracellular matrix organization, collagen fibril
organization, cell adhesion, negative regulation of cell population
proliferation, negative regulation of cell growth), metabolic process
(thyroid hormone metabolic process, protein processing, peptide
metabolic process, negative regulation of endopeptidase activity,
metalloendopeptidase activity), ion binding and transfer (negative
regulation of sodium ion transport, iron ion binding, calcium ion
binding), and are also closely related to glutathione metabolism,
cytokine-cytokine receptor interaction, and the Wnt signaling
pathway (Figures 2A–C). GSEA also highlights the role of type I
diabetes mellitus, antigen processing and presentation, cell adhesion
molecules, complement and coagulation cascades, viral myocarditis,
Parkinson’s disease, sphingolipid metabolism, and apoptosis in HF
(Figure 2D) (Supplementary Material 2).

Immune infiltration analysis revealed that HF patients exhibited
a higher abundance of resting mast cells, resting NK cells,

CD8T cells, resting memory CD4 T cells, activated memory
CD4 T cells, M1 Macrophages, naive CD4 T cells,
M0 Macrophages, regulatory T cells (Tregs), follicular helper
T cells, Monocytes, and activated NK cells, and a lower
abundance of plasma cells, neutrophils, and eosinophils (P <
0.05 and FDR<0.05). Among African Americans, HF patients
had a higher abundance of naïve B cells and CD8 T cells, and a
lower abundance of resting memory CD4 T cells, M2 macrophages,
and eosinophils (P < 0.05 and FDR<0.05). In Caucasians, HF
patients showed a higher abundance of naïve CD4 T cells (P <
0.05 and FDR>0.05), naïve B cells, CD8 T cells, regulatory T cells,
M1 macrophages, and resting dendritic cells, and a lower abundance
of resting memory CD4 T cells, M2 macrophages, and eosinophils
(P < 0.05 and FDR<0.05). In the German population, HF patients
demonstrated a higher abundance of resting mast cells and follicular
helper T cells, and a lower abundance of resting memory CD4 T cells
(P < 0.05 and FDR>0.05). In contrast, there were no significant
differences in immune cell infiltration observed in the Spanish
population (P > 0.05) (Figures 3A,B) (Supplementary Material 3).
These results suggest that HF patients from different populations
have distinct immune infiltration microenvironments.

3.2 Identification of candidate hub genes in
different HF populations

WGCNA was conducted on these samples to identify the gene
modules most strongly associated with HF. When the soft
threshold was set to 14, the blue module (r = 0.77) was

FIGURE 2
Functional enrichment analysis of DEGs in HF. (A,B) The (A) biological process, (B) cellular component, molecular function, (C) pathway, and (D)
GESA for all sample DEGs.
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significantly and positively associated with HF across all samples,
comprising 200 genes. For African American samples, when the
soft threshold was set to 3, the turquoise module (r = 0.28)
showed a significant positive association with HF and included a
total of 3138 genes. At the same soft threshold, both the brown
module (r = 0.9) and the yellow module (r = 0.87) were
significantly positively associated with HF in American
Caucasian samples, together containing 740 genes. In German
samples, when the soft threshold was set to 2, the turquoise
module (r = 0.7) was significantly positively associated with HF
and contained 2099 genes. In Spanish samples, when the soft
threshold was set to 14, 7 modules were produced, but none of the
modules most relevant to HF (Figures 3C–E).

The samples were then analyzed for differential expression
after gender stratification. A total of 374 male samples,
comprising 162 normal and 212 HF samples, yielded
147 DEGs (Figure 4A); 259 female samples, including
156 normal and 163 HF samples, yielded 176 DEGs
(Figure 4B). Among African American males, 62 samples
(21 normal and 41 HF) yielded 542 DEGs (Figure 4C); among
African American females, 60 samples (23 normal and 37 HF)
yielded 558 DEGs (Figure 4D). Among American Caucasian
males, 132 samples (56 normal and 76 HF) yielded 583 DEGs
(Figure 4E); among American Caucasian females, 106 samples
(66 normal and 40 HF) yielded 594 DEGs (Figure 4F). Among
German males, 45 samples (13 normal and 32 HF) yielded

