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Background: Adenomyosis, a common gynecological disorder in women of
reproductive age, is characterized by endometrial invasion into the
myometrium, leading to uterine enlargement and smooth muscle
hypertrophy. Typical clinical symptoms include chronic pelvic pain, abnormal
uterine bleeding, and infertility, which significantly impair patients” quality of life.
Currently, effective diagnostic biomarkers for adenomyosis are lacking. Recent
studies suggest that estrogen may promote Scribble protein depalmitoylation by
upregulating APT1 and APT2 expression. Depalmitoylation facilitates Scribble’s
translocation from the cell membrane to the cytoplasm, disrupting endometrial
epithelial cell polarity. This polarity loss may enhance abnormal proliferation,
migration, and invasion of endometrial epithelial cells, promoting endometrial
tissue infiltration into the myometrium and contributing to adenomyosis
development and progression. Therefore, investigating adenomyosis diagnosis
and treatment from the perspective of palmitoylation-related genes holds
significant scientific importance.

Methods: In this study, four datasets, GSE244236, GSE190580, GSE185392 and
GSE157718, were downloaded and the data were screened and standardized the
data. First, GSE244236 was used as the training dataset. By integrating multiple
bioinformatics approaches—including differential gene analysis (DEGs), weighted
gene co-expression network analysis (WGCNA), Least Absolute Shrinkage
(LASSO), random forest (RF) methods, and Support Vector Machine-recursive
feature elimination (SVM-RFE)—we identified three overlapping diagnostic genes
through comprehensive analysis. Meanwhile, the diagnostic value of each
biomarker was assessed using the receiver operating characteristic curve
analysis in the remaining three datasets. In addition, single-sample gene set
enrichment analysis (ssGSEA) were utilized to explore the infiltration of immune
cells in adenomyosis and to examine the correlation between diagnostic
biomarkers and immune cells.

Results: A total of 549 differentially expressed genes were identified in the
analysis. Through WGCNA analysis, we obtained 25 palmitoylation-related
intersecting genes. Using LASSO, RF and SVM-RFE algorithms, three potential
diagnostic genes were finally screened: LIPH, CYP2E1 and CHRNE.

Conclusion: In this study, we successfully identified diagnostic biomarkers for
adenomyosis using comprehensive bioinformatics analysis and machine learning
methods, and validated them with nomogram and ROC curves. Our findings
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provide new perspectives for understanding the pathogenesis of palmitoylation-
related genes in adenomyosis and offer potential targets for the development of
new therapeutic strategies.

palmitoylation, adenomyosis, machine learning, diagnostic model, gene expression

1 Introduction

Adenomyosis is a common benign condition in women of
childbearing age that is characterized by the invasion of the
endometrium into the myometrium, causing hyperplasia, fibrosis
and uterine enlargement. Although the exact etiology and
pathogenesis of adenomyosis are not fully understood, it is
widely believed to be related to an estrogen imbalance,
immune-inflammatory response, angiogenesis, and imbalance
in cell proliferation and apoptosis. Traditional diagnostic
methods include ultrasonography, biomarkers, and clinical
symptom evaluation. With continuous advances in imaging
(TVUS)
magnetic resonance imaging (MRI) have been shown to be

technology, transvaginal ultrasonography and
valuable in the diagnosis of adenomyosis (Dason et al., 2023;
Krentel et al., 2023). However, the treatment of adenomyosis has
received increasing attention due to the lack of effective
diagnostic markers and the side effects associated with drug
therapy. In recent years, with the limitations of traditional
treatments, the development of new technologies, and
innovations in bioengineering techniques, novel diagnostic
and therapeutic methods have emerged, including precision
imaging techniques, infrared fluorescence imaging, magnetic
resonance imaging, and photoacoustic imaging, which have
enhanced the visualization of lesions and improved surgical
precision. In addition, new methods such as bioengineered
drug delivery systems, immunotherapy, gene therapy,
ferroptosis induction and synthetic lethal activation provide
new avenues for the effective treatment of adenomyosis (Peng
et al., 2025). These methods offer certain advantages in precise
diagnosis, treatment, and maintenance of fertility in women of
childbearing age, which can help to advance precision medicine
and improve women’s health. Therefore, it is particularly
important to identify the pathogenesis of adenomyosis and
explore potential therapeutic targets, which can help to
improve the success rate of treatment and reduce side effects.
Palmitoylation is a reversible post-translational modification
that adds palmitic acid, a 16-carbon palmitic acid, to a cysteine
residue via a thioester bond. Palmitoylation is catalyzed by a
family of zinc finger-containing DHHC-type proteins (ZDHC1-
9, ZDHCI11-24), whereas depalmitoylation is catalyzed by acyl-
protein thioesterases (APT1/2), palmitoyl-protein thioesterases
(PPT1/2), or by proteins containing the structural domains
of the a/p-hydrolase domain-containing proteins 17A/B/C
(ABHD17A/B/C) (Ko and Dixon, 2018; Zhou et al., 2023). By
modulating protein localization, signaling pathways, and
protein-protein interactions, palmitoylation influences cancer
progression, neurodegeneration, inflammation, and metabolic
disorders (Chen et al.,, 2017; Kong Y. et al., 2023; Zhang et al,,

