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Purpose: The protein kinase Mitogen-Activated Protein Kinase-Activated Protein
Kinase 2 (MK2) is linked to higher risks of metastasis and mortality in some
cancers. Nonetheless, its precise function in lung adenocarcinoma (LUAD)
remains unclear. This study aims to explore MK2’s function in LUAD cells and
identify the underlying molecular mechanisms.
Methods: MK2 expression in LUAD patients was confirmed through
Timer2.0 database and tissue microarrays. Immunohistochemical staining for
MK2 was performed on LUAD samples to investigate its association with
metastasis and invasion. The activity of MK2 was inhibited in LUAD cell lines
A549 and H358 using a specific MK2 inhibitor. Subsequently, cell viability,
migration, and invasion were assessed. Gene expression changes were
confirmed through Western blotting. Additionally, an AKT activator was used
to validate the role of the MK2-regulated AKT/MYC signaling pathway.
Results: MK2 expression is significantly higher in LUAD tissues compared to
adjacent normal tissues. Reducing MK2 activity not only curtails cell proliferation,
migration, and EMT-related invasion in vitro but also disrupts the AKT/MYC
signaling axis. Activation of the AKT/MYC pathway can counteract the
inhibitory effects of MK2 suppression.
Conclusion: Our findings suggest that MK2 promotes migration and invasion in
LUAD through the AKT/MYC signaling pathways, positioning MK2 as a potential
therapeutic target in LUAD treatment.
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1 Introduction

Lung cancer is the leading cause of cancer-related morbidity and mortality worldwide
(Sung et al., 2021). Within this category, non-small cell lung cancer (NSCLC) comprises
85% of all lung cancer cases, standing as the predominant form (Miller et al., 2022). Among
NSCLC cases, lung adenocarcinoma (LUAD) emerges as the primary histological variant,
representing approximately 40% of all malignant lung tumors (Chen et al., 2014). The
clinical management of LUAD faces significant challenges due to frequent late-stage
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diagnosis, which correlates with unfavorable prognosis and elevated
mortality rates. The epithelial-mesenchymal transition (EMT), a
fundamental biological process characterized by the transformation
of polarized epithelial cells into motile mesenchymal phenotypes,
has been extensively implicated in tumor progression and metastatic
dissemination (Behrooz et al., 2024; Coelho-Rato et al., 2024).
Emerging evidence demonstrates that EMT activation not only
facilitates tumor cell migration and tissue invasion but also
critically influences cancer mortality through its role in
therapeutic resistance and distant metastasis formation (Nie et
al., 2025; Langley and Fidler, 2007). While molecular targeted
therapies have revolutionized NSCLC treatment, substantial
clinical limitations persist. Approximately 60%–70% of LUAD
patients exhibit either non-targetable genetic profiles or develop
acquired resistance to existing therapies (Hirsch et al., 2017; Le et al.,
2018). This therapeutic impasse underscores the urgent need to
elucidate the molecular underpinnings of LUAD metastasis,
particularly EMT-mediated pathways. Our study focuses on
identifying novel therapeutic targets within EMT regulatory
networks, aiming to develop precision interventions that may
simultaneously inhibit metastatic progression and improve long-
term survival outcomes in LUAD patients.

Mitogen-activated protein kinase-activated protein kinase 2
(MK2), a serine/threonine protein kinase, acts as a downstream
component of the p38 MAPK signaling pathway. This pathway is
activated by environmental stress and plays a crucial role in
promoting cell migration, motility, and metastasis. MK2-
mediated phosphorylation events have been shown to orchestrate
tumor invasiveness, with recent studies demonstrating that
SUMOylation-dependent MK2/p38α interactions drive metastatic
progression in gastric adenocarcinoma models (Wang et al., 2021).
Clinical translational studies reveal the therapeutic implications of
this pathway: GAGE7B-induced activation of the pMAPKAPK2/
pHSP27 axis correlates with advanced disease progression and
reduced 5-year survival rates in gastrointestinal malignancies
(Henriques et al., 2018; Shi et al., 2019). Preclinical validation
further supports MK2’s oncogenic role, as shRNA-mediated
MK2 silencing suppresses multiple myeloma cell proliferation
and induces caspase-3-dependent apoptosist (Gu et al., 2021).
However, the role of MK2 in LUAD cell migration, motility, and
proliferation remains unclear, and further investigation is needed.

The PI3K/AKT/mTOR signaling axis is a central driver of
oncogenesis, exhibiting frequent activation across diverse
malignancies through genetic alterations such as PTEN loss, AKT
amplification, and receptor tyrosine kinase hyperactivation (Yu
et al., 2022). This pathway critically sustains tumor cell
proliferation and survival by dual regulatory mechanisms:
suppressing pro-apoptotic factors through phosphorylation-
dependent inactivation while concurrently enhancing anti-
apoptotic effector expression (Tao et al., 2017). Beyond its role in
cell survival, AKT signaling orchestrates metastatic progression by
inducing EMT via transcriptional activation of key regulators
including Twist1 and Snail, which collectively promote cadherin
switching and extracellular matrix remodeling to facilitate tumor cell
dissemination (Gao et al., 2024; Ma et al., 2024; Chen et al., 2021).
The proto-oncogene MYC, overexpressed in many types of cancers,
functions as a master coordinator of malignant transformation.
MYC accelerates cell cycle progression through cyclin D/E

