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The high incidence and mortality rates of cardiovascular and cerebrovascular
diseasesmake them a significant global health challenge. Antiplatelet drugs play a
central role in the prevention and treatment of these diseases. Despite the wide
range of available antiplatelet drugs, antiplatelet drug resistance is not rare. So
optimizing drug use through personalized treatment strategies to achieve
maximum therapeutic benefit remains a major challenge in clinical practice.
Non-coding RNAs, including microRNAs (miRNAs), long non-coding RNAs
(lncRNAs), and circular RNAs (circRNAs), have made significant progress in
understanding their regulatory roles in drug resistance, becoming a frontier
area of current research. In addition to the regulatory functions of non-
coding RNAs, emerging studies have highlighted the role of RNA
modifications, such as N6-methyladenosine (m6A), in the regulation of gene
expression and cellular processes involved in antiplatelet drug resistance. These
modifications contribute to the stability, splicing, and translation of RNA, further
influencing their roles in drug resistance mechanisms. In recent years, significant
progress has been made in the research of non-coding RNAs and RNA
modifications, revealing their crucial roles in the mechanisms of antiplatelet
drug resistance. This review focuses on the latest advancements in non-
coding RNA research related to antiplatelet drug resistance and explores the
emerging field of RNA modifications. It analyzes potential underlying
mechanisms and discusses future research directions, aiming to provide new
theoretical support and research perspectives for personalized precision
antiplatelet.
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GRAPHICAL ABSTRACT

Antiplatelet drugs are key medications in the prevention and treatment of cardiovascular and cerebrovascular diseases, and the issue of drug
resistance is receiving increasing attention. Epigenetics, such as non-coding RNAs and RNA modifications (especially m6A), as emerging fields, are
gradually playing an important role in antiplatelet drug resistance. This review summarizes the mechanisms of non-coding RNAs and RNA
modifications in antiplatelet drug resistance and the related research progress.

1 Introduction

Recent global disease burden data indicates that cardiovascular
and cerebrovascular diseases pose a heavy burden. These diseases
not only lead to increased mortality rates but also result in high
disability rates and disease burden, severely affecting public health
and quality of life (Li et al., 2023; Li et al., 2024). Antiplatelet drugs
are central to the prevention and treatment of cardiovascular and
cerebrovascular diseases by inhibiting platelet aggregation, playing a
crucial role in the prevention and treatment of cardiovascular and
cerebrovascular diseases (Stanger et al., 2023; Greco et al., 2023;
Kamarova et al., 2022). However, due to individual differences and
the complexity of molecular mechanisms, these drugs may
encounter varying degrees of resistance in clinical applications.
Notably, approximately 20% of patients exhibit dual high on-
treatment platelet reactivity to aspirin and clopidogrel (Breet
et al., 2011). Aspirin resistance occurs in up to 60% of cases
(Sambu et al., 2013), while clopidogrel resistance reaches 40%
(Angiolillo et al., 2007), both correlating with increased risks of
atherothrombotic events. Approximately 10%–30% of patients with
antiplatelet resistance experience ischemic events (Udell et al., 2016;
Li et al., 2012; Reny et al., 2012). A prospective multicenter registry
study demonstrated significantly elevated stent thrombosis risk,
particularly showing 1.49-fold increased risk in clopidogrel high-
responders (Stone et al., 2013). Overall, patients with antiplatelet

resistance face 2- to 3-fold higher cardiovascular event risks
compared to normal responders (Gum et al., 2003; Gurbel
et al., 2003).

Antiplatelet drug resistance currently lacks a standardized
definition but is broadly categorized into laboratory resistance
and clinical resistance. This refers to the phenomenon where
patients experience thrombotic events or demonstrate laboratory-
confirmed failure of platelet function inhibition despite receiving
standard antiplatelet therapy (Hankey and Eikelboom, 2006; Floyd
and Ferro, 2015). Based on mechanistic characteristics, it can be
divided into two types: primary resistance and secondary resistance.
Primary resistance stems from the patient’s inherent inherited
pharmacogenetic abnormalities, including genetic polymorphisms
of drug-metabolizing enzymes (such as CYP2C19 loss-of-function
alleles) or target receptor variations (like P2Y12 receptor
polymorphisms), resulting in the inability of the drug to achieve
the expected antiplatelet effect from the outset of therapy (Hou,
2024; Fitzgerald and Pirmohamed, 2011; Pereira et al., 2019; Akkaif
et al., 2021). Secondary resistance occurs after initially effective
treatment and is triggered by acquired factors, commonly including
drug-drug interactions (e.g., proton pump inhibitors competitively
inhibiting clopidogrel metabolism), disease-related enhancement of
platelet activation (e.g., in inflammatory conditions such as
diabetes), accelerated platelet turnover, or poor patient adherence
(Hankey and Eikelboom, 2006; Huang et al., 2025; Kaur et al., 2018).
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Resistance not only leads to reduced therapeutic efficacy but also
increases the risk of vascular events, thereby affecting the overall
prognosis of patients (Hankey and Eikelboom, 2006; Spanos et al.,
2017; Ball, 2009). The mechanisms of antiplatelet drug resistance are
complex and are often closely related to factors such as variations in
drug-metabolizing enzymes, mutations in target proteins, and
epigenetic regulation (Fitzgerald and Pirmohamed, 2011; Pereira
et al., 2019; Kim et al., 2024). Traditional research has primarily
focused on the genetic factors of drug resistance, with relatively few
exploration into the epigenetic mechanisms, particularly non-
coding RNAs.