2025). It also regulates immune cell activation and inflammatory
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factor secretion, making palmitoylation enzymes potential
therapeutic targets (Blaskovic et al., 2013; De and Sadhukhan,
2018; Kong Y. et al., 2023; Main and Fuller, 2022; Won et al,,
2018; Zeng et al., 2024). Notably, in adenomyosis, estrogen may
upregulate APT1/2, promoting Scribble depalmitoylation and its
translocation from the membrane to the cytoplasm, thereby
disrupting epithelial polarity and contributing to disease
pathogenesis (Jin et al., 2024). Similarly, in endometriosis,
ZDHHCI12-mediated palmitoylation of NLRP3 facilitates its
autophagic degradation, which modulates inflammatory
responses. Furthermore, analysis shows that palmitoylation-
related genes are correlated with immune cell infiltration,
including M2 macrophages and resting NK cells (Kai et al.,
2025). These findings suggest that palmitoylation plays a
multifaceted role in the molecular mechanisms underlying
adenomyosis and related diseases, providing potential targets
for therapeutic intervention.

Recent studies have identified several potential biomarkers for
adenomyosis. Elevated serum CA125 levels correlate with disease
severity, while mild increases in CA199 and CEA may reflect
inflammatory responses or lesion extent (Chen W. C. et al,
2022; Liu et al, 2025). Urinary miR-92a-3p promotes tumor
infiltration and  angiogenesis, and serum  creatinine
phosphokinase has been proposed as a noninvasive diagnostic
marker (Shao et al., 2025). The serum creatine phosphokinase level
has been suggested as a noninvasive diagnostic marker (Bulut
Aydemir et al., 2025). Additionally, exosomal HSP90A, STIP1, and
TAGLN-2 are specifically upregulated in adenomyosis, suggesting
disease-specific pathological processes (Chen D. et al., 2022).
Transcriptomic and genomic analyses further reveal KRAS
mutations and increased RhoA-ROCK signaling, which enhance
cell survival, proliferation, and progesterone resistance (Bulun
et al, 2021; Jiang et al, 2018; Xiang et al., 2019). Single-cell
fibroblast

heterogeneity in adenomyotic uteri (Yildiz et al, 2023).

sequencing has also uncovered  significant
Collectively, these findings highlight the diagnostic potential of
biomarkers and underscore the importance of genomic studies in
elucidating adenomyosis pathogenesis.

This study applied comprehensive bioinformatics analysis and
machine learning algorithms to identify diagnostic biomarkers and
explore immune infiltration in adenomyosis. Four datasets of
adenomyosis were downloaded from the Gene Expression
Omnibus (GEO) database as training and validation sets.
Diagnostic biomarkers were identified by differential gene
analysis, integration of WGCNA, and palmitoylation-related gene
sets to take the intersection, followed by the joint LASSO, RF and
SVM-REE algorithms. ssGSEA was used to identify differences in
the infiltration of endometrial immune cells and the correlation
between diagnostic biomarkers and immune cells in women with
adenomyosis and controls.
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2 Materials and methods
2.1 Data set collection and processing

We obtained the gene expression profiles of adenomyosis from
the GEO database, including four microarray datasets: GSE244236,
GSE190580, GSE185392, and GSE157718. The GSE244236 dataset
contains the expression profiles of 28 patients with adenomyosis and
25 normal controls. The remaining three datasets contain
of different
controls,

endometrial expression profiles numbers of

adenomyosis patients and respectively. We set
GSE244236 as the training set and the remaining three datasets
we downloaded 3228
palmitoylation-related genes through the GeneCards website

(Zeng et al., 2024).

as the wvalidation set. In addition,

2.2 ldentification and functional enrichment
analysis of differentially expressed genes

