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Background: Triple-negative breast cancer (TNBC) is an aggressive subtype of
breast cancer characterized by a lack of hormone receptors, making it
challenging to treat.

Methods: We generated a comprehensive spatial cell atlas of TNBC using a multi-
omics integration approach that combined single-cell RNA sequencing (scRNA-
seq) with spatial transcriptomics. This integration allowed us to characterize the
spatial microenvironment and map the cell-type-specific distributions in
TNBC tissues.

Results: Our analysis revealed significant heterogeneity in cell types and spatial
distribution, with normal regions enriched in insulin resistance functions, whereas
cancerous regions displayed diverse cell populations, including immune cells,
cancer-associated fibroblasts (CAFs), and mesenchymal cells. By constructing
transcription factor (TF) regulatory networks, we identified TFF3, RARG, GRHL1,
RORC, and KLF5 as critical regulators of epithelial cells, whereas EMX2, TWISTZ,
TWIST2, NFATC4, and HOXC6 were found to play essential roles in mesenchymal
cells. Immunohistochemical validation supported the involvement of these TFs in
TNBC. Further analysis of receptor-ligand interactions highlighted the roles of
KNG1_BDKRB2 and NRGI1_ERBB4 signaling in promoting tumor aggression,
suggesting potential therapeutic targets. GO enrichment analysis revealed
overlapping pathways between epithelial and mesenchymal cells, focusing on
migration, signaling, and development, indicating that the shared regulatory
mechanisms contribute to cancer progression.

Conclusion: Our findings provide new insights into the TNBC microenvironment,
emphasizing the complex spatial interactions between different cell types and
highlighting key requlatory pathways that could be targeted for future therapeutic
interventions. This spatial cell atlas lays the foundation for further exploration of
tumor microenvironment dynamics and precision oncology approaches.
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triple-negative breast cancer, spatial transcriptomics, microenvironment, tumor spread,
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1 Introduction

Breast cancer is the most prevalent cancer diagnosed among
women worldwide, affecting approximately 1.7 million women
annually and resulting in approximately 500,000 deaths
worldwide. (Bray et al., 2018; Ferlay et al., 2015; Siegel et al,
2018; Rodrigue et al, 2019). Triple-negative breast cancer
(TNBC)
accounting for 10%-20% of breast cancer diagnoses, and is

is considered one of the most severe subtypes,

defined by the lack of expression of the estrogen receptor (ER),
progesterone receptor (PR), and HER2 (Zhao et al,, 2021; Abu-
Jamous et al, 2017). Owing to its high aggressiveness and
TNBC is often linked to hypoxic
conditions and significant intratumor heterogeneity (Abu-Jamous
et al,, 2017; Saatci et al., 2020). This heterogeneity poses a major

unfavorable prognosis,

challenge to effective treatment, leading to limited therapeutic
options compared with non-TNBC subtypes.

The etiology of breast cancer is complex and involves a
combination of genetic predispositions, environmental factors,
and high-risk conditions such as obesity, hormonal imbalances,
and early or late menarche. The tumor microenvironment (TME) is
vital for driving tumor growth and therapy resistance. For instance,
TNBC cells secrete cytokines such as granulocyte-macrophage
colony-stimulating factor (GM-CSF), which stimulates the growth
of hematopoietic and myeloid cells, thereby contributing to the
reactive stroma observed in TNBC (Hanahan and Weinberg, 2011).

Advances in scRNA-seq have facilitated the detailed analysis of
intra-tumor gene expression variability (Patel et al., 2014; Kim Et
Al., 2015; Grun et al., 2015; Junker and Van Oudenaarden, 2015).
However, scRNA-seq lacks spatial context, making it difficult to
understand the interaction of cells with their
microenvironment (Satija et al., 2015; Achim et al., 2015). Earlier

tumor

in situ sequencing approaches were restricted to analyzing a limited
set of genes (Ke et al, 2013; Lee et al., 2014), and the spatial
transcriptomic profile of TNBC was scarcely studied prior to the
development of Spatial Transcriptomics (ST).