FIGURE 3
Identification of module genes and immune infiltration analysis in different populations. (A) Immune infiltration analysis of all, African American,
Caucasian, German, and Spanish samples. (B) Correlation analysis of MYH6, ASPN, and COL14A1 with immune cells. (C) Sample clustering plot after
removal of outlier samples. (D) Selection of soft thresholds. (E) Gene module of the most relevant genes to HF traits. *P < 0.05, **P < 0.01, ***P < 0.001.
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63 DEGs (Figure 4G); among German females, 10 samples
(3 normal and 7 HF) yielded 233 DEGs (Figure 4H).

After intersecting with region-specific DEGs, the Venn diagram
revealed 81 HF candidate Hub genes, along with 6 male-specific and
3 female-specific modular DEGs (Figure 4I). In the African
American samples, there were 35 specific DEGs and 21 male-
specific and 38 female-specific modular DEGs (Figure 4J). In the

American Caucasian samples, there were 65 specific DEGs and
22 male-specific and 20 female-specific modular DEGs (Figure 4K).
In the German samples, there were 2 specific DEGs and 6 male-
specific and 1 female-specific modular DEGs (Figure 4L).

To enhance the screening of candidate Hub genes, external
validation was performed in the German datasets GSE3585 and
GSE120895, as well as the American datasets GSE5406 and

FIGURE 4
Identification of DEGs after gender stratification in different populations. (A–H) Volcanomap and heatmap for differential expression analyses of (A)
all males, (B) all females, (C) African Americanmales, (D) African American females, (E)Caucasianmales, (F)Caucasian females, (G)Germanmales, and (H)
German females. (I–L) The Venn diagram shows gender-specific DEGs of (I) all samples, (J) African Americans, (K) Caucasians, and (L) Germans.
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GSE1145. Initially, 81 common HF candidate Hub genes were
analyzed by single-gene differential analysis across these datasets,
which led to the identification of three DEGs: ASPN, COL14A1, and
MYH6, of which ASPN and COL14A1 were upregulated in HF,
while MYH6 was downregulated (Figure 5A). Subsequently, to
further validate the differential expression of region-specific
DEGs. Specifically, American- and Spain-specific DEGs were
validated in the German dataset, and German- and Spain-specific
DEGs were validated in the American dataset, and genes with

differential expression were removed. Ultimately, 33 population-
specific, 19 male-specific, and 35 female-specific DEGs were
identified in the African American population; 54 population-
specific, 19 male-specific, and 17 female-specific DEGs were
identified in the American Caucasian population; 1 population-
specific, 5 male-specific, and 1 female-specific DEG in the German
population; and 20 Spain-specific DEGs were identified.

Correlation analysis of immune infiltration showed that ASPN
and COL14A1 were significantly positively correlated with

FIGURE 5
Machine learning models to screen candidate Hub genes. (A) External validation of 81 candidate Hub genes in GSE3585, GSE120895, GSE1145, and
GSE5406 datasets. (B) LASSO, SVM-REF, and RF Screening for Candidate Hub Genes in All, all male, all female, African American, African American male,
and African American female samples.
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FIGURE 6
Machine learningmodels to screen candidate Hub genes. (A) LASSO, SVM-REF, and RF Screening for Candidate Hub Genes in Caucasian, Caucasian
male, Caucasian female, German male, and Spanish samples. (B) Network diagram shows candidate Hub genes.
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M1 macrophages, whereas MYH6 was negatively correlated with
M0 macrophages (Figure 3B).