After performing gene re-annotation on the dataset probes using
platform files, all data underwent logarithmic transformation and
normalization through the normalizeBetweenArrays function. The
Limma package was then employed to identify DEGs between 28
women with adenomyosis and 25 healthy controls, using the
threshold for significant differences at adjusted p-values <0.05
and |log2(FC)| > 1, which resulted in the identification of 549
DEGs (Figure 2A). To provide a visual overview of these DEGs,
subsequent  visualization involved volcano plot analysis
(bioinformatics.com.cn). In order to understand the functional
implications of these DEGs, we conducted functional enrichment

analyses. Through Gene Ontology (GO) analysis, we examined

biological processes (BP), cellular components (CC), and
molecular  functions (MF) associated with the DEGs.
Additionally, Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis was applied to explore pathway
enrichment (Figures 2B-D).

2.3 Weighted gene co-expression
network analysis

WGCNA represents a systematic biological approach for
constructing gene co-expression networks, clustering genes with
similar expression patterns, and exploring network modules closely
related to clinical features. Therefore, we utilized the oebiotech
platform (https://www.oebiotech.com) to build a gene co-
expression matrix from the GSE244236 dataset. Following the
principle of scale-free networks, we selected a soft threshold
(power = 24, R> = 0.81) to sequentially construct a scale-free co-
expression network, converting the adjacency matrix into a
topological overlap matrix. Subsequently, cluster analysis was
with
comprising at least 50 genes. Hierarchical clustering was used to

performed to identify gene modules, each module
construct dendrograms and to calculate correlations between
characteristic genes in the modules and disease phenotypes. By
integrating multiple metrics such as correlation coefficients,

p-values, and the GS and MM values of the modules, we
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ultimately identified the module most positively correlated with
adenomyosis as a key disease-associated module.

2.4 Screening candidate diagnostic
biomarkers using machine learning
algorithms

After taking intersections with the MElightyellow modular genes
identified by WGCNA, alongside 3,228 palmitoylated genes, and
549 DEGs (Figure 4A), we identified 25 palmitoylated genes that
were differentially expressed in adenomyosis. To refine the
identification of characteristic genes, we employed three machine
learning algorithms: Random Forest (RF), Support Vector Machine
(SVM) with Recursive Feature Elimination (RFE), and LASSO
logistic regression. LASSO effectively filters out redundant
features by applying an L1 penalty (\) to compress insignificant
variable coefficients to zero, thereby refining the model. A higher A
value reduces the number of selected variables, making key genes
more representative of the disease state (Wang et al., 2023). SVM-
RFE, a supervised learning technique, identifies core candidate genes
by gradually eliminating features with minimal contribution to
model performance. RF evaluates variable importance using
decision trees, facilitating feature prioritization (Kong X. et al,
2023; Xu et al., 2023). The final candidate diagnostic biomarkers
were determined by intersecting the results of these three methods,
ensuring a comprehensive and reliable screening process. These
complementary algorithms collectively enhance both the accuracy
and robustness of gene feature selection.

2.5 Validation of ROC curves for
diagnostic markers

To evaluate the diagnostic efficacy of the candidate
biomarkers, we analyzed and compared the expression levels
of the three key genes in the adenomyosis group versus the
control group using the oebiotech Platform, with box plot
visualization. Meanwhile, the CNSknowall platform (https://
ROC curve
analysis and joint assessments for each hub gene, calculating

cnsknowall.com) was employed to conduct
the area under the curve (AUC) with a 95% confidence interval
(CI). Significance was determined based on AUC values, where
values closer to 1 indicate greater accuracy in distinguishing

between groups during model evaluation.

2.6 Immune cell infiltration analysis

To investigate differences in the functional activity of immune
cells between adenomyosis patients and healthy controls, we
conducted single-sample gene set enrichment analysis comparing
the adenomyosis group and control group. Figure 8 presents heat
maps illustrating differential expression levels of 28 immune cell
types within the GSE244236 dataset comparing adenomyosis
patients and controls, while box plots demonstrate the
distribution patterns of 16 specific immune cell infiltrations and

13 immune-related biological markers.
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2.7 Correlation analysis between diagnostic
biomarkers and infiltrating immune cells

The correlations between the three diagnostic biomarkers
initially identified and the infiltrating immune cells were
evaluated using a heatmap, which provides a clear visualization
of their respective relationships with immune cell infiltration.

3 Results

3.1 Screening and visualization of
differentially expressed genes

The flow of this study is shown in Figure 1.