Non-coding RNAs refer to RNA molecules that do not encode
proteins, primarily including microRNAs (miRNAs), long non-
coding RNAs (lncRNAs), and circular RNAs (circRNAs). These
non-coding RNAs influence various biological processes by
regulating gene expression, cellular physiological processes, and
other biological functions (Chen and Kim, 2024). miRNAs, small
RNA molecules of approximately 22 nucleotides, play a key role in
regulating complex genetic networks and cellular signaling pathways
(Bushati and Cohen, 2007; Bartel, 2004; Lee et al., 1993). In addition
to being potential biomarkers and diagnostic tools, miRNAs have
shown great promise in disease treatment (Diener et al., 2022;
MicroRNAs, 2017). Studies have demonstrated the regulatory
role of miRNAs in platelet function. For instance, the effector
complex formed by miR-223 and Ago2 can specifically target the
purinergic receptor P2Y12, which is involved in platelet aggregation,
thereby modulating platelet activation (Landry et al., 2009). Existing
studies have demonstrated that miRNAs play an important role in
regulating platelet function and reactivity, as well as in the
mechanisms of antiplatelet drug resistance (Stojkovic et al., 2019;
Singh et al., 2021; Willeit et al., 2013). lncRNAs, typically composed
of hundreds to thousands of nucleotides, are widely involved in
transcriptional regulation, epigenetic regulation, translation, and
other cellular processes (Bridges et al., 2021; Hangauer et al.,
2013). Research has revealed that MT1P3 upregulates P2Y12 by
sponging miR-126, thereby promoting platelet hyperreactivity in
diabetes (Zhou et al., 2019). The role of lncRNAs in antiplatelet drug
resistance has gradually become a research hotspot (Wang et al.,
2020). circRNAs are RNA molecules with a closed-loop structure,
primarily regulate gene expression through functions such as acting
as miRNA sponges and regulating protein translation (Zhou WY.
et al., 2020). CircRNAs are abundantly expressed in human platelets
(Alhasan et al., 2016), Platelet-derived circRNAs can interact with
protein complexes of varying sizes, as exemplified by the platelet-
specific circRNA Plt-circR4 (Preußer et al., 2018). Although research
on circRNAs in antiplatelet drug resistance is still in its early stages,
existing findings suggest that circRNAs hold significant potential in
resistance mechanisms (Xu et al., 2025). Recent studies have also
suggested that RNA modifications, such as N6-methyladenosine
(m6A), may affect the functional roles of circRNAs and other non-
coding RNAs in modulating gene expression and contributing to
antiplatelet drug resistance (Yu et al., 2023). m6A modification, a
prevalent and dynamic RNA modification, has been implicated in
the regulation of RNA stability, splicing, translation, and the
degradation of non-coding RNAs (Yue et al., 2019; Lence et al.,
2017), thus influencing their role in drug resistance mechanisms
(Liu and Pan, 2016). However, there are currently no reported
studies on the roles of other RNA epigenetic modifications (such as

m5C, Ψ, etc.) in antiplatelet drug resistance, and this field urgently
requires further investigation.

This article primarily reviews the role of non-coding RNAs in
the resistance to antiplatelet drugs, exploring their potential
molecular mechanisms and providing an outlook on future
research directions. In addition, the article also discusses the
emerging field of RNA modifications, with a particular focus on
m6A modification, and its potential impact on antiplatelet drug
resistance.

2 Non-coding RNAs and RNA
modifications in aspirin resistance

Aspirin, as a core drug for the prevention and treatment of
cardiovascular and cerebrovascular diseases, has been consistently
recommended as a Class I medication in both domestic and
international guidelines (Dawson et al., 2022; Abdelaziz et al.,
2019; Li and Zhao, 2024). However, approximately 20%–60% of
patients develop resistance to aspirin, which not only weakens its
therapeutic effect but also presents a significant challenge for
clinicians when formulating treatment plans (Sambu et al., 2013;
Fiolaki et al., 2017; Khan et al., 2022). Previous studies have revealed
that the mechanisms of aspirin resistance are primarily linked to
genetic factors, drug interactions, patient adherence, and
inflammatory responses (Hankey and Eikelboom, 2006; Fitzgerald
and Pirmohamed, 2011; Floyd and Ferro, 2014). With the rapid
development of high-throughput genomics and chip technologies,
scientists have gradually recognized the potential role of non-coding
RNAs in the mechanisms of aspirin resistance. Recent research has
also gradually unveiled the complex mechanisms of non-coding
RNAs in aspirin resistance (Table 1), providing new directions for
the development of novel biomarkers and drug intervention
strategies.

2.1 The role of miRNAs in aspirin resistance

Research indicates that miRNAs play a key role in platelet
function and the mechanisms of aspirin resistance by regulating
gene expression. Multiple studies have confirmed that specific
miRNAs can serve as important biomarkers for aspirin
resistance. Among them, low expression of miR-92a combined
with platelet distribution width (PDW) shows high sensitivity
and specificity; plasma miR-92a levels are significantly higher in
aspirin-resistant patients compared to aspirin-sensitive patients
(Binderup et al., 2016; Binderup et al., 2019). Additionally,
downregulation of miR-19b-1-5p is closely associated with
aspirin resistance and an increased risk of major adverse
cardiovascular and cerebrovascular events (MACCE) in patients
with acute coronary syndrome (ACS) (Singh et al., 2021; Kok et al.,
2016). In patients with acute ischemic stroke (AIS), miR-223 has also
been shown to be significantly associated with aspirin resistance
(Chen et al., 2021). From a mechanistic perspective, miR-135a-5p
and miR-204-5p affect the aspirin response by regulating a gene
network including thrombospondin-1 (THBS1) and cell division
cycle protein 42 (CDC42) (Zufferey et al., 2016). MiR-34b-3p
regulates platelet function by inhibiting thromboxane A synthase
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(TBXAS1) and megakaryocyte proliferation (Liu et al., 2019). MiR-
126 is involved in resistance formation by promoting platelet
activation and aggregation, and its urinary level has been
identified as an independent risk factor for aspirin resistance (Liu
et al., 2017; Fan et al., 2016). Notably, long-term aspirin
treatment can lead to downregulation of miR-26b expression in
platelets, which in turn upregulates multidrug resistance protein 4
(MRP4) expression, enhancing platelet residual reactivity (La et al.,
2018; Massimi et al., 2016). This provides a new basis for
personalized adjustments in clinical long-term medication. These
findings not only reveal the core regulatory role of miRNAs in
aspirin resistance but also demonstrate their important clinical value
in personalized treatment and resistance monitoring, laying the
theoretical foundation for the development of precise antiplatelet
strategies.