3.3 Machine learning models screening for
hub genes

LASSO regression, SVM-REF, and RF algorithms were
employed to further screen for Hub genes and mitigate the risk
of overfitting. The results indicated that across all samples, male
samples, female samples, African American samples, African
American male samples, African American female samples,
Caucasian samples, Caucasian male samples, Caucasian female
samples, German male samples, and Spanish samples, LASSO
regression identified 3, 6, 3, 17, 14, 13, 23, 11, 10, 4, and
2 genes, respectively; SVM-REF identified 3, 6, 3, 6, 16, 8, 16, 6,
10, 2, and 20 genes, respectively; RF identified 3, 6, 3, 12, 5, 4, 19,
10, 12, 4, and 5 genes, respectively. Ultimately, a total of 3, 6, 3, 4, 5,
3, 11, 5, 7, 2, and 2 Hub genes were identified, respectively
(Figures 5B, 6A).

In summary, DEGs were identified across various populations
and genders: 3 Hub genes (MYH6, ASPN, COL14A1), 6 male-
specific (NAP1L3, MOXD1, PLEKHH2, SERPINE2, CA14,
CCDC80), and 3 female-specific (CX3CR1, SYN2, SLC25A18)
DEGs. In addition, 4 African American-specific Hub genes
(PPL, KYNU, NQO1, KAZALD1), 5 African American male-
specific (NGEF, UBASH3A, HYAL4, EGR1, LRRN4CL), and
3 African American female-specific (TSPAN11, HPSE, WASF1)
DEGs; 11 Caucasian-specific Hub genes (CD83, GNA14,
ANTXR1, C1QTNF3, TRAF3IP3, MEG3, MARVELD2, EDN2,
VIT, GRB14, CPAMD8), 5 Caucasian male-specific (DLGAP1,
COL12A1, GLYATL2, GRAP2, ETNK2), and 7 Caucasian female-
specific (BCL6B, CD1E. PODXL2, CERCAM, MS4A1, TIGIT,
SLC5A1) DEGs; 1 German-specific Hub gene (LSAMP),
2 German male-specific (C14orf132, NECAB1), and 1 German
female-specific (BMP4) DEGs; and 2 Spanish-specific Hub genes
(SNORA80E, CIART). In total, 3 HF Hub genes, 18 male-specific
DEGs in the African American population, 13 female-specific
DEGs in the African American population, 25 male-specific
DEGs in the Caucasian population, 24 female-specific DEGs in
the Caucasian population, 12 male-specific DEGs in the German
population, 8 female-specific DEGs in the German population, and
5 DEGs specific to the Spanish population were
identified (Figure 6B).

However, to further refine the identification of specific DEGs
for African American males, African American females,
Caucasian males, Caucasian females, German males, and
German females, machine learning techniques were again
employed to reduce the risk of overfitting. LASSO identified 9,
8, 15, 12, 5, and 3 genes for each group, respectively; SVM-REF
identified 15, 10, 16, 21, 4, and 2 genes for each group,
respectively; RF identified 4, 1, 8, 7, 3, and 3 genes for each
group, respectively. Ultimately, 3 African American males
(NQO1, KAZALD1, UBASH3A), 1 African American female
(SYN2), 4 Caucasian males (CD83, C1QTNF3, GRB14,
MOXD1), 3 Caucasian females (CD83, VIT, PODXL2),
2 German males (LSAMP, C14orf132), and 2 German females
(LSAMP, BMP4)-specific DEGs were identified (Figure 7).