In this study, we used a multifocal TNBC model to investigate
the spatial and transcriptomic features of TNBC. By combining
scRNA-seq and ST methods, we aimed to capture the transcriptomic
heterogeneity of TNBC cells and their microenvironment, thereby
offering deeper insights into the molecular mechanisms underlying
tumor growth and cell-to-cell communication. This integrative
approach allows us to uncover critical regulatory networks and
identify new therapeutic targets within the spatial context of TNBC
tissue (Stahl et al., 2016).

2 Methods
2.1 Data collection and analysis

The annotated cell types and breast cancer dataset were sourced
from the Gene Expression Omnibus (GEO) database GSE176078
(Wuetal, 2021). These data were divided into two parts: (1) scRNA-
seq was performed on tumor samples from 10 patients with triple-
negative breast cancer (TNBC) aged between 39 and 73 years. All
patients were diagnosed with grade III advanced-stage invasive
carcinoma, predominantly classified as either invasive ductal
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carcinoma (IDC) or metaplastic breast carcinoma (MBC). (2) ST
data of 1 TNRC (patient CID44971). A summary of the patients’
clinical and  pathological  features is  provided in
Supplementary Table S1.

The KM-plotter tool which includes clinical cohorts from GEO,
European Genome-phenome Archive (EGA), and The Cancer
Genome Atlas (TCGA) was used to evaluate the correlation
between gene expression and survival rates in 335 TNBC patients

(https://kmplot.com/analysis/) (Gyorffy, 2021).

2.2 scRNA-seq data processing and cell type
annotation

Gene-barcode counts matrices were analyzed using the Seurat R
package (version 4.0.4) (https://www.satijalab.org/seurat). Cells with
fewer than 200 detected genes or with more than 20% mitochondrial
gene content were excluded. The samples were then merged into a
single Seurat object. The merged Seurat object was normalized with
regression on UMI count and mitochondrial content and
mitochondrial gene percentage. The characteristics of the dataset
were based on a list of 1,500 most variable genes
(FindVariableFeatures). t-SNE was applied to the top 30 PCs
using Seurat’s RunTSNE.

Cell types were defined using a combination of unsupervised
clustering and differential expression, whereby we compared the t
the most differentially expressed genes were compared to known cell
types. The cells were classified into broad categories, and cellular
subtypes were further delineated by isolating subsets (through in
silico “gating”) of broadly defined cell types, followed by re-analysis
using the same procedure. A total of 29 clusters were identified for
wide cell type annotation (Figure 1A). For optimal clustering,
resolutions of 0.4 were used for the data shown in the present
study. The optimal clustering resolution in Seurat was determined
by clustering integrated single-cell expression data at 10 different
resolutions from 0.1 to 1.0 using the “resolution” parameter in the
FindClusters () function. The clusters of interest were filtered and
compared for differential gene expression using the Wilcoxon rank-
sum test (FindAllMarkers function; only. pos = TRUE, min. pct =
0.25, logfc. threshold = 0.5, p-value cut-off = 0.05) to discover
marker genes or upregulated genes. Markers for epithelial
(EPCAM), proliferative (MKI67), T cells (CD3D), myeloid
(CD68), B cells (MS4A1), plasmablasts (JCHAIN), endothelial
(PECAM1), and mesenchymal cells (PDGFRB) was log-normalized.

2.3 Tumor cells with their normal
counterparts analysis alone

CNV analysis in scRNA-seq is a powerful approach to
distinguish cancer cells from normal cells by identifying
significant chromosomal variations, such as gains or losses of
large DNA segments, through gene expression patterns along
chromosomes. This method estimates DNA copy numbers in
specific genomic regions based on RNA expression levels,
enabling the detection of cells with substantial CNV alterations,
like cancer cells, compared to diploid cells. In this study, CopyKAT
(Gao et al., 2021) was employed to differentiate tumor cells from
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FIGURE 1

scRNA-seq map of breast cancer. (A) t-SNE plot showing the clustering of scRNA-seq expression profiles. (B) t-SNE representation of all

48,164 cells, annotated by patient. (C) Marker gene expression visualized for each cluster on t-SNE. (D) t-SNE clustering by cell types, including epithelial,
myeloid, T cells, B cells, plasmablasts, mesenchymal, endothelial, and proliferating cells. (E,F) Bar plots illustrating cell type distribution by patient, tumor
versus normal origin, and total cell count. (G) Normal and tumor cell distribution patterns.

normal cells using high-throughput scRNA-seq data. Tumor cells
exhibit genome-wide aneuploidy, whereas stromal and immune cells
generally show 2N or near-diploid profiles.