2.2 LncRNA and aspirin resistance

Large-scale analyses have revealed the complex expression
profiles of lncRNAs in platelets and explored their correlation
with platelet reactivity, suggesting that lncRNAs may serve as
novel platelet function regulators (Sun et al., 2022). In a study of
patients with AIS, the polymorphism of the H19 gene was closely
associated with susceptibility in this population. It was found that
H19 lncRNA induces aspirin resistance by promoting the generation
of eight-iso-Prostaglandin F2α (8-iso-PGF2) (Wang et al., 2020).
These findings further demonstrate the significant role of specific
lncRNAs in aspirin resistance. Although current research on
lncRNAs in aspirin resistance is limited, ncRNAs provide novel
perspectives for future personalized treatment and aspirin resistance
prediction.

TABLE 1 Research Summary: mechanisms of Non-coding RNAs and RNA Modifications in aspirin resistance and platelet reactivity regulation.

Non-coding
RNAs

Study
population

Drug Platelet function
testing and
definition of
resistance

Potential
targets

Findings/
Conclusions

Ref.

miR-19b-1-5p ACS Patients (n = 945) Aspirin Multiplate Analyzer
measurement;
ASPItest ≥30 U

GUCY1A3, NOS3,
PDE5

Low expression of miR-19b-1-
5p is associated with persistent
platelet aggregation during
aspirin therapy

Singh et al.
(2021)

miR-34b-3p CAD patients (n = 113) Aspirin Light transmission
aggregation (LTA); high
reactivity refers to the lowest
quartile of platelet
aggregation

TBXAS1 miR-34b-3p may regulate
platelet function and aspirin
response

Liu et al.
(2019)

miR-135a-5p, miR-
204-5p

Patients with
symptomatic
atherosclerotic
thrombotic disease
(n = 110)

Aspirin Light transmission
aggregation (LTA)
measurement; PR index is at
the extreme values

THBS1, CDC42,
CORO1C, SPTBN1,
TPM3, GTPBP2,
MAPRE2

miR-135a-5p and miR-204-5p
are associated with platelet
reactivity

Zufferey
et al.
(2016)

miR-92a Patients with
intermittent claudication
(n = 209)

Aspirin Multiplate Analyzer
measurement;
ASPItest ≥30 U

NA miR-92a is associated with
aspirin resistance

Binderup
et al.
(2019)

miR-126 CAD patients (n = 118) Aspirin Automated platelet
aggregation analyzer; AA-
induced platelet aggregation
rate ≥20%

VEGF, COX-2 Urinary miR-126 can serve as
an independent risk factor for
aspirin resistance

Fan et al.
(2016)

miR-126 CAD patients (n = 106) Aspirin Automated platelet
aggregation analyzer; AA-
induced platelet aggregation
rate ≥20%

NA Platelet miR-126 is closely
related to aspirin resistance

Liu et al.
(2017)

miR-223 AIS patients (58) Aspirin/
Aspirin +
Clopidogrel

Whole blood impedance
method; ADP-induced
platelet aggregation
rate ≥70% or AA-
induced ≥20%

NA miR-223 and aspirin resistance
in patients with AIS

Chen et al.
(2021)

lncRNA H19 AIS patients (n = 150) Aspirin ELISA kit measuring the level
of 11dhTXA2 in urine; urine
11dhTXA2/creatinine
ratio >1,500 pg/mg

8-iso-PGF2 H19 long non-coding RNA is
closely associated with aspirin
resistance

Wang et al.
(2020)

RNA N6-
methyladenosine
methylation

Elderly patients
requiring primary or
secondary prevention
(n = 34)

Aspirin Turbidimetric assay; platelet
aggregation rate <7%

NA RNA m6A methylation level is
elevated in elderly patients with
low aspirin responsiveness

Zhang
et al.
(2023)

1CORO1C, Coronin 1C; SPTBN1, Spectrin Beta Non-Erythrocytic 1; TPM3, Tropomyosin 3; GTPBP2, GTP Binding Protein 2; MAPRE2, Microtubule Associated Protein RP/EB Family

Member 2; PR Index, Platelet Reactivity Index; NA, means no.
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TABLE 2 Research synthesis: regulatory roles of non-coding RNAs and RNA Modifications in clopidogrel resistance and platelet reactivity.

Non-coding RNAs Study
population

Drugs Platelet function
testing and
definition of
resistance

Potential
targets

Findings/
Conclusions

Ref.

miR-199a-5p CAD patients
(n = 508)

Clopidogrel+
Aspirin

Flow cytometry detection;
HTPR is defined as PRI >50%

VASP Decreased levels of miR-199a-
5p are associated with
increased platelet reactivity
after clopidogrel treatment

Hu et al.
(2023)

miR-223 NSTE-ACS patients
(n = 33)

Clopidogrel +
Aspirin

Flow cytometry measured PRI
and light transmission
aggregation measured PAG;
PRI >56.5%, PAG >43%

P2Y12 Low expression of miR-223 is
associated with clopidogrel
resistance

Shi et al.
(2013)

MiR-223 , miR-126 STEMI patients
(n = 120)

Clopidogrel +
Aspirin

VerifyNow analyzer;
PRU >208

NA miR-223 and miR-126 play a
role in dual antiplatelet
therapy resistance

Li et al.
(2021)

miRNA-142-3p, miRNA-24-
3p, miRNA-411-3p

CAD patients
(n = 66)

Clopidogrel +
Aspirin

VerifyNow analyzer; Platelet
aggregation (IPA) < 30%

NA These three miRNAs may be
potential biomarkers for
clopidogrel resistance

Lin et al.
(2021)

miR-223, miR-221, miR-21 ACS patients
(n = 272)

Clopidogrel +
Aspirin

Light transmission
aggregation (LTA); RI < 10%

P2Y12 These three miRNAs play a
role in clopidogrel resistance

Peng et al.
(2017)

miR-223, miR-21 CAD patients
undergoing
PCI(n = 119)