3.4 Construction and assessment of
nomogram

Therefore, a nomogram was constructed based on 3 Hub genes
(ASPN, COL14A1, MYH6) to predict the incidence of HF in the
population, and decision curve and calibration curve analyses both
indicated that the nomogram effectively distinguished HF patients
from the normal population (Figure 8A). Additionally, nomograms
were constructed separately based on the Hub genes and
population-specific DEGs for males (ASPN, AUC = 0.942;
COL14A1, AUC = 0.913; MYH6, AUC = 0.935; NAP1L3,
AUC = 0.880; PLEKHH2, AUC = 0.851; MOXD1, AUC = 0.853;
CCDC80, AUC = 0.809; CA14, AUC = 0.791; SERPINE2, AUC =
0.803) (Figure 8B), females (ASPN, AUC = 0.911; COL14A1, AUC =
0.837; MYH6, AUC = 0.917; SYN2, AUC = 0.816; SLC25A18,
AUC = 0.808; CX3CR1, AUC = 0.821) (Figure 8C), African
American males (ASPN, AUC = 0.890; COL14A1, AUC = 0.930;
MYH6, AUC = 0.956; NQO1, AUC = 0.873; KAZALD1, AUC =
0.891; UBASH3A, AUC = 0.907) (Figure 8D), African American
females (ASPN, AUC = 0.893; COL14A1, AUC = 0.825; MYH6,
AUC = 0.914; SYN2, AUC = 0.919) (Figure 8E), Caucasian males
(ASPN, AUC = 0.969; COL14A1, AUC = 0.969; MYH6, AUC =
0.979; CD83, AUC = 0.941; C1QTNF3, AUC = 0.947; GRB14,
AUC = 0.964; MOXD1, AUC = 0.938) (Figure 8F), Caucasian
females (ASPN, AUC = 0.959; COL14A1, AUC = 0.931; MYH6,
AUC = 0.951; CD83, AUC = 0.956; VIT, AUC = 0.880; PODXL2,
AUC = 0.928) (Figure 8G), German males (ASPN, AUC = 0.776;
COL14A1, AUC = 0.659; MYH6, AUC = 0.855; LSAMP, AUC =
0.961; C14orf132, AUC = 0.943) (Figure 8H), German females
(ASPN, AUC = 0.857; COL14A1, AUC = 0.750; MYH6, AUC =
1.000; LSAMP, AUC = 1.000; BMP4, AUC = 0.929) (Figure 8I), and
Spanish (MYH6, AUC = 0.733; ASPN, AUC = 0.667; COL14A1,
AUC = 0.717; SNORA80E, AUC = 0.833; CIART, AUC = 0.933)
(Figure 8J) to identify the incidence of HF in different regions and
genders. The results similarly indicated that these nomograms
effectively distinguished HF patients from the normal population.
However, ROC curves for the Spanish population showed low AUC
values for ASPN, and a nomogram based on the MYH6, COL14A1,
SNORA80E, and CIART genes was reconstructed to predict the
incidence of HF in the Spanish population. Both the decision curve
and calibration curve indicated that the model effectively
distinguished between HF patients and normal
individuals (Figure 8K).

In addition, OMECAMTIV MECARBIL, DANICAMTIV, and
MAVACAMTEN were identified through the database as potential
drugs for the treatment of HF, and Collagen Alpha-1(I) Chain,
Latent TGF Beta Binding Protein 2, Transforming Growth Factor-
Beta Superfamily, Transforming Growth Factor Beta-1, Fibronectin,
and Morpholino are common chemicals of the 3 Hub genes.
Database prediction suggests OMECAMTIV MECARBIL,
DANICAMTIV, and MAVACAMTEN may be
associated with MYH6.

Moreover, this study also stratified HF samples from different
regions by gender, identifying 9 DEGs between males and females in
all HF samples, 6 in African American HF samples, 11 in Caucasian
HF samples, and 24 in German HF samples, and ultimately
identifying 5 common DEGs that were significantly different by
gender, namely, DDX3Y, KDM5D, USP9Y, RPS4Y1, and EIF1AY

Frontiers in Genetics frontiersin.org11

Yu et al. 10.3389/fgene.2025.1618390

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1618390


(Figures 9A,B). However, single-gene differential analyses across
multiple groups indicated that these genes were upregulated only in
female samples, both in the control and disease groups (Figure 9C).

4 Discussion

Symptoms, pathogenesis, and biomarkers of HF are influenced
by multiple factors, particularly gender, age, and race. Several
scholars have emphasized the importance of linking HF
biomarkers to gender (Maidana et al., 2023; Blumer et al., 2023).
Studies have shown that baseline NT-proBNP levels are higher in
women than in men, especially in premenopausal women, and that
other HF biomarkers, such as the soluble isoform of suppression of
tumorigenesis-2 (sST2), are higher in men than in women (Maidana
et al., 2023). Racial disparities also play a significant role in the

development of HF. Despite improvements in HF treatments and
overall survival, the mortality disparity for African American
patients continues to widen over time (Lewsey and Breathett,
2021). Hale suggests that future HF research should be grounded
in understanding these racial disparities (Hale and Yancy, 2023).
Therefore, this study focused on race and gender to identify HF-
specific biomarkers.