upregulation and proliferation and invasion (Dang et al., 2006;
Zhao et al., 2021; Zhu et al., 2022; Meskyte et al., 2020).
Emerging evidence underscores intricate crosstalk between AKT
and MYC, wherein AKT activates MYC through a variety of
downstream mechanisms, such as directly or indirectly
promoting MYC transcription and translation through the PI3K/
AKT/mTOR pathway (Cao et al., 2022; Cai et al., 2021; Xu et al.,
2019). Clinically, this AKT/MYC signaling nexus has been
implicated in aggressive metastatic behaviors across multiple
cancer types, including bladder carcinoma, nasopharyngeal
cancer, lung cancer and breast cancer, where its activation
correlates with advanced disease stages and reduced survival
outcomes (Wei et al., 2019; Su et al., 2024; Sun et al., 2023b).
Recent preclinical studies have indicated that the MK2-regulated
AKT/MYC signaling pathway enhances tumor metastasis (Deng
et al., 2018). However, the functional role of MK2 within the
molecular landscape of lung adenocarcinoma (LUAD) remains
poorly characterized, particularly regarding its capacity to
regulate metastatic processes through AKT/MYC pathway
interactions. Our study therefore focuses on examining the
impact of MK2 on LUAD cell migration and invasion, and aims
to define the contribution of the AKT/MYC pathway inMK2-driven
tumor metastasis.

2 Materials and methods

2.1 Public database analysis

The expression profile of the target molecule, MK2, in LUAD
was derived from online analysis using immune infiltration data for
various cancer types (pan-cancer) sourced from the TIMER
2.0 database [http://timer.compgenomics.org/].

Additionally, survival analysis was conducted using the Kaplan-
Meier method [https://kmplot.com/analysis/] on patient data
extracted from the Kaplan-Meier plotter database for LUAD.
Patients were classified according to the expression level of
MK2 in their tumors, with the median value using the median
value as a threshold to separate those with high expression from
those with low expression.

2.2 Tissue microarray and
immunohistochemistry

Shanghai Zhuoli Biotechnology Co., Ltd. provided LUAD tissue
chip (ZL-LugA961), comprising 48 pairs of tumor tissue and
adjacent non-tumor tissue samples. However, after analysis, only
47 pairs had sufficient data for immunohistochemistry (IHC)
analysis, as one pair failed to exhibit adequate staining or could
not be scored. Therefore, the final number of analyzable samples was
47. Microarrays underwent pretreatment with bovine serum
albumin (BSA, Elabscience Biotechnology Co.,Ltd., China, Cat.
No. E-IR-R107, validated for IHC use) before being incubated
overnight at 4 °C with MK2 antibody from Proteintech (Cat. No.
13949-1-AP, validated for IHC, diluted 1:200). The following day,
further incubation was conducted with HRP-labeled secondary
antibodies. Visualization was achieved using DAB (ZSGB-BIO,
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Cat. No. ZLI-9017), followed by hematoxylin counterstaining
(Beyotime, Cat. No. C0107), and images were captured utilizing a
microscope. Finally, Visiopharm software facilitated quantitative
analysis of staining intensity. The HDAB-DAB filter was used to
segment regions of interest (ROIs) based on staining intensity.
Intensity categories are as follows: 0–75 (strong), 76–120
(moderate), 121–160 (weak), and 161–212 (negative). The
staining area is measured in square micrometers (μm2). Staining
intensity was measured using the H-Score (H-SCORE = ∑(pi × i)),
calculated by summing the products of the percentages of positively
stained cells at each intensity level and their respective intensity
levels (H-SCORE =∑ (pi × i)). Staining intensities are categorized as
weak (1), medium (2), or strong (3).

2.3 Hematoxylin-eosin staining

Tissue samples were fixed in 10% formalin, dehydrated through
graded ethanol, embedded in paraffin, and sectioned at 4 µm
thickness. Sections were stained with hematoxylin and eosin
(H&E) to evaluate histological morphology under a light
microscope, facilitating the assessment of structural and
pathological features.

2.4 Patient-derived lung adenocarcinoma
organoid culture and identification

Clinical specimens were collected from LUAD patients,
cryopreserved, and promptly processed for digestion. The
primary tumor cells obtained were embedded in Matrigel
(bioGenous Biotechnology Co. Ltd, China, Cat. No. M315066,
validated for organoid culture) for three-dimensional culture,
with media changes every 2–3 days. Once the organoids reached
an appropriate size, they were passaged and collected. The organoids
were then fixed in 4% paraformaldehyde, embedded in paraffin
blocks, and prepared for subsequent sectioning and
experimentation. Detailed culture steps were performed as
previously described (Kim et al., 2019). All culture reagents were
sourced from bioGenous Biotechnology Co., Ltd. (Suzhou, China),
and are certified for clinical and research use with quality validation
provided by the manufacturer.