2.4 Integration with spatial transcriptome
and single-cell data

To explain the spatial microenvironment of TNBCs, we first
need to obtain a spatial gene expression map at single-cell resolution.
We integrated the ST of TNBCs (CID44971) with the single-cell
transcriptome for annotation to create a more accurate annotation
file between samples. Next, the filtered single-cell and spatial
transcriptomic data (CID44971) ensured reliability by excluding
aberrant cells.

scRNA-seq data from adjacent sections of human breast
cancer (CID44971) annotated using a deep learning-based
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deconvolution algorithm based on Tangram software to
validate the cell type distribution pattern of breast cancer
pathology sections. 2021). Briefly, the
“rank_genes_groups” function in Scanpy was used to identify
marker genes in single-cell clusters (Wolf et al., 2018). The top
20 DEGs ranked by fold change were selected as input marker
genes. To map scRNA-seq-defined cell types onto the ST data, we
learning-based

(Biancalani et al.,

employed Tangram, deep

deconvolution framework that aligns single-cell profiles to

a probabilistic

spatial transcriptomic spots. Tangram leverages both marker
genes and global transcriptomic features to achieve robust and
biologically consistent mapping, even in the presence of
microenvironmental ~ heterogeneity  or  patient-specific
variation. Following quality control to remove aberrant cells
or spots, a total of 1,162 high-quality spots from the ST
dataset were retained for downstream spatial mapping.

Tangram then projected the scRNA-seq-inferred cell types
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onto these spatial spots, and the resulting normalized spatial cell-
type probability distributions were visualized across the
tissue section.

2.5 Spatial cell-cell interaction analysis

The Python toolbox stLearn was used to analyze spatial cell
communication within ST data from TNBCs, as described by Pham
(Pham et al.,, 2020). This tool is recognized for its ability to normalize
gene expression by leveraging morphological similarities in adjacent
regions, effectively reducing the “dropout” noise associated with
RNA-seq technology limitations. Genes detected in fewer than three
locations were excluded from the analysis of TNBC ST-seq data. The
filtered gene counts were normalized to counts per million (CPM),
log-transformed, and scaled. For ligand-receptor (L-R) predictions,
we applied CellPhoneDB (v3.0.0) with default parameters and the
curated database version from Efremova et al. (2020). Additionally,
NicheNet was employed for L-R predictions on 10x Genomics
Visium ST data, following a similar approach to snRNA-seq for
cell-cell communication analysis through L-R pairings. Finally, the
gene count matrix was normalized using stSME, which incorporates
tissue morphology into the process.

2.6 Inference of regulons and their activity

A multi-species-adapted version of the SCENIC pipeline was
utilized to reconstruct gen GRNs from scRNA-seq datasets (Aibar
et al,, 2017; Davie et al., 2018; Han et al, 2018). This approach
includes three main steps: (1) determining co-expression modules
between transcription factors (TFs) and their potential target genes;
(2) identifying direct target genes for each module by detecting
motifs enriched for specific TFs; and (3) calculating the Regulon
Activity Score (RAS) in individual cells using the area under the
recovery curve.

SCENIC software systematically identified key regulators
associated with epithelial cell function and mesenchymal cell
identity. For each regulon, we assessed activity patterns specific
to the two major cell types and derived a Regulon Specificity Score
(RSS) using Jensen-Shannon divergence. Regulons with the highest
RSS values were prioritized for functional analysis.