Enrichment analyses in this study highlight the importance of
the wnt signaling pathway in the pathogenesis of HF. The Wnt
signaling pathway is a fundamental cellular communication system
comprising the β-linker classical pathway and the nonclassical
pathways, namely, the planar cell polarity and the calcium-
dependent pathways. It has been shown that the classical Wnt
signaling promotes inflammation and fibrosis in the context of
cardiac hypertrophy and HF (Horitani and Shiojima, 2024); non-
classical WNT signaling produces contractile dysfunction by

FIGURE 7
Machine learningmodels to screen candidate Hub genes. (A) LASSO, SVM-REF, and RFwere again screened for Hub genes in African Americanmale,
African American female, Caucasian male, Caucasian female, German male, and German female samples.
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affecting myocardial oxidative stress, inflammation, reparative
capacity, energetics, and remodeling, including fibrosis or fatty
infiltration of the myocardium (Akoumianakis et al., 2022).

Several studies have investigated biomarkers for HF. For
instance, Fan’s research identified core genes such as EIF1AY,
RPS4Y1, USP9Y, KDM5D, DDX3Y, NPPA, HBB, TSIX,
LOC28556, and XIST through protein-protein interaction
networks (Fan and Hu, 2022). Zhu’s study identified NPPA,
OMD, and PRELP as biomarkers for dilated cardiomyopathy and
HF using random forests (Zhu et al., 2022). Chen’s research
identified 16 differentially expressed genes (DEGs) for HF using
random forests, which included ECM2, LUM, ISLR, ASPN, PTN,

SFRP4, GLT8D2, FRZB, FCN3, TEAD4, NPTX2, LAD1, ALOX5AP,
RNASE2, IL1RL1, and CD163 (Chen et al., 2023). Additionally,
Chen identified NSG1, NPPB, PHLDA1, and SERPINE2 using
LASSO and SVM-REF (Chen et al., 2022). These genes were also
addressed in this study. For example, five of the ten genes identified
by Fan (EIF1AY, RPS4Y1, USP9Y, KDM5D, DDX3Y) were found to
be upregulated exclusively in males, in both control and disease
groups; NPPA identified by Zhu did not differ in this study in the
Spanish population (P > 0.05); Chen similarly identified ASPN as
DEGs for HF; and ASERPINE2 identified by Chen was considered as
male-specific DEGs in this study. In conclusion, this study
encompassed datasets from multiple regions, stratified by gender,

FIGURE 8
Construction and assessment of nomograms. (A–K)Nomograms were constructed based on the Hub gene for (A) all, (B) all male, (C) all female, (D)
African American male, (E) African American female, (F) Caucasian male, (G) Caucasian female, (H) German male, (I) German female, and (J,K) Spanish
samples to predict the incidence of HF; decision curves and calibration curves were used to evaluate the predictive efficiency of the models; ROC curves
were used to evaluate the diagnostic efficacy of the Hub gene. AUC stands for area under the curve.
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and employed three machine learning models (LASSO, SVM-REF,
and RF) to identify Hub genes. First, analysis of 650 samples through
differential expression analysis, DEGs, WGCNA, gender
stratification, external validation across four datasets, and
machine learning identified three Hub genes: MYH6, ASPN,
and COL14A1.