The dataset GSE244236 was sourced from the Gene Expression
Omnibus (GEO) database. Using probe annotation information, we
converted integrated IDs in the gene expression matrix into gene
symbols. The expression matrices were then normalized through
the
was

log2 transformation and processed

Differential
performed with the limma package to compare 28 adenomyosis
patients with 25 normal controls, identifying 549 DEGs with
adjusted p-values <0.05 and |log2(FC)| > 1, visualized through

volcano plots (Figure 2A). Among these DEGs, 302 genes

using

normalizeBetweenArrays function. analysis

showed upregulation (indicated by red dots), while 247 showed
downregulation (indicated by blue dots). To elucidate their
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functional significance, we conducted Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses using platform (http://www.bioinformatics.
com.cn), with a significance threshold of P < 0.05.

Figure 2B presents a bubble plot of the GO enrichment analysis
results for the DEGs, featuring the top 10 significantly enriched
pathways. The size of each bubble indicates the number of genes
involved in the process, while the color reflects the negative logarithm
of the corrected p-value—darker colors denote higher significance.
GO analysis revealed that
predominantly participate in processes such as regulating the cell

enrichment characteristic ~genes
cycle (negative regulation of the cell cycle), chromosome segregation
(including chromosome segregation, chromosomal regions, and
centromeres), and  microtubule  structure  (microtubules,
microtubule binding, motor activity). KEGG pathway analysis
indicated that these genes are enriched in pathways related to cell
cycle dysregulation (cell cycle, aminoacyl-tRNA biosynthesis), DNA
repair defects (DNA replication), hormone signaling abnormalities
(progesterone-mediated oocyte maturation), p53 signaling pathways,
and metabolic processes (pyrimidine metabolism) (Figures 2C,D).
These genes may influence cellular structure and chromosomal
dynamics, findings consistent with previous studies on
adenomyosis (Yang et al, 2025). This is related to abnormal
proliferation of tissue cells and disordered cell cycle regulation in
adenomyosis, which may reflect abnormal cell proliferation or
regulation in the disease. Targeted intervention on these pathways

may become a future therapeutic strategy.
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enrichment analysis of DEGs.

3.2 Construction of weighted gene Co-
expression networks and identification of
key modules using WGCNA

To
adenomyosis, we constructed a weighted gene co-expression

explore the co-expression network associated with
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network using the WGCNA method based on the dataset
GSE244236. Using the unscaled topology criterion (R* = 0.81), we
determined the optimal soft threshold power as 24 while ensuring that
the average connectivity remained close to zero (Figures 3A,B). The
selected soft threshold was then applied to construct a co-expression
matrix, with a minimum module size of 50 genes, a dynamic tree-
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Construction of gene co-expression networks associated with adenomyosis through WGCNA. (A) Selection of soft threshold power. (B) Shows the
change in average connectivity with different soft thresholds. (Soft threshold (power = 24) and scale-free topology fit index (R2 = 0.81)) (C). Gene
hierarchy tree-clustering diagram. The graph indicates different genes horizontally and the uncorrelatedness between genes vertically, the lower the
branch, the less uncorrelated the genes within the branch, i.e., the stronger the correlation. (D) Heatmap showing the relations between the module

and adenomyosis features. The values in the small cells of the graph represent the two-calculated correlation values cor coefficients between the
eigenvalues of each trait and each module as well as the corresponding statistically significant p-values. Color corresponds to the size of the correlation;
the darker the red, the more positive the correlation; the darker the Blue, the more negative the correlation.

cutting parameter set to 2, and a module merging threshold of 0.25.
Different gene modules were assigned distinct color labels.
Subsequently, gene hierarchical clustering trees were created
through gene correlation analysis, identifying 13 differently colored
modules, with the gray module representing gene sets that were
deemed ineligible for classification (Figure 3C). Finally, considering
correlation coefficients, p-values, and module GS/MM values, we
identified the MElightyellow module as positively correlated with
adenomyosis and regarded as the disease characteristic; the genes
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within this module were designated as key genes (Figure 3D).
Adenomyosis showed a positive correlation with these key genes
( = 0.50, p = 1E-04).