In this study, “species” refers to the replacement of default
SCENIC  with  human-specific
transcription factor annotations and motif databases, ensuring

mouse-based  settings  in
biological relevance and improving GRN inference accuracy in
human TNBC samples. To determine the cell-type specificity of a
regulon, an entropy-based method previously applied for gene
expression analysis was utilized (Cabili et al, 2011). Regulators
with the highest cell type-specific scores were identified as the most
significant for each cell type.

To identify regulon modules, we applied the Connection
Specificity Index (CSI), a context-aware metric for detecting
associations (Bass et al, 2013). Using hierarchical clustering
based on Euclidean distance, distinct regulon modules were
delineated from the CSI matrix. A threshold of CSI >0.7 was
adopted to establish a regulon association network. Similarly,
submodules within M7 were identified using this approach. For
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each regulon module, cell type-specific activity scores were
calculated as the average activity of its members across all cells of
a given type. The top-ranked cell types were determined for
each module.

2.7 Cell culture and real-time PCR

MCF7 cells were maintained in MEM NEAA (Procell, China)
medium supplemented with 10% fetal bovine serum (Sijiging,
Hangzhou, China) and penicillin/streptomycin (Solarbio Science
and Technology Co. Ltd., Beijing, China). The cells were cultured in
a humidified atmosphere containing 95% air and 5% CO, at 37 °C.

MCEF7 cells were treated with or without oxymatrine (12.5 pg/
mL) for 72 h (24 h pretreatment, followed by another 48 h
incubation with/without stimulation). Total RNA was obtained
using a commercial total RNA purification kit (Axygen) and
subsequently subjected to reverse transcription using a cDNA
synthesis kit (TaKaRa) following the manufacturer’s instructions.
Primer sequences used for qPCR were: EMX2 (forward:
'TCATCCACCGCTACCGATATCTG';  Reverse: ‘TGTTGCG
AATCTGAGCCTTCTTC), TFF3(forward: ~ ‘CATGCTGGGGCT
GGTCCTG'; Reverse: ‘GGCACGGCACACTGGTTTG')RARG
(forward:' CGCCGAAGCATCCAGAAGAAC; Reverse:’ GCGAT
TCCTGGTCACCTTGTTG'),and GAPDH (forward: 5'- GGA
GTCCACTGGCGTCTT-3'; reverse: 5'- AGGCTGTTGTCATAC
TTCTCAT-3"). Real-time PCR analysis was performed using
SYBR Green PCR Premix Ex Taq II reagents (TaKaRa) on a
real-time PCR system (Tianlong, Gentier 96E, CHINA). GAPDH
served as the housekeeping gene. QPCR results were analyzed using
the comparative CT method.

3 Results
3.1 Multimodal profiling of breast cancer

Single-cell RNA sequencing (scRNA-seq) was conducted on
tumor samples from 10 TNBC patients. A total of 50,009 cells
were sequenced, with 48,164 cells passing quality control filters and
subsequently analyzed using Seurat. Unsupervised clustering
revealed distinct populations of tumor cells, normal epithelial
cells, stromal cells, and immune subtypes (Figures 1A,B).
Notably, clustering was predominantly influenced by cell type
rather than by batch variation.

Marker gene analysis confirmed the identities of various cell
types, including epithelial cells (EPCAM), proliferative cells
(MKI67), T cells (CD3D), myeloid cells (CD68), B cells
(MS4A1), plasmablasts (JCHAIN), endothelial cells (PECAM1),
and mesenchymal cells (PDGFRB) (Figure 1C). The distribution
of these cell types across patients and tumor samples demonstrated
consistent diversity (Figures 1E,F).

Using the Infer CNV algorithm, we predicted copy number
variations (CNVs) to assess the genomic heterogeneity between
tumor and normal cells. We identified 529 malignant cells with
significant chromosomal alterations, distinguishing them from non-
malignant cells. Interestingly, proliferative and endothelial cells did
not exhibit significant CNV, suggesting that these cells may retain a
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more stable genome (Figure 1G). Taken together, these results
provide a comprehensive cellular atlas of TNBC, highlighting the
heterogeneity of both the tumor and stromal compartments.