ASPN is a member of the small leucine-rich proteoglycan family,
specifically class I. Multiple bioinformatics analyses have identified
ASPN as a potential biomarker for HF (Boyang et al., 2022; Guo
et al., 2022; Wang et al., 2019; Huang et al., 2024). ASPN primarily
encodes the asporin protein, which acts as an inhibitor of
transforming growth factor-β1 (TGF-β1) and is considered a
beneficial regulator of cardiac remodeling (Huang et al., 2022). In
the ASPN knockout (Aspn−/−) mouse model, increased fibrosis and
reduced cardiac function were observed following pressure overload
(Huang et al., 2022). The TGFβ superfamily is one of the most
important families of profibrotic cytokines in the regulation of
myocardial fibrosis. Studies have shown that while inhibiting
TGF-β1 may exacerbate early cardiac dysfunction, it can prevent

late remodeling post-infarction, and inhibiting TGF-β1 is a
significant factor in protecting the myocardium from fibrosis
(Ikeuchi et al., 2004). Huang’s research found that asporin,
released by cardiac fibroblasts, was able to attenuate TGFβ
signaling, thereby inhibiting the progression of myocardial
fibrosis (Huang et al., 2022). However, other studies have
indicated that asporin plays a key role in glycated low-density
lipoprotein (gly-LDL)-induced apoptosis of cardiomyocytes,
increasing H9C2 cardiomyocyte apoptosis by downregulating
Bcl-2, upregulating TGF-β1, Bax, type III collagen, fibronectin,
and the phosphorylation of smad2 and smad3 (Li et al., 2020).
On the other hand, Medzikovic’s research found that miR-129-5p
expression was reduced and ASPN expression was enhanced in
cardiac fibrosis and calcified human heart fibroblasts.
Overexpression of miR-129-5p was able to downregulate ASPN
expression, and targeting the miR-129-5p/ASPN signaling axis in
cardiac fibroblasts attenuated myocardial fibrosis and calcification
and restored cardiac function in mice (Medzikovic et al., 2023). In
conclusion, the role of ASPN in HF is complex, but it is considered a

FIGURE 9
Identification of DEGs between males and females in a heart failure population from different regions. (A) Volcano map and heatmap for differential
expression analyses of all, African American, Caucasian, and German samples. (B) The Venn diagram shows 5 common DEGs. (C) Single gene differential
analysis between multiple groups of common DEGs.
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promising potential biomarker for HF, and its specific role in HF still
needs to be further investigated to clarify (Zhang et al., 2021).

COL14A1 is a major fibrillar collagen produced by fibroblasts
and plays a crucial role in regulating the extracellular matrix
component of the cardiac remodeling process in HF
(Frangogiannis, 2019). Portokallidou has identified COL14A1 as
a key gene in both dilated and ischemic cardiomyopathy through
transcriptomic and proteomic analyses (Portokallidou et al., 2023).
COL14A1-deficient mouse ventricles exhibit morphological defects
and disorganization of collagen fibers (Tao et al., 2012).
COL14A1 functions as a regulator of tissue differences,
particularly during the early stages of collagen fiber formation,
which is crucial for myocardial growth and structural integrity
(Tao et al., 2012; Ansorge et al., 2009).

Myosin is a hexamer composed of two heavy chain subunits, two
light chain subunits, and two regulatory subunits, possessing
ATPase activity and the ability to bind actin. Among these
components, the myosin heavy chain (MyHC) is an essential part
of myocardial structure and function, playing a vital role in cardiac
contractile function (Toepfer et al., 2020). The MYH6 and
MYH7 genes encode the α-MyHC subunit and the β-MyHC
subunit, respectively. In the human heart, α-MyHC is
predominant in the atria, while β-MyHC is predominant in the
ventricles (Walklate et al., 2021). The content of α-MyHC varies
among different mammalian hearts: it is 100%/100% in mouse
ventricles/atria, 90%/99% in rats, and 5%/75% in humans
(Walklate et al., 2021). In pathological states such as HF, myosin
genes may undergo “return to the fetal gene program,” where α-
MyHC expression decreases and β-MyHC expression increases,
leading to a reduced α-MyHC/β-MyHC ratio. This change may
help maintain myocardial contractility and compensate for cardiac
function in the short term, but if it persists, it can adversely affect
energy metabolism (Rajabi et al., 2007; Taegtmeyer et al., 2010;
Papait et al., 2013; Herron and McDonald, 2002). Several studies
have shown that mRNA and protein expression levels of α-MyHC
are significantly downregulated in patients with HF or cardiac
hypertrophy, as well as in various animal models of HF (Reiser
et al., 2001; Miyata et al., 2000; Lowes et al., 1997; Nakao et al., 1997).
Furthermore, the expression of the MYH6 gene changes with the
improvement of clinical symptoms during the treatment of
cardiomyopathy or HF. Before treatment, MYH6 gene expression
is downregulated, but it is upregulated during many therapeutic
measures aimed at improving cardiac function. For instance, β-
blockers can lead to upregulation of MYH6 gene expression and
downregulation of MYH7 gene expression while improving ejection
fraction and cardiac function. Among patients treated with β-
blockers, those with improved ejection fraction exhibit an
increase in α-MyHC mRNA and a decrease in β-MyHC mRNA
compared to non-responders (Lowes et al., 2002).