Clopidogrel +
Aspirin

Thromboelastography
(TEG5000); Platelet inhibition
rate <50%

NA miR-223 and miR-21 are
associated with clopidogrel
resistance

Guo et al.
(2020)

miR-126, miR-130a, miR-27a,
miR-106a, miR-21 and
miR-142

CAD patients (n =
1,230)

Clopidogrel +
Aspirin

VerifyNow analyzer;
PRUs >208

NA These six miRNAs are
associated with platelet
aggregation in patients treated
with clopidogrel

Tang et al.
(2019)

miR-1343-3p, hsa-miR-
6783-3p

PCI or ACS patients
(n = 292)

Clopidogrel +
Aspirin/
Clopidogrel

Platelet aggregation assessed
by Chronolog Lumi-
Aggregometer and its
AggroLink software;
ΔA < 10%

CYP2C19 mirSNPs regulate
CYP2C19 gene expression
through miRNAs, affecting
clopidogrel drug response

Sharma
et al.
(2020)

miR-107 ACS patients
(n = 50)

Clopidogrel +
Aspirin

VerifyNow analyzer;
PRU ≥300

P2Y12 Platelet miR-107 is associated
with clopidogrel resistance

Zhang
et al.
(2022)

miR-126 ACS patients
(n = 364)

Clopidogrel +
Aspirin

Thromboelastography (TEG);
TEG MAADP >47 mm, ADP
inhibition rate <30%

P2Y12 miR-126 may affect the
reactivity and efficacy of
clopidogrel antiplatelet
therapy

Zhou et al.
(2021)

miR-223, miR-126, miR-150 ACS patients
(n = 430)

Clopidogrel +
Aspirin

TEG; the top 10 platelet
reactivity values are
considered high platelet
reactivity

P2Y12, ADAM9
, PI3KR2

These three miRNAs may be
associated with changes in
clopidogrel’s antiplatelet
response

Liu et al.
(2020)

miRNA-26a ACS patients
undergoing
PCI(n = 201)

Clopidogrel +
Aspirin

Light transmission
aggregation (LTA); Platelet
aggregation >59%

VASP mRNA Upregulation of miRNA-26a
is associated with clopidogrel
resistance

Giantini
et al.
(2022)

lncRNA
(NONHSAT083775.2,
NONHSAT 107804.2,
NONHSATl33455.2)

CAD patients
(n = 136)

Clopidogrel Whole blood electrical
impedance method; Platelet
aggregation rate ≥10 Ω

NA The differential expression of
these three lncRNAs is
associated with clopidogrel
resistance

Xie et al.
(2019)

hsa_circ_0076957
hsa_circ_0057714

Patients with stable
CAD (n = 50)

Clopidogrel +
Aspirin

VerifyNow analyzer;
PRU >240

COL19A1 hsa_circ_0057714 and
hsa_circ_0076957 as novel
biomarkers for clopidogrel
resistance

Xu et al.
(2025)

AOX1

N6-methyladenosine CAD Patients
(n = 46)

Clopidogrel +
Aspirin

VerifyNow analyzer;
PRU >240

NA Revealed the m6A
transcriptomic profile of
clopidogrel resistance

Yu et al.
(2023)

(Continued on following page)
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2.3 CircRNA and aspirin resistance

Current research on the molecular mechanisms by which
circRNAs regulate aspirin resistance remains an unexplored field.
Notably, as competing endogenous RNAs (ceRNAs), circRNAs can
specifically sequester microRNAs through their “molecular sponge”
effect, thereby relieving miRNA-mediated suppression of target
mRNAs (Chen and Lu, 2021; Panda, 2018; Liu et al., 2018).
Studies have revealed significant correlations between plasma
circRNA expression profiles and platelet activity in heart failure

patients (Sun et al., 2020). Building upon the ceRNA regulatory
network theory, future integration of multi-omics technologies with
network pharmacology approaches may provide novel targeted
therapeutic strategies for personalized antiplatelet therapy.

2.4 RNAmodifications and aspirin resistance

Emerging evidence suggests that m6A RNA methylation
may regulate key genes in platelet activation pathways

TABLE 2 (Continued) Research synthesis: regulatory roles of non-coding RNAs and RNA Modifications in clopidogrel resistance and platelet reactivity.

Non-coding RNAs Study
population

Drugs Platelet function
testing and
definition of
resistance

Potential
targets

Findings/
Conclusions

Ref.

N6-methyladenosine IS Patients (n = 10) Clopidogrel Automated Platelet
Aggregation Analyzer (PL-
12); Platelet aggregation
inhibition rate <30%

CYP2C19 METTL3-mediated
CYP2C19 mRNA methylation
is associated with clopidogrel
resistance

Tan et al.
(2024)

TABLE 3 Summary of studies on non-coding RNAs in ticagrelor resistance.

Non-coding
RNAs

Study
population

Drugs Platelet function testing and definition
of resistance

Potential
targets

Ref.

miR-126-3p ACS patients (n = 129) Ticagrelor +
Aspirin

TEG; Platelet reactivity at extremely high levels PI3K-Akt pathway Wang (2022)

circFAM13B ACS patients (n = 272) Ticagrelor TEG; ADP% < 76% miR-126 Zou et al.
(2024)

FIGURE 1
Mechanism of Action of Antiplatelet Drgs and Known miRNAs Regulating the Effects of Antiplatelet Drugs (such as Aspirin, Clopidogrel, Prasugrel,
Ticagrelor) on Platelet Aggregation, Activation, and Hyperreactivity Through Multiple Signaling Pathways.
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(e.g., PIK3R5, PLCG2) through post-transcriptional modifications,
including mRNA stability, splicing efficiency, and translational
dynamics, thereby modulating platelet activation thresholds and
aggregation capacity (Xu et al., 2021). Furthermore, studies indicate
that alterations in m6A methylation can influence platelet function
and subsequently affect aspirin responsiveness in elderly patients
(Zhang et al., 2023). Such methylation modifications may contribute
to interindividual variability in drug response among aging
populations, ultimately impacting aspirin’s therapeutic efficacy.
Currently, no direct evidence supports associations between other
RNA modifications (e.g., m5C, ac4C, Ψ) and platelet function.
Although research on RNA methylation remains limited, further
investigation in this field may provide novel mechanistic insights
into platelet regulation and facilitate the development of
personalized antiplatelet therapies.