2.5 Cell cultivation and handling

The H358 and A549 LUAD cell lines were procured from the
Cell Bank of the Chinese Academy of Sciences (Shanghai, China).
These cells were maintained in RPMI 1640 medium (Solarbio,
China) supplemented with 10% FBS. Culturing was performed at
37 °C under a humidified atmosphere containing 5% CO2. To assess
MK2’s function, cells in the inhibitor group were treated with a
specific MK2 inhibitor (Huang et al., 2011; Zhang et al., 2021).
The MK2 inhibitor used in this study, MK2-IN-1 (MCE, Cat.No.
HY-12834; CAS No. 1314118–92–7; molecular formula:
C27H25ClN4O2), is a potent, non-ATP-competitive inhibitor
designed to achieve high selectivity for MK2. For all experiments,
MK2-IN-1 was dissolved in PBS, and cells in the MK2 inhibitor

treatment groups were exposed to 20 μMMK2-IN-1 for 24 h prior to
subsequent assays. The control group received no treatment.
Subsequently, cells pre-treated with the MK2 inhibitor for
approximately 6 h were exposed to the AKT/MYC pathway
activator SC79 (20 μg/mL) in follow-up experiments to research
the function of the AKT/MYC signaling pathway.

2.6 Western blotting

Cell lysis solution was made using RIPA buffer (Beyotime, China,
Cat. No. P0013B) supplemented with protease and phosphatase
inhibitors (Beyotime, Cat. No. P1045 and P1081). Proteins were
isolated using SDS-PAGE (8%–15%) and transferred onto PVDF
membranes (Millipore, Cat. No. IPVH00010). These membranes
were blocked with 5% skim milk for a minimum of 1 hour.
Primary antibodies for MYC (Proteintech, Cat. No. 10828-1-AP, 1:
1000), GAPDH (Proteintech, Cat. No. 60004-1-Ig, 1:50,000), AKT
(Proteintech,Cat. No. 10176-2-AP, 1:2000), P-AKT (Ser-473)
(HUABIO, Cat. No. ET1607-73, 1:1000), E-Cadherin (Proteintech,
Cat. No. 60335-1-Ig, 1:2000), Vimentin (Proteintech, Cat. No.
60330-1-Ig, 1:20,000), N-Cadherin (Abcolonal, Cat. No. A0433, 1:
500), and MMP2(Proteintech, Cat. No. 66366-1-Ig, 1:1000) were
incubated at 4 °C overnight. After three washes with PBST, the
HRP-labelled secondary antibody was incubated for 1 hour. After
that, protein detection was performed using an ultra-high sensitivity
ECL (GLPBIO, USA, Cat. No. GK10008).

2.7 RT-qPCR

Total RNA was extracted from cells using Eastep total RNA
extraction kit (Promega, Cat. No. LS1040) following the
manufacturer’s instructions, and RNA quality was assessed by
spectrophotometry. cDNA synthesis was performed with Superscript
III reverse transcriptase (Applied Biosystems) using 1 μg of RNA as the
template, under conditions specified by the manufacturer. Real-time
quantitative PCR (qPCR) was carried out using a PerfectStart® Green
qPCR Super Mix on a Roche with specific primers for target genes and
we quantified GAPDH mRNA levels as an internal quantity control.
Each reaction included 2 μL of cDNA template in a final reaction
volume of 20 μL. Cycling conditions included an initial denaturation
step, followed by 40 cycles of denaturation, annealing, and extension.
Specificity was confirmed with melt curve analysis. Relative gene
expression was calculated using the 2̂(-ΔΔCt) method, normalized to
GAPDH. Reactions were performed in triplicates, and results were
analyzed using GraphPad Prism to determine statistical significance. All
primers used for RT-qPCR were obtained from Sangon Biotech
(Shanghai, China). RT-qPCR products were then subjected to
electrophoresis. The primer sequences of target genes are listed
in Table 1.

2.8 Co-immunoprecipitation (CO-IP)

Cells were lysed in ice-cold IP lysis (Beyotime, China, Cat. No.
P0013) buffer containing protease inhibitors. The lysates were
incubated with specific antibodies against AKT (Proteintech, Cat.

Frontiers in Genetics frontiersin.org03

Qi et al. 10.3389/fgene.2025.1615018

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1615018


No. 10176-2-AP), followed by the addition of magnetic beads
(Protein A or G Magnetic Beads, BeaverBio™). After incubation
and washing, protein complexes were eluted and separated by SDS-
PAGE. Western blotting with anti-MK2 and anti-AKT antibodies
confirmed the interaction.

2.9 Annexin V-apc/7-AAD double staining

The organization referred to as “LUAD cells” typically denotes
lung adenocarcinoma cells. They were cultured in six-well plates
with a density of 100,000 cells per well for 24 h. Following a PBS
wash, the cells received MK2 inhibitor treatment for an additional
24 h. Subsequently, the cells were promptly fixed and stained in
accordance with the Annexin V-APC/7-AAD apoptosis kit protocol
(Elabscience, Cat. No. E-CK-A218, validated for flow cytometry),
with immediate flow cytometry analysis thereafter.

2.10 Cell migration assay

Wound healing assays were employed to evaluate cell migration
ability. Cells were seeded in six-well plates at a density of 4 × 105 cells
per well and permitted to grow overnight to establish a monolayer.
After making scratches using 200 µL pipette tips, they were washed
with PBS and incubated in RPMI 1640 medium with 1% FBS for
24 h.Wound closure was measured using a Leica DMI8 fluorescence
microscope at 0 and 24 h after wounding. All experiments were
performed in triplicate.