In addition, this study identified Omecamtiv Mecarbil,
Danicamtiv, and Mavacamten as potential drugs for the
treatment of HF through database screening. Omecamtiv
Mecarbil and Danicamtiv act as cardiac myosin activators
(Nanasi et al., 2018; Kooiker et al., 2023), while Mavacamten is a
cardiac-specific myosin inhibitor (Braunwald et al., 2023).
Omecamtiv Mecarbil enhances myocardial contractility by
specifically binding to the catalytic S1 structural domain of
cardiac myosin, thereby improving cardiac function, reducing

ventricular wall stress, reversing ventricular remodeling, and
promoting sympathetic regression for the treatment of HF
(Teerlink et al., 2020; Teerlink et al., 2021). Danicamtiv
potentially enhances myocardial force and calcium sensitivity by
increasing myosin recruitment and slowing cross-bridge turnover
(Kooiker et al., 2023). However, Danicamtiv is still in clinical trials,
and although it improves cardiac systolic function, it may limit
diastolic function at high concentrations (Voors et al., 2020; Ráduly
et al., 2022). Mavacamten reduces contractility by normalizing
cross-bridging between myosin and actin and is commonly used
to treat obstructive hypertrophic cardiomyopathy (Schenk and
Fields, 2023). A meta-analysis showed that Mavacamten reduced
New York Heart Association (NYHA) class and post-exercise left
ventricular outflow tract gradient, and increased mixed venous
oxygen pressure in patients with hypertrophic cardiomyopathy,
but it may also cause adverse effects such as atrial fibrillation and
reduced left ventricular ejection fraction (Bishev et al., 2023). The
DGIdb database indicates that Omecamtiv Mecarbil, Danicamtiv,
and Mavacamten may act on MYH6. However, there have been an
absence of studies confirming the targeted effects of these drugs on
MYH6, and these findings must be validated through subsequent in-
depth in vitro and in vivo experiments.

This study also identified gender-specific DEGs across different
regions. After stratifying by gender, differential expression analysis,
WGCNA, and machine learning were performed to identify race-
and gender-specific DEGs. Subsequently, a nomogram was
constructed based on Hub genes (MYH6, ASPN, and COL14A1)
and combined with specific DEGs to predict the risk of HF onset.
Exercise stimulation induced cardiac-specific expression of the
C-terminal domain of CCDC80, which prevented angiotensin II-
induced cardiac hypertrophy and fibrosis in mice (Yin et al., 2022).
CX3CR1 has been suggested to be a prerequisite for the development
of cardiac hypertrophy and left ventricular dysfunction inmice upon
transverse aortic constriction (Weisheit et al., 2021). Furthermore,
the activation of the cardiac CX3CL1/CX3CR1 signaling axis delays
β-adrenergic-induced HF (Flamant et al., 2021). C1QTNF3 has been
found to be decreased in patients with HF with reduced ejection
fraction in the Xi’an population of China and is strongly associated
with increased morbidity and mortality (Gao et al., 2019). However,
this study found that C1QTNF3 was upregulated in Caucasian
males, which contrasts with another study that found
C1QTNF3 upregulated in mouse hypertrophied hearts and in
human hearts with HF, derived from cardiomyocytes and
induced by the production of reactive oxygen species during the
hypertrophic response. Additionally, CTRP3 facilitates pressure-
overload-induced cardiac hypertrophy through activation of the
TAK1-JNK axis (Ma et al., 2019). Yu identified m6A-modified
C14orf132 as a potential diagnostic gene for idiopathic
cardiomyopathy (Yu et al., 2024). The relationship between other
genes and HF remains unclear and requires further investigation.