3 Non-coding RNAs and clopidogrel
resistance

Clopidogrel is a commonly used antiplatelet drug for
cardiovascular and cerebrovascular diseases, known for its high
safety and effectiveness. It significantly reduces the risk of
cardiovascular and cerebrovascular events and plays an important
role in prevention and treatment (Gimbel et al., 2020; Valgimigli
et al., 2024; Chen et al., 2024). However, approximately 30%–45% of
patients may develop clopidogrel resistance (Fiolaki et al., 2017; Ray,
2014). Clopidogrel resistance remains an important challenge in

clinical treatment, particularly closely related to individual
differences in platelet reactivity. The mechanisms of clopidogrel
resistance are complex, involving genetic factors, drug interactions,
clinical factors, and other aspects (Pereira et al., 2019; Nguyen et al.,
2005). In recent years, significant progress has been made in
research on the role of non-coding RNAs in the response to
clopidogrel antiplatelet therapy (Table 2). Increasing evidence
suggests that changes in the expression of non-coding RNAs
during clopidogrel treatment have a profound impact on
resistance, making it a key focus of research on this issue.

3.1 miRNA and clopidogrel resistance

3.1.1 miR-223 and clopidogrel resistance
Studies have shown that in patients with non-diabetic coronary

heart disease and non-ST elevation acute coronary syndrome
(NSTE-ACS), miR-223 plays an important role in regulating
platelet function by targeting key signaling pathways downstream
of the adenosine diphosphate (ADP) receptor (P2Y12), and it can
serve as a potential biomarker for predicting clopidogrel resistance
(Shi et al., 2013). Meta-analysis further supports this view, revealing
that lower plasma levels of miR-223 are independently associated
with clopidogrel resistance in Chinese ACS patients (Cheng et al.,
2023). In a study on the GAS5 single nucleotide polymorphism
(SNP) rs55829688, GAS5 was found to act as a competitive
endogenous RNA for miR-223-3p, regulating the expression of
the P2Y12 receptor, which in turn affects the response of

FIGURE 2
ThemiRNA spongemechanism and interactions of non coding RNAs, particularly lncRNAs and circRNAs, associated with antiplatelet resistance and
platelet response.
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coronary heart disease patients with poor metabolic genotypes of
CYP2C19 to clopidogrel. This mechanism highlights the potential
role of GAS5 in antiplatelet therapy, particularly in regulating
clopidogrel response (Liu et al., 2021). Additionally, research has
found that miR-223 and miR-21 are associated with clopidogrel
resistance, especially in coronary heart disease patients undergoing
percutaneous coronary intervention (PCI) (Guo et al., 2020). In
summary, miR-223 may serve as a potential biomarker for
predicting clopidogrel resistance, helping doctors make early
predictions during treatment.

3.1.2 The role of other miRNAs in clopidogrel
resistance

In addition to miR-223, several other miRNAs have been
implicated in clopidogrel resistance, such as miR-142-3p, miR-
24-3p, and miR-411-3p, may play a role in the mechanism of
clopidogrel resistance in CAD patients by regulating genes
associated with platelet activation (Lin et al., 2021). In CAD
patients, miR-199a-5p can inhibit the expression of vasodilator-
stimulated phosphoprotein (VASP), and its decreased levels are
significantly associated with increased platelet reactivity after

FIGURE 3
Possible targets and drug adjustment strategies for antiplatelet drug resistance.
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clopidogrel treatment (Hu et al., 2023). This finding suggests that
miR-199a-5p may play an important regulatory role in antiplatelet
therapy for CAD. Studies have also found that miR-107 is involved
in the mechanism of clopidogrel resistance after percutaneous
coronary intervention PCI by regulating the expression of the
P2Y12 receptor (Zhang et al., 2022). The findings underscore the
intricate involvement of miRNAs in clopidogrel resistance, which is
central to the challenge of individualizing treatment in
CAD patients.

3.1.3 miRNA as potential biomarkers for
cardiovascular events

Additional research has explored the role of miRNAs as
biomarkers for predicting clopidogrel resistance and major
cardiovascular events. Changes in plasma miRNAs, such as miR-
142, have been proposed as potential biomarkers for predicting major
adverse cardiovascular events, especially in patients receiving dual
antiplatelet therapy (Tang et al., 2019). Several studies have shown
that the expression of miR-26a is related to platelet hyperreactivity,
and upregulation of miR-26a is associated with clopidogrel resistance
after coronary artery stent implantation (Giantini et al., 2022; Chen
et al., 2016). Furthermore, the functional genetic polymorphism
rs4636297 of platelet-derived miR-126 may affect the response and
efficacy of clopidogrel antiplatelet therapy in ACS patients and is
associated with major ischemic events within 1 year (Zhou et al.,
2021). miR-223 and miR-126 have been identified as potential
predictors of clopidogrel resistance in ST-segment elevation
myocardial infarction (STEMI) patients undergoing dual
antiplatelet therapy (Li et al., 2021). Other studies have also
suggested that platelet-derived miR-223, miR-126, and miR-150
may play an important role in regulating the differential response
of ACS patients to clopidogrel antiplatelet therapy (Liu et al., 2020).
These findings further underscore the essential role of miRNAs in
clopidogrel resistance mechanisms.