3.2 Breast cancer spatial cell communication

We conducted spatial transcriptome analysis on the TNBC
sample CID44971 to explore the spatial organization and cellular
interactions within the TME. Pathological sections were annotated
to distinguish between cancerous regions, ductal carcinoma in situ
(DCIS), lymphocytes, stroma, adipose
(Figures 2A,B).

Using the stLearn tool, we examined L-R co-expression within

normal and tissue

spatial transcriptomic spots (Pham et al., 2020). We identified more
than 1000 L-R combinations from the CellPhoneDB database
(Browa et al, 2020), revealing significant differences in cellular
communication between cancerous and stromal regions (Figures
2C,D). In particular, communication was more active in the normal
stroma lymphocyte region, whereas cancerous regions displayed
spatial heterogeneity, with areas of both dense and sparse cellular
communication (Figure 2C).
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Further analysis identified several receptor-ligand pairs with
elevated activity in the tumor region. Among these, KNGI_
BDKRB2 stands out because of its strong association with cancer
prognosis and high expression within the tumor area (Figure 2E)
(Cui et al, 2020). This suggests that KNGI_BDKRB2 may be
involved in tumor progression. NRG1_ERBB4 activates the YAP
transcriptional coactivator, promoting cell growth and migration via
the Hippo pathway and contributing to tumor aggressiveness
(Figure 2H) (Haskins et al, 2014). FGB_ITGA5 and AZGP1_
ITGAV: These pairs may be potential targets for inhibiting cancer
spread or progression (Figures 2F,G). These findings underscore the
complex spatial organization of TNBC and highlight key receptor-
ligand interactions that may serve as therapeutic targets.

3.3 Prediction of different cell types in spatial
spots of breast cancer tissue sections

To gain insight into the cellular composition of TNBC, we first
annotated the single-cell transcriptome data of TNBC samples
(CID44971). After quality control, we used the Tangram tool to
integrate and deconvolute single-cell and spatial transcriptome data,
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FIGURE 3

Spatial mapping of cell types in breast cancer tissues. (A) Spatial plot of predicted cell type distribution across captured spots. (B) Spatial plot of

predicted cell type compositions within captured spots.

identifying major cell types, including endothelial cells, CAFs,
perivascular-associated fibroblasts (PVL), B cells, T cells, myeloid
cells, and both cancerous and normal epithelial cells (Figure 3A).

The spatial distribution of these cell types revealed distinct
patterns. For instance, cancer cells were found to coexist with
fibroblasts, albeit in varying proportions across different regions.
In contrast, normal epithelial cells were localized to specific regions
of the tissue slices. Notably, immune cells, such as B cells and T cells,
were significantly more abundant in normal regions, whereas
cancerous regions displayed a more diverse and complex cell
composition (Figure 3B).

Frontiers in Genetics

These findings highlight the spatial heterogeneity of TNBC,
where immune cells dominate the normal tissue environment, while
the TME is enriched with a more diverse array of cell types,
reflecting the complexity of cancer progression.

3.4 Spatial mapping of breast cancer
heterogeneity

To explore the spatial heterogeneity of TNBC, we performed
clustering analysis on the spatial transcriptome data of TNBC

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1614254

Zhang et al. 10.3389/fgene.2025.1614254
A B
1 2 5 3 4 6 0 7
T T T T T T T T !
1
2
5
AN
= o
= L3
@© @ 6
o =
) ©
4
4
6
0 2
7
. 0
spatial1 PHYH
PEXT
NPR2
c D B3.GLCT ®
Cluster4 p.adjust SERPINE1 Short metacarpal
001 PMCH size
— coL11A2® b
Insulin Resistance 002 ° AGPAT2 o :
005 FGFT? EXT1 [ X
' NR4A3 ! ' CHST3 @
Blastic plasmacytoid | g 0.04 Insulin Resistanceiaa 1 @
dendritic cell neoplasm ADRB2 . 12
Count
oun Insulin Sensitivity RS2 fold change
. i e 7 MSMO1 »m
Insulin Sensitivity 1 ® CDKN2B 05
@ s PRKCD 00
. o 9PE LAMTOR2 s
- NR4A1 PBRM1 I'“’
Short metacarpal | ® . " Blastic plasmacytoid dendritic cell neoplasm
0525 00w 053 odw @ CPK2AR2
GeneRatio TCL1A RPP14

FIGURE 4

TCL1B
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(cluster4) GO functionally enriched for participating genes.