In conclusion, this study utilized bioinformatics to identify the
pathogenesis and potential biomarkers of HF associated with dilated
cardiomyopathy. First, three Hub genes (MYH6, ASPN, and
COL14A1) associated with dilated cardiomyopathy-related HF
were identified using a large-scale training dataset. External
validation confirmed the differential expression of these genes.
The research underscores that the pathogenesis of HF is closely
related to inflammatory responses, immune responses, vascular
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regulation, the Wnt signaling pathways, glutathione metabolism,
and apoptosis. The myocardial immune infiltrate
microenvironment in HF patients is dysregulated and exhibits
significant differences across distinct patient populations. The
myocardial immune infiltrate microenvironment is dysregulated
in patients with HF, characterized by a high abundance of naïve
B cells and CD8 T cells, and a lower abundance of resting memory
CD4 T cells, M2macrophages, and eosinophils. Differential analyses
were conducted to pinpoint population-specific DEGs, and gender-
specific Hub genes were identified using three machine learning
models: LASSO, SVM-REF, and RF. This study is innovative in its
focus on race and gender, identifying HF-specific DEGs across
different races and genders, thereby reflecting the principles of
precision and individuality in medicine. Furthermore, the study
identified Hub genes using multiple machine learning models,
which were then validated in four external validation sets.
Additionally, the study identified five genes that were upregulated
only in male and not associated with HF.

However, there are limitations to this study. Although efforts
were made to include HF datasets from various regions, database
limitations precluded the inclusion of more HF-related datasets
from other countries. The Japanese-related dataset GSE8331 was
also not considered for inclusion due to its small sample size. While
many specific DEGs were identified in this study, the relationship
between many of these genes and HF remains unclear, necessitating
further experimental validation.

However, this study has several limitations. First, the large
number of datasets included in this study were sourced from
various platforms and countries. Despite batch effect correction,
differences in platforms, processing pipelines, and sample
demographics may still introduce confounding effects that are
difficult to completely eliminate. Second, although efforts were
made to include HF datasets from different regions, limitations
of the databases restricted the inclusion of more HF-related datasets
from other countries. Moreover, there was significant variation in
sample sizes across different datasets, with the Spanish cohort
having a particularly small sample size, which may have reduced
the reliability of the results. Additionally, while the US datasets
provided detailed racial information, the population information for
the other datasets was inferred based on the country of origin.
However, the included populations may not have had strictly
defined racial information sources, which could have affected the
reliability of the results. Furthermore, although CIBERSORT has
been widely applied across various tissue types, it is important to
acknowledge that its reference matrix was primarily developed using
peripheral blood mononuclear cells. Potential differences in gene
expression profiles between blood and heart cells may have affected
the accuracy of immune cell estimation. Future studies
incorporating heart-specific signature matrices will help to
validate and refine these findings. Age is also an important factor
associated with HF. However, many of the included datasets did not
provide patient age information, and thus, this study did not
perform subgroup analyses based on age. This is a key aspect
that needs to be addressed in future research. In addition, this
study predicted drug interactions for Hub genes based on databases.
However, such drug repositioning predictions are merely
preliminary hypothesis-generating tools, and the reliability of
their results must be verified through subsequent in-depth

in vitro and in vivo experiments. Finally, although this study
identified many specific DEGs, these computational results lack
experimental validation. The relationships between many genes and
HF remain unclear, and they have not been independently verified in
patient samples or experimental models (such as qRT-PCR,Western
blot, and immunohistochemistry). The biological reliability and
translational applicability of the proposed biomarkers remain
uncertain and require further experimental validation.

5 Conclusion

The biomarkers of HF vary significantly across different
populations and genders. MYH6, ASPN, and COL14A1 may be
potential biomarkers for HF in dilated cardiomyopathy.
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