3.3 Enrichment analysis of crossover genes

To investigate the regulatory role of palmitoylation in the

pathogenesis  of  adenomyosis, we intersected  DEGs,
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MElightyellow genes, and palmitoylation-related genes, resulting in
a total of 25 characteristic genes (Figure 4A). Figure 4B depicts the
correlation network of these 25 genes, which indicates that they are
all positively correlated. Subsequently, we conducted functional
enrichment analysis on these characteristic genes to explore their
biological functions and potential involved in
palmitoylation during adenomyosis (Figures 4C-F). The GO
enrichment analysis revealed that these genes are primarily
involved in biological processes

pathways

neurotransmitter
secretion and synaptic transmission (including catecholamine
secretion, chemical synaptic transmission, and postsynaptic

such as
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processes), glycerolipid metabolism  (covering glycerolipid
catabolic and metabolic processes), and steroid metabolism
(including aromatase activity). KEGG pathway analysis indicated
that these genes are mainly enriched in pathways related to lipid
metabolism and signaling (such as arachidonic acid metabolism),
steroid hormone biosynthesis, drug metabolism (via cytochrome
P450), and VEGF
signaling pathways. Current research suggests that palmitoylation
regulates the cell cycle through protein membrane localization and
stability, thereby significantly influencing inflammatory responses

and lipid metabolism (Qu et al., 2021). This supports the hypothesis

neuroactive ligand-receptor interactions,
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Candidate diagnostic biomarkers were identified by an integrated strategy. (A,B) Significant prognostic variables screened using LASSO regression.
(C,D) Top 10 significant genes screened using RF. (E,F) Images screened using SVM-RFE. (G) Venn diagram of candidate diagnostic biomarkers screened

using LASSO, RF and SVM-RFE.

that palmitoylation may contribute to the development of

adenomyosis by modulating lipid metabolism, hormone

synthesis, neural signaling, and angiogenesis processes.

3.4 |dentification of diagnostic biomarkers
To identify potential diagnostic biomarkers from these 25 key

genes, we integrated three advanced machine learning algorithms
for joint screening analysis: LASSO, RF, and SVM-RFE. Based on the
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value of Amin, we performed LASSO regression analysis and
identified five hub genes as the most representative markers
associated with adenomyosis development (Figures 5A,B). In the
RF algorithm, we set ntree to 500 to stabilize the model errors,
thereby selecting the top 10 most significant genes as final candidates
(Figures 5C,D). The top 10 genes identified by SVM-RFE showed the
highest significance, achieving an accuracy of 0.81 (Figure 5E) and a
false positive rate of 0.19 (Figure 5F). Subsequent intersection
analysis using Venn diagrams (Figure 5G) among the results of
SVM-RFE, LASSO, and RF identified three diagnostic biomarkers:
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GSE244236 dataset (*p < 0.05, **p < 0.01, ***p < 0.001).

LIPH, CYP2E1l, and CHRNE. These biomarkers offer novel
molecular targets for early diagnosis and intervention in
adenomyosis, demonstrating substantial clinical value.

3.5 Modeling of diagnostic biomarkers

To systematically evaluate the performance of the three genes
as diagnostic biomarkers, we plotted ROC curves and used the
area under the curve (AUC) as a key indicator of model
prediction accuracy. Figures 6A-C display the ROC analysis
results for these genes within the GSE244236 dataset. The
results indicated that each gene exhibited good diagnostic
value, with AUC values exceeding 0.7, suggesting high
diagnostic accuracy when used individually as biomarkers.
the of
combining these biomarkers. The combined analysis showed a

Furthermore, we evaluated diagnostic  efficacy
significant improvement, with an AUC of 0.846 (Figure 6D).
These findings demonstrate that the diagnosis of adenomyosis
can be achieved more reliably through the combined use of these
biomarkers, supporting their clinical applicability.

To further assess the diagnostic potential of LIPH, CYP2E],
and CHRNE in GSE244236 using ROC analysis, we used an
AUC >0.7 as the inclusion criterion to improve diagnostic
performance. In ROC curve analyses (Figures 6A-C), the AUC
values of these three genes indicated strong sensitivity and
specificity in diagnosing adenomyosis. Box plot visualizations
of gene expression patterns between adenomyosis and control
groups further confirmed their high diagnostic potential
(Figure 6E). Additionally, Figure 6D illustrates the combined

diagnostic value of these three genes, further validating their
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effectiveness and reliability as biomarkers, especially when used
synergistically.