2.11 Invasion assay

We utilized Matrigel matrix provided by BD Biosciences (BD
Biosciences, USA) diluted at a ratio of 1:6 in serum-free RPMI
1640 medium, and stored it at 4 °C. After evenly spreading 100 μL of
the matrix solution onto the surface of the upper chamber, we
allowed it to dry for 1 h at 37 °C. Subsequently, cells were suspended
in serum-free medium at a concentration of 5 × 105cells/mL. Then,
we added 200 μL of the cell suspension to the upper chamber coated
with the matrix solution, while filling the lower chamber with RPMI
1640 medium containing 10% FBS. After 24 h, cells in the lower
chamber were fixed with 4% paraformaldehyde for 30 min and then

stained with 0.1% crystal violet for another 30 min. Following this,
the stained cells were counted using a Leica fluorescence inverted
microscope (DMI8). Each experiment was conducted in triplicate.

2.12 BrdU assay

Cells were treated with 10 μM EdU for 2 h, fixed, and
permeabilized. EdU incorporation was detected using EdU Cell
Proliferation Kit with Alexa Fluor 555(CX003,CellorLab), followed
by DAPI counterstaining. The percentage of EdU-positive cells was
quantified by fluorescence microscopy or flow cytometry.

2.13 Statistical analysis

All data were analyzed using GraphPad Prism 9. For
comparisons between two groups, unpaired Student’s t-tests were
used. For multiple group comparisons, one-way or two-way
ANOVA followed by Tukey’s post hoc test was applied. P
values <0.05 were considered statistically significant. All
quantitative data are presented as mean ± standard deviation
(SD). Each experiment was independently repeated at least three
times (n = 3). Error bars in bar graphs represent SD.

3 Results

3.1 MK2 is overexpressed in LUAD and is
associated with poor prognosis

Emerging evidence has established MK2 as a commonly
dysregulated signaling node in LUAD and multiple human
malignancies (Nguyen Ho-Bouldoires et al., 2015; Soni et al., 2019;
Jacenik et al., 2023). To systematically characterize its pathobiological
relevance, we performed multi-platform bioinformatics validation
using the TIMER 2.0 database. Bioinformatics analysis revealed
that MK2’s transcription levels are significantly higher in LUAD
tissues compared to adjacent non-tumor tissues, suggesting its
functional involvement in pulmonary carcinogenesis (Figure 1A).
To validate these findings at the protein level, we conducted IHC
analysis on 47 matched LUAD-normal tissue pairs using clinically
annotated tissue microarrays. Quantitative histoscore analysis

TABLE 1 Primer sequences for target genes.

Gene Primer sequences (5′to 3′,forward to reverse)

MMP2 Forward:5′-CACCAAGAACTTCCGTCTGTCC-3′
Reverse:5′-GTGCCAAGGTCAATGTCAGGAG-3′

Vimentin Forward:5′-GCAGGACTCGGTGGACTTCTC-3′
Reverse:5′-GTAGTTGGCGAAGCGGTCATTC-3′

E-Cadherin (CDH1) Forward:5′-TCTGCTGCTCTTGCTGTTTCTTC-3′
Reverse:5′-TCTTCTCCGCCTCCTTCTTCATC-3′

N-Cadherin (CDH2) Forward:5′-GACAGTTCCTGAGGGATCAAAGC-3′
Reverse:5′-TGGAGCCTGAGACACGATTCTG-3′

Snail2 Forward:5′-CCATGCCTGTCATACCACAACC-3′
Reverse:5′-TGGAATGGAGCAGCGGTAGTC-3′
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FIGURE 1
MK2 is Overexpressed in Lung Adenocarcinoma And is Associated With Poor Prognosis. (A) Transcriptomic profiling reveals elevated MK2 mRNA
levels in lung carcinoma versus normal tissues. (B) Immunohistochemistry images comparing MK2 staining in tumor versus adjacent tissues. (C)
Quantitative histopathology confirms tumor-specific MK2 overexpression via IHC-score quantification. (D) Bar graph comparing MK2 IHC scores
between different tumor stages, showing higher scores in stages III-IV. (E) Kaplan-Meier survival curve indicating the relationship between
MAPKAPK2 expression levels and survival probability, with higher expression associated with lower survival. In (C,D) panels, unpaired Student’s t-tests
were used. In the (E) panel, the statistical analysis was performed using the log-rank test. *P < 0.05, **P < 0.01.
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confirmed significant elevation of MK2 protein expression in tumor
tissues, with representative IHC staining shown in (Figure 1B–C).
Further stratification by tumor stage demonstrated markedly higher
MK2 expression in advanced-stage (III-IV) LUAD compared to early-
stage (I-II) disease (Figure 1D). Clinically, data from the Kaplan-
Meier Plotter database indicated a negative correlation between
elevated MK2 mRNA levels and overall survival rates in LUAD
patients, underscoring MK2’s prognostic significance (Figure 1E).

Collectively, these multi-omics concordant data demonstrate
MK2 overexpression at both transcriptional and translational
levels in LUAD, mechanistically implicating this kinase in disease

progression. The clinical correlation between MK2 overexpression
and adverse outcomes warrants functional investigation of its
therapeutic targeting potential.