(CID44971). The analysis revealed eight distinct clusters, with
cancer regions primarily corresponding to clusters 2 and 6,
while ductal carcinoma in situ (DCIS), lymphocytes, and
stromal regions corresponded to clusters 0, 1, 5, and 7
(Figures 4A,B).

To better understand the resistance of normal tissue to tumor
progression, we conducted GO enrichment analysis of the marker
genes from cluster 4, which was primarily associated with normal
tissue. The enriched pathways included insulin resistance and blast
plasmacytoid dendritic cell neoplasms (Figure 4C). This suggests
that the normal regions are primarily enriched in metabolic
processes, such as insulin resistance, which could play a
protective role against tumor invasion.

Further regulatory network analysis revealed that insulin
resistance and sensitivity pathways were modulated through key
genes, including IRS2, CPE, ADRB2, NR4A3, and FGFI9
(Figure 4D). These interactions highlight a potential metabolic
regulatory mechanism that distinguishes normal tissue from
cancerous regions, suggesting that insulin resistance may serve as
a key barrier to tumor spread.
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3.5 Comparative analysis of essential
regulators for cell identity maintenance

To better understand the regulatory networks maintaining cell
identity in TNBC, we used SCENIC to analyze TF activity across
epithelial and mesenchymal cell populations. Our analysis identified
TFF3, RARG, GRHLI1, RORC, and KLF5 as key regulons in
epithelial cells, while EMX2, TWIST1, TWIST2, NFATC4, and
HOXC6 were the most specific regulons in mesenchymal cells
(Figures 5A,B). These findings indicate that distinct regulatory
programs govern epithelial and mesenchymal cell identity in TNBC.

We further constructed transcriptional regulatory networks for
epithelial and mesenchymal cells to reveal how these TFs interact to
maintain cell-specific gene expression profiles (Figures 5C,D).
Modules containing TFF3, RARG, and GRHL1 were particularly
enriched in epithelial cells, suggesting their critical role in
maintaining epithelial characteristics (Figure 5E).

To validate our predictions, we used immunohistochemistry
data from the Human Protein Atlas (HPA) to assess the expression
of these TFs in breast cancer samples. TFF3 and RARG were
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Key transcription factors. (A) The expression of TFF3, EMX2 and RARG mRNA as detected by qRT-PCR. (B=D). Correlation between the TFF3,
EMX2 and RARG gene expression in tumor and overall survival in independent cohort of TNBC patients.

strongly expressed in breast cancer tissues, supporting their
involvement in TNBC pathogenesis (Figure 5G).

Additionally, we performed GO enrichment analysis to explore
the biological processes regulated by these TFs in the epithelial and
mesenchymal cells. Epithelial cells were predominantly associated
with  developmental pathways and proteolysis, whereas
mesenchymal cells were enriched in signaling pathways related to
migration and the WNT pathway (Figures 5H,I). Comparing these
2 cell types, we observed overlapping pathways involved in cell
migration and signal transduction, suggesting that shared regulatory

mechanisms contribute to cancer progression (Figure 5]).

4 Discussion

In this study, we generated a spatial cell atlas of TNBC using an
integrative multi-omics approach that combined scRNA-seq and
spatial transcriptomics. This integrative strategy overcame the
limitations of individual approaches and allowed us to map the
complex spatial microenvironment of TNBC. By annotating
scRNA-seq data and identifying cancerous cells in spatial
pathological sections, we revealed distinct spatial communication
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patterns among different pathological regions of TNBC. Our
analysis demonstrated significant heterogeneity in cell types and
gene expression across spatial regions, with normal regions
primarily enriched in insulin resistance functions, whereas
cancerous regions displayed a more diverse and complex cellular
composition.