3.6 Validation of diagnostic biomarkers

To further validate the reliability and clinical application value of
the three selected diagnostic genes, we conducted AUC curve
analysis on three GEO datasets (GSE185392, GSE190580,
GSE157718). In the GSE190580 dataset (Figure 7A), the AUC
values for these three genes were 0.58, 0.91, and 0.75, while the
combined ROC area under the curve achieved 0.726, further
confirming the reliability of the results. In the GSE185392 dataset
(Figure 7B), the AUC values for LIPH, CYP2E1, and CHRNE were
0.87, 0.75, and 0.47. When performing a combined analysis of these
three genes, the AUC value reached 0.89, indicating potential
enhanced performance through integrated analysis. Similar
outcomes were observed in the GSE157718 dataset (Figure 7C),
where the AUC values for these three genes were 0.667, 0.667 and 1.0
respectively. These analyses support the clinical diagnostic potential
of the selected genes, particularly the combined analysis results,
which could serve as candidate molecular markers for disease-
assisted diagnosis. While this study has validated the diagnostic
potential of candidate genes across multiple independent datasets,
some genes demonstrated suboptimal performance in specific
cohorts, suggesting their diagnostic efficacy may be influenced by
cohort-specific factors. Future research should further investigate
the robustness and clinical applicability of these genes through
larger-scale, multicenter, prospective clinical trials.

To enhance clinical applicability, we visualized the nomograms
using the “regplot” package. This plot allows the total score of the
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Validation of genetic diagnostic models using three public GEO datasets. (A) ROC plots of three diagnostic genes in the GSE190580 dataset using

area under the curve (AUC) to assess model accuracy. (B) ROC plots of three diagnostic genes in the GSE185392 dataset using area under the curve (AUC)
to assess model accuracy. (C) ROC plots of three diagnostic genes in the GSE157718 dataset, using area under the curve (AUC) to assess model accuracy.
(D) Nomogram of the diagnostic model using the three characterized genes.

three genes to be converted into a probability value (Pr) that predicts
the risk of disease. For example, Figure 7D shows a Pr of 0.269,
indicating a 26.9% probability of adenomyosis based on these gene
expressions. These analyses not only verified the reliability of the three
genes as diagnostic biomarkers but also demonstrated their potential
clinical value through column line diagrams, providing a new molecular
basis for early diagnosis and treatment of adenomyosis.
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3.7 ssGSEA immune cell infiltration analysis

We observed that, in samples from patients with adenomyosis,
the infiltration rates of CD56 dim natural killer cells, effector
memory CD8 T cells, eosinophils, immature B cells, myeloid-
derived suppressor cells (MDSCs), neutrophils, and plasmacytoid
dendritic cells were significantly higher, suggesting that these
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Immune cell infiltration analysis using ssGSEA. (A) Heatmap of the distribution of 28 immune cells in the adenomyosis group and control group. (B)
Box line plot of the distribution of 16 immune cells in the adenomyosis group and control group. (C) Box line plots of the distribution of 13 immune
features in the adenomyosis group and the control group (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

immune cells play a key role in the progression of adenomyosis
(Figure 8A).

To further analyze the relationship between adenomyosis and
immune infiltration in depth, we performed a comparative study of
16 immune cell infiltration types and 13 immune characteristics
(Figures 8B, C). The results indicated that, compared with the
control group, the proportions of plasmacytoid dendritic cells
(pDCs), follicular helper T cells (Tth), and tumor-infiltrating
lymphocytes (TILs) were relatively high in the adenomyosis
lesion tissues, while the proportions of regulatory T cells (Tregs)
and Th2 cells were relatively low. Among the 13 immune
characteristics, antigen-presenting cell (APC) co-stimulation,
chemokine receptor (CCR), immune checkpoint molecules,
human leukocyte antigen (HLA), Th2 cells, and Treg levels were
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more prevalent in the adenomyosis group. These findings indicate
that there are significant differences in immune infiltration between
the adenomyosis lesion group and the control group, with overall
immune infiltration levels being lower in the adenomyosis tissues
compared to normal tissues.

3.8 Correlation analysis between diagnostic
markers and infiltration-associated
immune cells

To thoroughly investigate potential associations between

immune cell infiltration and diagnostic ~biomarkers in

adenomyosis, we systematically analyzed the correlations between
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Correlations between three diagnostic biomarkers and infiltrating immune cells were analyzed. (A) Correlation between LIPH infiltrating immune
cells. (B) Correlation between CYP2E1 infiltrating immune cells. (C) Correlation between CHRNE infiltrating immune cells. (D) Analysis of the correlation

between core genes and immune functional pathways.

28 immune cell types and three diagnostic markers (LIPH, CYP2E1,
and CHRNE). Additionally, to explore whether palmitoylation is
involved in the micro-regulation of immune infiltration in
adenomyosis, the
palmitoylation hub genes and immune cell infiltration based on
the GSE244236 dataset.