3.2 MK2 inhibition decreases the
proliferation of LUAD cells

Previous research suggests that MK2-mediated phosphorylation
of RIPK1 decreases its affinity for FADD, thereby attenuating TNF-
α-induced apoptosis (Jaco et al., 2017; Menon et al., 2017). The

FIGURE 2
MK2 Inhibition Decreases the Proliferation of LUAD cells. (A) The graph shows dose-response curves for A549 and H358 cell lines with IC50 values
for 24 and 48 hours. The IC50 value was determined through nonlinear regression(curve fit) analysis of the dose-response data. (B) Representative
images of EdU assay showing EdU incorporation (red) and nuclei stained with DAPI (blue) in A549 (left) and H358 (right) cells under control and MK2
inhibitor treatment conditions. Quantitative analysis of EdU-positive cells is shown in the corresponding bar graphs (right panels). (C) The graph
features flow cytometry plots demonstrating apoptotic rates in A549 and H358 cells, with bar graphs comparing conditions. Each experiment was
repeated three times (n = 3), P values were obtained using Student’s t-test. *P < 0.05, **P < 0.01.
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therapeutic potential of MK2 inhibition extends beyond direct
apoptosis modulation, as it synergistically disrupts oncogenic
signaling through dual pathways: sensitizing pancreatic ductal
adenocarcinoma (PDAC) to apoptosis via Hsp27 inactivation and
restricting breast cancer metastasis by suppressing stromal IL-6
production (Grierson et al., 2021; Murali et al., 2018). To further
investigate the role of MK2 in LUAD proliferation, we established
in vitro models using A549 and H358 cell lines. MK2 expression or
activity was inhibited using both siRNA and an MK2 inhibitor
(Huang et al., 2011). Comparative analysis of genetic (siRNA) versus
pharmacological (MK2-IN-1) MK2 suppression revealed
comparable efficacy in modulating proliferation and invasion
(Supplementary Material 1A-E), prompting subsequent focus on
MK2-IN-1 for target specificity validation and translational
relevance. Preliminary determination of IC50 values for the
MK2 inhibitor (MK2-IN-1) revealed that the IC50 for A549 and
H358 were 40.18 µM and 38.30µM, respectively, at 24 h, decreasing
to 29.51µM and 31.69 μM at 48 h (Figure 2A). Crucially, 20 μM
MK2-IN-1 exhibited no significant cytotoxicity in non-transformed
BEAS-2B lung cells (Supplementary Material 1F), underscoring its
tumor-selective targeting potential. Functional characterization
through EdU incorporation assays revealed marked reduction in
LUAD proliferative capacity following MK2 inhibition (Figure 2B),
paralleled by a 2fold increase in apoptosis rates as quantified by
Annexin V/PI dual staining (Figure 2C). These findings collectively
establish that MK2 inhibition disrupts malignant homeostasis by
concurrently suppressing proliferation and activating apoptosis in
LUAD models, with tumor cell-selective efficacy highlighting its
therapeutic promise. These findings show that MK2 inhibitors
significantly inhibit the proliferation of LUAD cells, suggesting
that MK2 may play an important role in LUAD cell proliferation.

3.3 Inhibiting the activity of MK2 reduces the
EMT of LUAD cells

Given the established correlation betweenMK2 overexpression and
the metastatic potential in various cancers, including melanoma
(Wenzina et al., 2020), gastric cancer (Qeadan et al., 2020),
colorectal cancer (Ray et al., 2018), breast cancer (Murali et al.,
2018) and other tumors; this study investigates MK2-driven
invasion-metastasis cascades in LUAD. Functional validation using a
homologous LUAD cell model (A549 and H358 cells)showed that the
use of MK2 inhibitors greatly reduced tumor cell invasiveness in the
Transwell Matrigel assay (Figure 3A). Consistent with these findings,
wound healing assays showed a significant inhibition of migratory
capacity following inhibition of MK2 viability, and quantitative analysis
confirmed a time-dependent inhibition of wound closure (Figure 3B).
Next, we further validated the correlation between MK2 and lung
adenocarcinoma metastasis at the organoid level. We collected early
surgical specimens and advanced malignant pleural effusions for
patient-derived carcinoid (PDLCOs) cultures, and verified the
biological properties of PDLCOs by a multidimensional technique,
where lung adenocarcinoma carcinoids showed cell clustering at the
early stage of culture (D3), and in mature carcinoids (D12), the
carcinoids were observed to show a dense three-dimensional
structure. Subsequently, the lung adenocarcinoma cell origin was
further verified by HE staining and the molecular marker for lung

adenocarcinoma, Napsin (Figure 3C). Patient-derived organoids from
early-stage surgical specimens and advanced malignant pleural
effusions demonstrated progression-dependent MK2 upregulation,
with advanced-stage organoids exhibiting higher MK2 expression via
immunohistochemical quantification (Figure 3D).