3.1.4 Interaction between miRNA and functional
genotype in clopidogrel efficacy

The interaction between miRNAs and genetic polymorphisms,
particularly the CYP2C19 genotype, provides new insights into
understanding the individual differences in clopidogrel response.
Current studies indicate that patients carrying mutations in the
CYP2C19 gene (such as CYP2C19*2) generally show poor responses
to clopidogrel (Pereira et al., 2019; Lee et al., 2022). Specifically, the
mirSNP rs4244285, which encodes hsa-miR-1343-3p and hsa-miR-
6783-3p, regulates the expression of the CYP2C19 gene, thereby
influencing clopidogrel drug response, with the potential to serve as
a predictive biomarker, particularly in the Indian population
(Sharma et al., 2020). In addition, in ACS patients, miR-223,
miR-221, and miR-21 may enhance platelet activation, and in
combination with the CYP2C19 genotype, they jointly affect
clopidogrel resistance (Peng et al., 2017). Similarly, the miR-605
rs2043556 polymorphism has also attracted attention for its effect
on clopidogrel efficacy. miR-605 regulates the expression of the
CYP2B6 and P2RY12 genes, affecting the antiplatelet effect of
clopidogrel and may serve as a potential biomarker for predicting
the risk of cardiovascular events in patients on long-term clopidogrel
therapy (Zhou WL. et al., 2020). These studies highlight the
interaction between miRNAs and functional genotype.

3.2 CircRNA and lncRNA in clopidogrel
resistance

Studies have shown that circRNAs and lncRNAs play an important
role in clopidogrel resistance. For example, hsa_circ_0076957 andmiR-
4512 jointly regulate the expression of the COL19A1 gene, which may
affect platelet reactivity and clopidogrel efficacy (Xu et al., 2025). In
CAD patients, differential expression of lncRNAs in clopidogrel
resistance reveals new molecular mechanisms. Although the specific
mechanisms are still under investigation, certain lncRNAs, such as the
upregulation of NONHSAT083775.2 andNONHSAT107804.2 and the
downregulation of NONHSAT133455.2, are believed to be associated
with clopidogrel resistance (Xie et al., 2019). Additionally, studies have
found that the lncRNA metallothionein pseudogene 1 (MT1P)
upregulates miR-126 through a sponge effect, thereby promoting the
expression of P2Y12, which may lead to excessive platelet activation
(Zhou et al., 2019). These non-coding RNAs contribute to the
development of resistance by regulating platelet function and
signaling pathways associated with clopidogrel response.

3.3 RNA modifications and clopidogrel
resistance

m6A methylation is considered to play a crucial role in
clopidogrel resistance. Studies targeting CAD patients have
revealed m6A transcriptomic features associated with clopidogrel
resistance (Yu et al., 2023). Additionally, in ischemic stroke (IS)
patients and clopidogrel-resistant animal models, the m6A
methyltransferase METTL3 may exacerbate clopidogrel resistance
by regulating the methylation of CYP2C19 mRNA (Tan et al., 2024).
This finding suggests that epigenetic regulatory mechanisms such as
RNA modifications may play a key role in the individual differences
in clopidogrel efficacy.

In conclusion, the key roles of non-coding RNAs and RNA
modifications in clopidogrel responses provide new research
perspectives for a deeper understanding of the molecular
mechanisms underlying clopidogrel resistance. These findings not
only contribute to advancing the knowledge of clopidogrel resistance
mechanisms but also offer important biomarker support for the
individualized treatment and clinical management of clopidogrel
therapy, thereby providing a solid theoretical foundation for
developing more precise therapeutic strategies.

4 Non-coding RNAs and ticagrelor
tesistance

Ticagrelor is a rapidly absorbed and reversible P2Y12 receptor
antagonist, widely used in the treatment of cardiovascular diseases
due to its potent antiplatelet effects (Kabil et al., 2022). Ticagrelor is
generally considered an effective alternative for patients who do not
respond to clopidogrel. Research on ticagrelor shows that for
patients with acute coronary syndrome, switching to ticagrelor
monotherapy after 3 months of dual antiplatelet therapy
significantly reduces the composite risk of major bleeding and
cardiovascular events year than 12 months of dual antiplatelet
therapy (Kim et al., 2020). However, although ticagrelor
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resistance is rare, it still occurs in some patients. In a case report, the
VerifyNow analyzer detected a lack of response to clopidogrel in a
patient, and although the treatment was switched to ticagrelor,
platelet inhibition remained suboptimal, leading to adverse events
(Kuhn et al., 2024). Another study explored the existence of
ticagrelor resistance and proposed management strategies for
patients with ticagrelor resistance (Laurent et al., 2022).
Currently, research on the role of non-coding RNAs in ticagrelor
resistance is limited.

4.1 miRNA and ticagrelor resistance

Studies have found that ticagrelor shows more significant
efficacy in CAD patients receiving different antiplatelet treatment
regimens, and the expression level of miR-365-3p is associated with
the response to antiplatelet therapy (Chen et al., 2019). In
experimental models, researchers constructed a ticagrelor-
resistant platelet inhibition transfection model using the MEG-01
cell line and verified the effect of miR-126-3p on ticagrelor activation
inhibition. They demonstrated that miR-126-3p affects ticagrelor’s
antiplatelet reactivity by regulating the PI3K-Akt pathway (Wang,
2022). This finding provides newmolecular clues for the mechanism
of ticagrelor resistance and lays the theoretical foundation for future
personalized treatment strategies for drug efficacy.

4.2 CircRNA and ticagrelor resistance

Studies have shown that platelet-derived circFAM13B is
upregulated in patients with high platelet reactivity (HTPR) and
is unrelated to traditional clinical risk factors. It can predict
adverse ischemic events in ACS patients after ticagrelor
treatment. Bioinformatics analysis suggests that circFAM13B
may bind to miR-126, indicating its potential involvement in
mechanistic exploration in future studies (Zou et al., 2024).
Furthermore, researchers analyzed the global transcriptional
effects of ticagrelor on platelets, which helps identify patients
who may be adversely affected by ticagrelor treatment, potentially
preventing the occurrence of the first arterial thrombotic
events (Myers et al., 2024). These findings highlight the
importance of circFAM13B as a potential biomarker in ticagrelor
resistance, particularly in predicting treatment response and
preventing adverse thrombotic events.