Figures 9A-C display the correlation between 28 immune cell

we examined the association between

types and the three genes using lollipop plots. To present a clearer
picture of the relationship between these diagnostic markers and
immune infiltration, we employed an immune infiltration heatmap
(Figure 9D). The heatmap showed positive correlations between all
three genes and effector neutrophils, immature B cells, effector
memory CD8 T cells, and CD56 dim natural killer cells.
Conversely, there were negative correlations between the three
genes and type 2 helper T cells (Th2), memory B cells,
CD56 bright natural killer cells, and activated CD4 T cells.

The findings of this study demonstrate a strong correlation between
these three biomarkers and impaired immune cell infiltration in
adenomyosis, suggesting that these genes may play a significant role
in the disease’s immunopathological mechanisms. This provides crucial
insights for further research and potential clinical applications.
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However, the causal relationship between palmitoylation genes and
the immune microenvironment remains unclear. Future studies could
employ causal inference models to explore their interplay, thereby
clarifying their specific roles in adenomyosis pathogenesis. Additionally,
validating the candidate genes’ specific expression patterns in epithelial,
stromal, or immune cells using single-cell RNA sequencing datasets will
help deepen our understanding of their regulatory functions within the
immune microenvironment.

4 Discussion

Adenomyosis is a common gynecologic disorder affecting women
of reproductive age, characterized by the invasion of the endometrium
into the myometrium. This condition often manifests as chronic pelvic
pain, abnormal uterine bleeding, and infertility. Currently, adenomyosis
is diagnosed through vaginal ultrasonography (Krentel et al,, 2023),
magnetic resonance imaging, and biomarker testing. However, the
pathogenesis of the disease remains incompletely understood.
Therefore, it is essential to identify high-quality diagnostic markers
for adenomyosis to enhance both diagnosis and treatment.
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Additionally, patients with adenomyosis are at risk of disease
progression and may develop malignant conditions such as
endometrial cancer, ovarian cancer, uterine sarcoma, and clear cell
carcinoma (Moraru et al., 2023; Tabuchi et al., 2025). Therefore, early
diagnosis is crucial for ensuring therapeutic efficacy and improving
quality of life. The aim of this study was to investigate the expression of
palmitoylation-related genes in adenomyosis and to identify potential
diagnostic biomarkers.

Palmitoylation is a important protein modification process that
plays a crucial role in variety diseases, including cancer, metabolic
diseases, and neurodegenerative diseases, by regulating the cellular
localization of proteins, signaling pathways, and protein
interactions. However, the research on palmitoylation-related
genes and their mechanisms in gynecological diseases is limited.
In the context of adenomyosis, estrogen may promote the
depalmitoylation of Scribble by up-regulating the expression of
APT1 and APT2, resulting in its translocation from the cell
membrane to the cytoplasm. Consequently, undertaking a
comprehensive study of adenomyosis diagnosis and treatment
from the perspective of palmitoylation genes holds significant
scientific importance.

In this study, we developed a genetic diagnostic model based on
the GEO public datasets, integrating comprehensive bioinformatics
analysis and various machine learning algorithms. First, we used the
GSE244236 dataset as a training set to compare adenomyosis
samples with control samples, identifying 549 differentially
expressed genes (DEGs), of which 302 were upregulated and
247 downregulated. GO analysis indicated that these DEGs are
primarily involved in regulating the cell cycle, chromosome
segregation, and microtubule structure. These functions are
related to abnormal tissue cell proliferation and disrupted cell
cycle regulation in adenomyosis, reflecting the molecular
mechanisms underlying abnormal cell growth in the disease.
Furthermore, we utilized WGCNA to construct gene co-
expression networks, clustering genes with similar expression
patterns and identifying modules closely associated with clinical
traits. Through integrative analysis, we identified MElightyellow
gene modules significantly correlated with adenomyosis.
Incorporating 3,228 palmitoylated genes, we found intersections
between these and the DEGs, resulting in 25 key genes that served as
the basis for further analysis. In the subsequent screening phase, we
combined three machine learning algorithms—LASSO, RF, and
SVM-RFE—to identify three potential diagnostic biomarkers:
LIPH, CYP2El, and CHRNE. Validation three

independent datasets using ROC analysis demonstrated the high

across

diagnostic accuracy of these biomarkers. The combined use of the
three markers further improved diagnostic performance, supporting
our original hypothesis. Additionally, we constructed a diagnostic
model visualized through nomogram to evaluate its predictive
We
characteristics in adenomyosis and examined their correlation
with the three providing the
immunopathological mechanisms involved.