EMT stands as a fundamental process in normal embryonic
development and serves as a prevalent factor initiating tumor
invasion and metastasis (Christofori, 2003; Wheelock and
Johnson, 2003; Hazan et al., 2004). As previously documented,
EMT is intricately linked with the metastatic progression of
various cancers, encompassing liver, ovarian, pancreatic, and
breast cancer alike (DiMeo et al., 2009; Cano et al., 2010;
Ponnusamy et al., 2010; Xu et al., 2017). To investigate MK2’s
role in LUAD-associated EMT, we analyzed transcriptional and
translational dynamics of EMT markers following MK2 inhibition.
qRT-PCR profiling revealed coordinated transcriptional
reprogramming, with significant upregulation of epithelial marker
E-cadherin and marked downregulation of mesenchymal regulators
N-cadherin, vimentin, MMP2, and Snail following inhibition of
MK2 activity (Figure 3E). Consistent with transcriptional changes,
Western blot analysis demonstrated protein-level restoration of
epithelial phenotypes, evidenced by enhanced E-cadherin
expression and reduced mesenchymal marker abundance
(Figure 3F; Supplementary Material 2A-D).

These multi-omics findings establish MK2 as a pivotal regulator
of EMT plasticity in LUAD. The conserved capacity of MK2 to
orchestrate EMT-driven malignancy across LUAD positions it as a
therapeutic target for disrupting metastasis-initiating pathways.

3.4 MK2 can modulate the AKT/MYC
signaling pathway

Previous studies have uncovered that MK2 plays a promoting
role in the progression of nasopharyngeal carcinoma by activating
the AKT/MYC signaling pathway, which is known to be a key driver
in tumorigenesis (Deng et al., 2018). Specifically, the activation of
this pathway by MK2 has been associated with enhanced cellular
processes that facilitate tumor growth and progression. Additionally,
accumulating evidence has emphasized the critical involvement of
the AKT/MYC signaling pathway in promoting tumor invasion and
metastasis (Wei et al., 2019; Su et al., 2024; Liang et al., 2020), two
hallmark features of aggressive cancers. These findings underscore
the importance of understanding how MK2 interacts with this
pathway to regulate these malignant behaviors.

Given the central role of the AKT/MYC pathway in cancer
metastasis, we sought to further elucidate the regulatory effects of
MK2 on this signaling cascade. Our experimental data demonstrated
that the suppression of MK2 activity led to a marked decrease in the
levels of phosphorylated AKT (p-AKT Ser-473) and c-MYC proteins in
both A549 and H358 cell lines. This suggests that MK2 modulates the
pathway primarily through influencing the phosphorylation state of
AKT and the stability or expression of c-MYC. Notably, total AKT
protein abundance remained unaltered, pinpointingMK2’s modulatory
role in AKT activation status rather than proteostatic regulation
(Figure 4A). To confirm a mechanistic interaction, we performed
co-immunoprecipitation (Co-IP) assays in A549 cells. The results
revealed a direct interaction between MK2 and AKT (Figure 4B),
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FIGURE 3
Inhibiting the activity ofMK2 reduces the EMTof LUADcells. (A) Transwell invasion assay showing reduced invasion of A549 andH358 cells treatedwithMK2
inhibitor compared tocontrol groups.Quantificationof cell invasion is presentedas apercentageof the control group. (B)panel Bdisplayswoundhealingassays at
zero and twenty-four hourswith bar graphs illustrating healing rates. (C)Verificationof patient-derived lung cancer organoids (PDLCOs). Dynamic culture: D3 and
D12 images showed progressive 3D growth. H&E staining revealed tissue architecture; Napsin A staining confirmed adenocarcinomaorigin. (D) IHC staining
for MK2 in LUAD organoids derived from early-stage specimens (surgical samples) and late-stage specimens (malignant pleural effusion). (E) Relative mRNA
expression levels of EMT markers were assessed in A549 and H358 cells treated with MK2 inhibitor compared to control groups. (F) Protein levels of molecular
markers of EMTwere examined usingWestern blot afterMK2 inhibition. Each experimentwas repeated three times (n= 3). P valueswere obtained using Student’s
t test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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supporting MK2’s involvement in regulating AKT phosphorylation
status within this signaling axis. The signaling activation observed over a
short period of time (e.g., 24 h) may not adequately represent the
persistence of the signaling pathway, so we again extended our analysis
to 48 h and 72 h of MK2 inhibitor treatment (Figures 4C–D), and we
observed that, in both cell lines, the reduction of p-AKT and MYC was
most pronounced at 48 h and 72 h, which confirms that MK2 activity
Inhibition of MK2 activity leads to sustained inhibition of AKT
phosphorylation and MYC expression over time, implying that
MK2 does not only activate the AKT/MYC signaling pathway
initially, but that it may also play an important role in maintaining
the persistence and strength of these signals. These findings collectively
establish MK2 as a kinase-dependent gatekeeper of AKT/MYC-driven
oncogenic signaling, coupling post-translational modification to
transcriptional reprogramming in metastatic progression.