Our findings align with those of recent studies that have
emphasized the importance of spatial heterogeneity in TNBC.
For example, Shiao et al. (2024). demonstrated the value of
integrating spatial and single-cell transcriptomic data to reveal
the unique microenvironmental niches within breast cancer
tissues, particularly highlighting the role of metabolic pathways
in tumor-normal interaction. Our data showed that insulin
resistance pathways were highly enriched in normal regions,
suggesting a protective role against cancer progression, which is
consistent with the findings of Arner and Rathmell, (2023), who
linked metabolic reprogramming in the TME to immune infiltration
and cancer suppression.

Our TF network analysis further highlighted critical regulators
of TNBC progression. TFF3, RARG, GRHL1, RORC, and KLF5 were
identified as key regulators in epithelial cells, while EMX2, TWIST1,
TWIST2, NFATC4, and HOXC6 played essential roles in
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mesenchymal cells and TNBC prognosis (Supplementary Material
File 2). To validate the transcription factor, we treated the triple-
negative breast cancer MCF7 cell line with positive drugs
(oxymatrine). The expression of TFF3 and RARG decreased
significantly after oxymatrine treatment but increased expression
of EMX2 after treatment with oxymatrine (Figure 6A). To explore
the clinical relevance of these TFs, we conducted survival analysis
using KM-plotter. While TFF3 and RARG expression correlated
with poorer prognosis when elevated, EMX2 displayed a non-
significant trend toward favorable outcome (HR = 0.96, P > 0.7).
The lack of statistical significance may be due to insufficient
stratification, limited TNBC samples, and tumor heterogeneity
(Figures 6B-D). TFF3 is significantly upregulated in breast cancer
and is sufficient to initiate tumorigenesis. It promotes malignant
transformation by activating the STAT3 signaling pathway, thereby
regulating genes involved in cell cycle progression and survival, and
its expression is positively correlated with advanced
clinicopathological features of breast cancer (Pandey et al., 2018).
RARG by signaling pathway may contribute to tumor progression
by modulating cellular differentiation, proliferation, and apoptosis
(Illendula et al., 2020). GRHLI, a key transcription factor involved in
epithelial cell differentiation and maintenance, play a role in breast
cancer progression by influencing epithelial-mesenchymal
transition (EMT) and cell proliferation (Ming et al., 2018; He
et al,, 2021). RORC plays a crucial role in the immune system
and may affect the tumor immune microenvironment of breast
cancer by modulating immune cell functions (Zeng et al., 2024).
KLF5 is highly expressed in triple-negative breast cancer and
promotes cell proliferation, stemness, migration, and metastasis
by regulating downstream target genes such as TNFAIP2 and
XPOLl. The stability of KLF5 is modulated by deubiquitinating
enzymes BAP1 and USP3 (Qin et al, 2015; Jiang et al., 2022).
These findings are consistent with the well-established role of
epithelial-to-mesenchymal transition (EMT) in cancer metastasis.
A recent study by Jin et al. (2021) also identified TWIST1 as central
regulators of EMT, reinforcing our results that EMT-related TFs
drive the mesenchymal state and contribute to the aggressive
behavior of cells. EMX2 exerts tumor-suppressive functions in
TNBC by directly binding to the E-cadherin promoter to
maintain the epithelial phenotype and by repressing the
expression of key EMT transcription factors such as TWISTI,
thereby inhibiting EMT and cancer stem cell (CSC) properties
(Wang et al., 2019; Zhang et al., 2023). In contrast, TWIST1 and
TWIST2, as central EMT drivers of the Twist family, promote
by
upregulating N-cadherin and vimentin, thereby facilitating cell
migration and invasion (Wang et al., 2016; Ansieau et al., 2008).
NFATC4 promotes metastasis in TNBC by activating TWIST1/
2 expression to synergistically drive EMT and by upregulating
matrix metalloproteinases (MMP2 and MMP9) to degrade the
basement membrane and enhance invasiveness (Mao et al., 2012;
Kamalabadi Farahani et al.,, 2023). HOXC6 contributes to TNBC
progression by directly binding to the promoters of TWIST1/2 to
enhance their transcriptional activity establish
HOXC6-TWIST feedback additionally,

HOXC6 activates the Wnt/B-catenin signaling pathway to

malignant  progression suppressing  E-cadherin  while

and a

positive loop;

maintain CSC self-renewal and engages in cross-talk with the
estrogen receptor (ER) signaling pathway (Huang et al, 2022;
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Song et al,, 2024). The shared GO functions between epithelial
and mesenchymal cells, particularly in signaling pathways related to
migration and development, suggest that these cells may interact
and contribute to cancer dissemination through similar
mechanisms.