accuracy. also  explored immune cell infiltration

biomarkers, insights  into

Through bioinformatics analysis, this study identified three key
genes closely associated with adenomyosis: LIPH, CYP2E1, and
CHRNE. LIPH, which encodes an endothelial lipase, regulates lipid
metabolism and the lysophosphatidic acid (LPA) signaling pathway,

and is involved in processes related to tumors, inflammatory
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responses, and hereditary hair disorders (Han et al., 2023; Jiang
et al,, 2025). Although no direct studies have yet confirmed the role
of LIPH in adenomyosis, lipid metabolism disorder is considered a
key feature of the disease. Elevated local estrogen levels may establish
a positive feedback loop with lipid metabolism, promoting abnormal
proliferation and invasion of endometrial cells (Harada et al., 2016).
We hypothesize that LIPH may contribute to adenomyosis
development by regulating lipid metabolism pathways. CYP2EL,
a member of the cytochrome P450 family involved in lipid
metabolism, plays a critical role in oxidative stress and
inflammatory responses. Current research mainly focuses on its
associations with liver diseases, inflammatory disorders, cancer, and
neurological conditions (Han et al., 2024; Jung et al., 2024; Ye et al,,
2021). In adenomyosis, the high expression of P450 aromatase
facilitates local estrogen synthesis, which activates inflammatory
and oxidative stress pathways, thereby promoting disease
progression. The C-1054T polymorphism (rs2031920) in the
CYP2E1 promoter region has shown a significant association
with the risk of polycystic ovary syndrome (PCOS) in Chinese
Han women, suggesting its important role in metabolic and
inflammatory disorders (Pu et al., 2023). It is hypothesized that
CYP2E1 may participate in the pathogenesis of adenomyosis by
modulating oxidative stress and inflammatory responses. CHRNE,
which encodes the epsilon subunit of cholinergic receptors, plays a
role in neuromuscular signal transduction. Emerging evidence
that neuropeptide
receptor pathways may contribute to adenomyosis development.

indicates signaling and neurotransmitter
Acetylcholine, acting through its a7-nicotinic acetylcholine receptor
(a7nAChR), can exert anti-inflammatory effects and potentially
inhibit disease progression (Xu et al, 2021). Studies have also
shown that a7-nAChR agonists can slow the progression of
endometriosis by suppressing inflammatory responses (Hao et al.,
2022). Therefore, it is hypothesized that CHRNE may influence
disease occurrence and progression through immune regulation
mechanisms, modulation of uterine smooth muscle excitability,
and alterations in the local immune microenvironment. Future
mechanistic studies are needed to verify these hypotheses and
explore the potential of CHRNE as a therapeutic target.

The potential roles of these genes in adenomyosis represent novel
findings of our study; however, further data and experimental validation
are necessary. To investigate their possible functions, we analyzed the
palmitoylation profiles of LIPH, CYP2E1, and CHRNE using the
SwissPalm database. Results indicate that LIPH has a predicted
palmitoylation site at Cys-13, but this has not yet been validated
experimentally. For CYP2E], there is no mass spectrometry evidence
of palmitoylation in humans, although data from mouse models suggest
potential modification. Regarding CHRNE, palmitoylation has only
been reported at neuromuscular junctions, with no validation in other
tissues. Collectively, all three genes possess potential palmitoylation
sites, but direct experimental evidence remains lacking. Future studies
should incorporate functional experiments to clarify their regulatory
roles in adenomyosis. Additionally, these gene expression changes may
be influenced by the immune microenvironment of adenomyosis,
which warrants further exploration through genetic approaches such
as Mendelian randomization and single-cell multi-omics techniques to
elucidate this bidirectional interaction network.

Despite the findings presented in this study, several limitations
must be acknowledged. First, the dataset used has a relatively small
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sample size and includes data collected from different platforms,
emphasizing the need for validation in larger, independent cohorts.
Second, additional in vivo and in vitro experiments are essential to
confirm the roles of these biomarkers in the pathogenesis of
adenomyosis and their association with immune infiltration.
Finally, the clinical utility and specificity of these biomarkers
require further validation through prospective clinical studies.

In summary, this study identified three potential diagnostic
biomarkers by integrating bioinformatics analyses with multiple
machine learning algorithms, providing preliminary insights into their
biological functions and diagnostic potential in adenomyosis. These
findings lay the groundwork for future research and hold promise for
improving the diagnosis and treatment strategies for adenomyosis.
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