3.5 MK2 regulated the EMT of LUAD cells by
the AKT/MYC signaling pathway

To further ascertain whether the anti-invasive and EMT-
modulating effects of MK2 inhibitors in LUAD are mediated
through the AKT/MYC pathway, we employed SC79, an
activator of the AKT/MYC pathway. Notably, co-administration
of SC79 with MK2 inhibitors completely abrogated the inhibitor-
induced suppression of MYC and mesenchymal markers (vimentin,
MMP2, N-cadherin), effectively reinstating their baseline expression

profiles (Figure 5A). Functional complementation assays further
demonstrated that AKT/MYC pathway activation rescued the
impaired metastatic potential of LUAD cells, as evidenced by
restored migratory and invasive capacities in MK2 inhibitor-
treated populations (Figures 5B–C). Taken together, our results
confirm that MK2 interacts with AKT, promoting AKT
phosphorylation and, in turn, enhancing C-MYC expression. The
dose-responsive reversibility of MK2 inhibitor effects through
pathway activation definitively positions this signaling axis as the
mechanistic linchpin connecting MK2 to LUAD progression
(Figure 6). These findings establish the AKT/MYC pathway as
the dominant downstream effector mediating MK2’s pro-
metastatic functions in LUAD, bridging kinase activity to EMT-
driven metastatic reprogramming.

4 Discussion

In LUAD, MK2 activation is regulated by cellular stress and
inflammatory responses. Cellular stress (such as oxidative stress)
and inflammatory cytokines (like TNF-alpha and IL-1beta) activate
the p38 MAPK pathway, inducing MK2 phosphorylation and
regulating tumor cell proliferation and migration (Xu et al.,
2025). Furthermore, Bag-1 promotes MK2 activation through the
Raf-1-dependent MAPK pathway, while NHERF1 regulates
oxidative stress responses by recruiting MK2 in liver cancer cells
(Hayashi, Salzet). These upstream signaling pathways play a critical

FIGURE 4
MK2 can modulate the AKT/MYC signaling pathway. (A) AKT, P-AKT(Ser473), and C-MYC expression after MK2 inhibitor treatment in LUAD cells
(A549, H358), with GAPDH as loading control. (B) Co-IP in A549 confirms MK2-AKT interaction. (C–D) Time course (0–72h) shows sustained decrease in
P-AKT and C-MYC after MK2 inhibition in A549 (C) and H358 (D), indicating prolonged AKT/MYC pathway suppression. Each experiment was repeated
three times (n = 3). P values were obtained using Student’s t-test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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role in MK2 activation and contribute to the regulation of tumor cell
behavior, driving LUAD initiation and metastasis.

The p38/MAPK signaling cascade, a ubiquitous signaling enzyme
in eukaryotes, plays a multifaceted role in oncogenesis and metastatic
dissemination (Sun et al., 2023a). Previous studies have highlighted
that the p38/MAPK-specific inhibitor SB203580 can inhibit the
proliferation and invasion of breast cancer cells (Liu et al., 2025).
Furthermore, research has elucidated that platelet-derived PDGF
orchestrates metastatic dissemination in cholangiocarcinoma via
p38 MAPK-dependent transcriptional upregulation of MMP2/9
and EMT transcriptional reprogramming (Pan et al., 2020).
Despite the pivotal role of p38/MAPK as a therapeutic target, its
diverse array of upstream kinases, downstream substrates, and

intricate network of regulatory factors contribute to notable side
effects (Fiore et al., 2016). Consequently, the identification of novel
therapeutic targets within downstream pathway components, with
MK2 representing a prioritized candidate, has emerged as a focal point
of investigation. In our current study, we identifies MK2, a serine/
threonine kinase downstream of p38 MAPK, as a druggable node in
LUAD. Immunohistochemical validation revealed tumor-specific
MK2 overexpression in LUAD specimens, with functional studies
demonstrating that MK2 inhibition suppresses proliferation,
migration, and EMT-associated invasion in vitro. Crucially, these
effects were reversed by AKT/MYC pathway activation, positioning
this axis as the dominant downstream mediator of MK2’s
oncogenic functions.

FIGURE 5
MK2 regulated the EMT of LUAD cells by the AKT/MYC signaling pathway. P(A)Western blot detected EMTmarkers and MYC expression. (B)Wound
healing assaymeasuredmigration (24h post-scratch). (C) Transwell assay evaluated invasion. Groups: MK2 inhibitor (MK2-IN-1, 20μM, 24h); MK2 inhibitor
+ SC79 (MK2-IN-1 pretreatment 6h, then SC79 20μM); SC79 alone (20μM, 24h). Each experiment was repeated three times (n = 3). P values were
obtained using Two-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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MK2 is a serine/threonine kinase positioned downstream of
p38 MAPK, pivotal in a myriad of cellular processes including
stress response, inflammation, cell proliferation, differentiation,
apoptosis, and gene expression regulation (Gujrati et al., 2022; He
and Zhao, 2020; Wang et al., 2025; Zhang et al., 2020). Our multi-
omics validation in clinical LUAD specimens revealed tumor-
specific MK2 overexpression, establishing its pathological
relevance. Functional interrogation demonstrated that
MK2 suppression not only curbs malignant phenotypes in
LUAD models but disrupts the EMT-driven invasion-migration
axis, mirroring Henriques et al.‘s observations of MK2-Hsp27-
mediated proliferative-migratory circuitry in colorectal
carcinogenesis (Henriques et al., 2018). Mechanistically,
MK2 inhibition modulates tumor-associated inflammation and
mesenchymal transition, exhibiting broad-spectrum anti-
neoplastic effects across malignancies (Ray et al., 2018; Murali
et al., 2018; Kumar et al., 2009; Ray et al., 2016; Berggren et al.,
2019; Morgan et al., 2022). Notably, glioblastoma models exhibit
paradoxical MK2 functionality through RSK-EphA2 signaling
rewiring, underscoring context-dependent duality in kinase-
mediated oncogenic programs (Zhou et al., 2023).