The TME is a critical component of tumor progression and
metastasis. Beyond epithelial cells, the TME comprises immune
cells, fibroblasts, and endothelial cells, all of which interact with
cancer cells to regulate tumor progression. While scRNA-seq has
been extensively applied to investigate the TME, the mechanisms
by which cancer cells influence or “domesticate” these non-
epithelial cells remain insufficiently explored. Our study
provides new insights into this interaction, particularly
through the discovery of specific receptor-ligand pairs such as
KNG1_BDKRB2 and NRG1_ERBB4, which are associated with
cancer prognosis and aggressive tumor behavior, respectively.
This aligns with recent work by Parambil et al. (2024), who
highlighted the role of NRGI-ERBB4 in activating pro-
tumorigenic pathways, including the YAP signaling pathway,
which promotes tumor cell proliferation and survival. NRG1 a
member of the neuregulin protein family, promotes tumor
progression in TNBC by binding to the abnormally expressed
ERBB4 receptor, inducing the formation of HER2-HER3/
4 heterodimers and persistently activating downstream
signaling pathways such as PI3K/AKT and MAPK, thereby
enhancing tumor cell proliferation and resistance to apoptosis
(Yun et al, 2018; Miano et al., 2022). KNGI upon cleavage,
generates bradykinin, which binds to the B2 receptor (BDKRB2)
and activates inflammatory and angiogenic pathways including
NF-xB and VEGF (Rex et al., 2022; Liu et al., 2017; Terzuoli et al.,
2014); in the TNBC microenvironment, this signaling axis
enhances vascular permeability and recruits
immunosuppressive cells, thereby promoting tumor invasion
and metastasis (De Visser and Joyce, 2023; Lu et al., 2025).

Interestingly, we observed that immune cells were more
abundant in the normal regions of TNBC tissues, whereas
cancerous regions exhibited more diverse cellular compositions.
This suggests that the immune landscape in TNBC may be
spatially regulated and may have important implications in
immunotherapy strategies. Chen et al. (2024) recently reported
that spatial differences in immune cell infiltration are critical for
the effectiveness of immunotherapies in breast cancer, supporting
our observations that immune cell distribution could be leveraged
for targeted interventions. Our findings support the idea that
oxidative stress and pathways such as TGF-B/Smad and Wnt/p-
catenin may contribute to the epithelial-mesenchymal transition, as
previously reported (Chen et al.,, 2021).

While our findings are promising, there are some limitations to
this study. The integration of scRNA-seq and spatial transcriptomics
relies on cellular marker genes, which can vary depending on the
TME and the

transcriptomic resolution remains below single-cell precision,

individual cancer cases. Moreover, spatial
potentially introducing inaccuracies in cell-type annotation. As
spatial transcriptomic technologies advance, future studies will
achieve higher resolution and provide a more comprehensive
understanding of the TNBC microenvironment. Gulati et al.
suggested that the latest advances in spatial resolution may soon

enable near single-cell precision in spatial transcriptomics, which
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will further refine our understanding of tumor heterogeneity (Gulati
et al.,, 2024).

In conclusion, our study provides a detailed spatial map of the
TNBC microenvironment and identifies key transcriptional regulators
involved in cancer progression. These findings identified potential
therapeutic targets for TNBC and provided a foundation for
investigating the spatial dynamics of cancer cell interactions and
their treatment implications. With advancements in integrating
spatial and single-cell transcriptomics, these technologies are
expected to become critical for developing precision oncology
strategies tailored to the unique spatial features of individual tumors.
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