Although current research on the role of non-coding RNAs in
ticagrelor resistance is limited, with no reports on non-coding RNA
fields such as lncRNAs (Table 3), considering the significant effect of
ticagrelor in reducing cardiovascular event risk, future studies on its
resistance are expected to further optimize clinical applications.

5 Non-coding RNAs and prasugrel
resistance

Prasugrel, as another P2Y12 antagonist, has shown similar
cardiovascular adverse event rates and bleeding risks compared
to ticagrelor in clinical studies (Bundhun et al., 2017). Further
research indicates that patients treated with prasugrel exhibit

similarities in the levels of various platelet-associated miRNAs
and monocyte-platelet aggregate indicators when compared to
patients treated with ticagrelor (Stojkovic et al., 2021). In patients
receiving increased doses of aspirin and prasugrel, antiplatelet
therapy significantly reduced the levels of circulating platelet-
derived miRNAs (Willeit et al., 2013). A study on type 2 diabetic
patients treated with aspirin, clopidogrel, and prasugrel
monotherapy showed that prasugrel effectively suppressed
platelet activity and lowered the levels of multiple platelet-
associated miRNAs (Parker et al., 2020). These findings suggest
that prasugrel may enhance its antiplatelet effect by regulating
miRNA levels. In the future, non-coding RNA research based on
miRNAs will provide new insights into the exploration of prasugrel
resistance mechanisms and promote further development in
this field.

6 The prospect of noncoding RNA in
antiplatelet drug resistance

Aspirin and clopidogrel are widely used in the prevention and
treatment of cardiovascular and cerebrovascular diseases and have
become the core focus of antiplatelet resistance research. Existing
studies suggest that non-coding RNAs play a key role in the
resistance mechanisms of these two drugs, particularly the
influence of platelet-related miRNAs in the formation of drug
resistance. Figure 1 illustrates the mechanisms of action of
antiplatelet drugs and how miRNAs regulate drug efficacy
through multiple signaling pathways. However, research on the
relationship between non-coding RNAs and other antiplatelet
drugs (such as ticagrelor, prasugrel, etc.) in resistance is still
relatively scarce, and some drugs lack related research reports.

In addition, the role of other non-coding RNAs, such as lncRNA
and circRNA, in antiplatelet drug resistance is also receiving
increasing attention. Figure 2 further demonstrates how lncRNAs
and circRNAs regulate resistance through the sponge mechanism
and the known mechanisms of non-coding RNAs and RNA
modifications associated with drug resistance. With the
expanding application of RNA-based therapies, future research
should delve deeper into the role of non-coding RNAs and RNA
modificationmechanisms in antiplatelet drug resistance, providing a
more accurate theoretical foundation and new perspectives for
personalized treatment.

7 Discussion

This review summarizes the biological relationship between
non-coding RNAs and resistance to different antiplatelet drugs,
with a focus on analyzing the potential mechanisms of action of
different types of non-coding RNAs in antiplatelet drug resistance.
Currently, as an important component of epigenetics, the study of
non-coding RNAs in antiplatelet drug resistance is still in its early
stages, but their crucial regulatory roles have been preliminarily
confirmed, especially for miRNAs.

Current research reveals the significant role of non-coding
RNAs in the mechanisms of aspirin resistance, particularly the
potential regulatory mechanisms of molecules such as miRNAs,
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lncRNAs, and circRNAs in platelet function and aspirin response.
The expression changes of miRNAs such as miR-19b-1-5p, miR-
92a, and miR-34b-3p are closely related to aspirin resistance,
offering new biomarkers that could aid in early diagnosis and
personalized treatment. Furthermore, lncRNAs such as H19 play
a role in platelet reactivity and aspirin response, further supporting
the potential of non-coding RNAs as predictive tools for resistance.
Although research on circRNAs in aspirin resistance is still limited,
their unique function in gene regulation makes them a promising
area for future research. At the same time, RNA modifications,
especially m6A methylation, are also considered key factors
influencing platelet function and aspirin efficacy, potentially
exhibiting different drug responses, particularly in elderly
patients. By considering the interplay between non-coding RNAs
and RNA modifications, future studies could provide more precise
strategies for personalized treatment.

The significance of non-coding RNAs in the mechanisms of
clopidogrel resistance is also highly important. The role of miRNAs
in regulating clopidogrel resistance in patients with CAD is an
important area of research. In addition to miR-223, several other
miRNAs, such as miR-142-3p, miR-24-3p, miR-411-3p, miR-199a-
5p, and miR-107, are involved, providing new insights into the
molecular mechanisms driving resistance to antiplatelet therapy.
Furthermore, the interaction between miRNAs and genetic factors,
particularly the CYP2C19 genotype, highlights the complexity of
individual differences in clopidogrel response. In addition,
circRNAs and lncRNAs regulate platelet function and key
signaling pathways, offering new insights into the molecular
mechanisms driving resistance. RNA modifications, especially
m6A methylation, add another layer of complexity by influencing
gene expression and further affecting therapeutic outcomes. As we
move towards personalized medicine, non-coding RNAs provide a
promising tool to predict which patients will have a poor response to
clopidogrel treatment. Their potential as biomarkers to identify
high-risk individuals could enable healthcare providers to more
effectively tailor antiplatelet therapy, thereby reducing the risk of
major adverse cardiovascular events. Integrating non-coding
RNA analysis into clinical practice could help identify patients
who require alternative or additional treatments, ultimately
improving the overall management of cardiovascular and
cerebrovascular diseases.

For ticagrelor, despite its proven efficacy in treating
cardiovascular diseases, some patients may still develop
resistance. Research indicates that non-coding RNAs, such as
miR-126-3p and circFAM13B, may serve as potential biomarkers
for predicting ticagrelor resistance and associated adverse ischemic
events. Although the exact mechanisms of non-coding RNAs in
ticagrelor resistance are still not fully understood, their potential in
personalized treatment strategies is evident. Furthermore, prasugrel
also enhances its antiplatelet effect by regulating miRNA levels,
further confirming the crucial role of non-coding RNAs in
modulating drug efficacy. In-depth investigation of these
molecular mechanisms could provide new insights for optimizing
clinical strategies and improving patient treatment responses
and outcomes.