Currently, Numerous recent studies have indicated the
involvement of the PI3K/AKT pathway in the metastasis of
NSCLC (Zhou et al., 2023), colorectal cancer (Wei et al., 2024)
and hepatocellular carcinoma (Chen et al., 2024). Concurrently, the
pivotal transcription factor MYC orchestrates the expression of
genes crucial for cell growth, survival, and metastasis (Niu et al.,
2022; Li et al., 2019; Molteni et al., 2023), underscoring the
significance of the AKT/MYC pathway in tumorigenesis. While
this pathway’s pathogenic relevance extends to gastric cancer and

LUAD (Wei et al., 2019; Su et al., 2024), the upstream regulatory
mechanisms governing this oncogenic axis remain incompletely
characterized. Hence, we conducted this study to investigate how
MK2 regulates the expression of AKT and MYC proteins in LUAD
cells, aiming to elucidate its impact on this signaling cascade. Our
Western blot analysis revealed that reduction of MK2 activity
inhibited AKT phosphorylation and the expression of c-MYC, at
the same time, altered the invasion, migration, and EMT profiles of
LUAD cells, whereas AKT activation reversed these effects.
Obviously, although MK2 can regulate many of signal pathway,
the AKT/MYC pathway appears to be a significant downstream
pathway regulating EMT in LUAD cells. In hepatocellular
carcinoma, treatment with MK2 inhibitor also can block the
proliferation and induce the apoptosis via downregulating c-Myc
and AKT-1 (Tran et al., 2016). Intriguingly, nicotine-modulated
miR-296-3p exemplifies cross-cancer regulation of MK2’s dual
signaling outputs, simultaneously targeting both Ras/Braf/Erk/
Mek/c-Myc and PI3K/AKT/c-Myc cascades to constrain tumor
progression.

Our findings demonstrate that MK2 plays a pivotal role in both
the induction and metastasis of LUAD through modulation of the
AKT/MYC signaling pathway. This revelation introduces a novel
therapeutic target for LUAD treatment, enhances our
comprehension of LUAD’s molecular mechanisms, and
establishes groundwork for future therapeutic strategies.
Notwithstanding these advances, translational considerations
warrant deliberate scrutiny. While MK2 inhibition shows
promise as a therapeutic strategy, the pleiotropic nature of
MK2 in fundamental cellular processes demands careful attention
to potential off-target effects. ChronicMK2 suppressionmay disrupt

FIGURE 6
Schematic model illustrating the role of MK2 in regulating the epithelial-mesenchymal transition (EMT) and AKT signaling.
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physiological stress responses and inflammatory signaling cascades,
which could lead to unintended adverse effects. As MK2 is involved
in multiple cellular pathways, compensation by parallel signaling
networks, such as AKT/MYC or PI3K/AKT, may limit the efficacy of
MK2-targeted therapies. Therefore, strategies to prevent or
overcome compensatory activation of these pathways should be
explored, potentially through combination therapies, strategic
optimization of dosing regimens and exploration of synthetic
lethal combinations with complementary targeted agents emerge
as critical priorities to maximize therapeutic efficacy while
mitigating on-target toxicities. Secondly, while we delineate AKT/
MYC signaling as the dominant effector conduit for MK2-mediated
EMT, the precise molecular logic governing MK2-AKT/MYC
crosstalk - particularly regarding feedback regulation and
intersection with parallel oncogenic networks - remains
incompletely resolved. The lack of clarity regarding feedback
loops and how MK2 interacts with other oncogenic pathways
underlines the importance of future studies to dissect the
molecular interactions between MK2 and these pathways to
better improve therapeutic strategies. Furthermore, despite the
significant findings in our study, we acknowledge certain
limitations related to the clinical sample size. The tissue
microarray analysis in this study includes 48 paired LUAD
samples. While this sample size is common in early-stage studies,
it may be relatively modest and not fully representative of the
broader patient population. We recommend that future studies
include larger cohorts to validate our findings and assess the
generalizability of our conclusions across different populations.
Additionally, we recognize that the representativeness of the
sample set could be influenced by patient demographics, such as
age, sex, and ethnicity, as well as disease stages. These factors should
be considered when interpreting the clinical relevance of MK2 as a
potential therapeutic target. Expanding the study population in
future research will be crucial to understand how
MK2 expression and its associated signaling pathways might vary
in different LUAD subtypes and patient groups.

In summary, while MK2 emerges as a crucial regulator in LUAD
metastasis via the AKT/MYC pathway, addressing these limitations
through future studies will be critical for validating MK2 as a
therapeutic target and optimizing therapeutic strategies for
LUAD treatment.
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Glossary
MK2 Mitogen-Activated Protein Kinase Activated Protein Kinase 2

LUAD Lung adenocarcinoma

NSCLC Non small cell lung cancer

MAPK mitogen activated protein kinase

BLCA Bladder urothelial carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid neoplasm diffuse large B-cell Lymphoma

ESCA Esophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma

OV Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma

PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcomav

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumors

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UVM Uveal Melanoma

PDLCOs Patient-derived Carcinoid
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