Although aspirin and clopidogrel remain cornerstone therapies
for cardiovascular and cerebrovascular disease prevention, their
drug resistance issues and potential adverse effects warrant

significant clinical attention. From a pharmacoeconomic
perspective, while clopidogrel demonstrates cost-effectiveness
advantages and remains the most widely prescribed antiplatelet
agent (van den Broek et al., 2022; Morris et al., 2022), substantial
evidence indicates that ticagrelor shows superior efficacy in reducing
composite endpoints of cardiovascular death, myocardial infarction,
or stroke compared to clopidogrel (Wallentin et al., 2009), whereas
prasugrel significantly decreases ischemic events (Wiviott et al.,
2007; Ruff et al., 2012). Comprehensive analysis of clinical data
reveals that both prasugrel and ticagrelor exhibit markedly better
therapeutic outcomes than clopidogrel (Kumar et al., 2023; Orban
et al., 2021; Schnorbus et al., 2020). Notably, for NSTE-ACS patients
aged ≥70 years, clopidogrel remains the safer option due to its
reduced bleeding risk (Gimbel et al., 2020). For clopidogrel non-
responders, we recommend non-coding RNA profiling (e.g., miR-
223) to guide clinical decisions, with ticagrelor or prasugrel serving
as preferred alternatives given their efficacy advantages and lower
resistance rates. Studies indicate that patients exhibiting miRNA-26a
upregulation should consider switching to ticagrelor or prasugrel
(Giantini et al., 2022). From a translational medicine perspective,
future development should focus on targeted therapies modulating
ncRNA networks (e.g., the miR-223-P2Y12 signaling axis) to
precisely regulate platelet activation pathways and improve
clinical outcomes. Regarding aspirin, while this low-cost
conventional drug remains first-line therapy for cerebrovascular
diseases, meta-analyses demonstrate that cilostazol offers multiple
advantages in secondary stroke prevention: reduced composite
vascular events, lower bleeding incidence (Dinicolantonio et al.,
2013), and significantly better efficacy in preventing post-stroke
vascular events (Kamal et al., 2011). Particularly, its combination
with clopidogrel further decreases recurrent ischemic stroke risk
(Hoshino et al., 2021). Therefore, for patients with aspirin treatment
failure, in addition to considering switching to cilostazol, novel
therapeutic strategies targeting pathways such as the H19/8-iso-
PGF2α axis could be developed.

Although the association between non-coding RNAs and
antiplatelet drug resistance has been confirmed by multiple
studies, current evidence still exhibits significant limitations:
Firstly, as shown in our article’s tables, most studies suffer from
inadequate sample sizes and lack multicenter validation; secondly,
circRNA-related research remains in its preliminary stages,
requiring large-scale cohort studies to verify its clinical
translational value; furthermore, miRNA expression profiles
reported by different research teams demonstrate marked
heterogeneity, which may stem from sample integrity and
degradation issues during processing or be closely related to
selection biases in library preparation methods (Ludwig et al.,
2018; Lopez et al., 2015; Loudig et al., 2025). While epigenetic
biomarkers show promising predictive potential, the sensitivity of
current detection technologies still fails to meet clinical application
requirements (Pirritano et al., 2018). Pharmacoeconomic
evaluations indicate that personalized dosing strategies based on
CYP2C19 genotypes offer significant cost-effectiveness advantages
(Carroll et al., 2024), whereas the high costs associated with high-
throughput sequencing technologies underscore the need for future
research to focus on developing more economically viable detection
platforms. Future studies should establish a clinical translation
pathway for ncRNA research findings by: 1) implementing a
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three-tier detection system (CYP2C19 initial screening → ncRNA
rapid panel secondary screening → sequencing confirmation); 2)
developing CRISPR-Cas13a-based POCT devices; and 3)
formulating biomarker-guided treatment decision matrices (e.g.,
switching to ticagrelor for patients with high miR-223 expression).

Currently, bioinformatics tools, such as miRBase, MiRNA-BD,
and CRAFT databases, can help gain a deeper understanding of the
specific roles of non-coding RNAs in antiplatelet drug resistance and
assist in predicting target genes (Kozomara et al., 2019; Lin et al.,
2018; Dal Molin et al., 2022). However, the application of existing
databases also presents significant limitations: many microRNA
entries may lack precise tissue-specific origin or expression
information, which could lead to misinterpretations in disease
diagnosis or gene regulation studies (Singh, 2017; de Amo et al.,
2022). In the past, there has been considerable genetic research on
antiplatelet drug resistance, with some findings already applied in
clinical practice (Pereira et al., 2019; Carroll et al., 2024; Feher et al.,
2009). However, some patients continue to exhibit resistance.
Additionally, the field of epigenetics, such as non-coding RNAs
and DNA methylation, is also associated with antiplatelet drug
resistance (Yang et al., 2020; Li et al., 2017). Therefore, future
research urgently needs to address three key challenges: first,
establishing standardized ncRNA detection protocols to resolve
inter-laboratory reproducibility issues; second, enhancing the
reliability of findings by expanding sample sizes and conducting
multicenter collaborative studies; and third, developing integrated
multi-omics prediction models that incorporate genomic,
epigenomic, and clinical indicators. Figure 3 illustrates the
potential targets of antiplatelet drug resistance and the strategies
for drug modulation.

In conclusion, non-coding RNAs play a crucial role in the study of
antiplatelet drug resistance, and the importance of RNA modifications
in gene expression regulation cannot be overlooked. Future research
should place greater emphasis on epigenetics, particularly exploring the
potential of non-coding RNAs as biomarkers and therapeutic targets.
Precision antiplatelet drugs offer new hope for resistance management
and personalized treatment, while resistance testing based on the
integration of epigenetic and genetic markers will be a key focus of
future research.
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