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Background: This study aims to identify key modules and targets during the
transition from gastric precancerous lesions to gastric cancer by performing
weighted gene co-expression network analysis (WGCNA) on gene microarray
datasets from the Gene Expression Omnibus (GEO) database containing gastritis,
gastric cancer and precancerous lesions, providing insights for early intervention
in gastric cancer.

Methods: Transcriptomic data from precancerous lesions (including low-grade
and high-grade intraepithelial neoplasia) and early gastric cancer were analyzed
using differential gene analysis, WGCNA, and survival analysis. Critical modules
and genes associated with disease progression were identified. The prognostic
value and expression changes of these genes were evaluated, and their
expression patterns across disease states were validated in external datasets to
confirm key genes involved in the inflammation-cancer transformation into
gastric cancer.

Results: WGCNA identified four key modules: pink, purple, red, and magenta. The
first three modules were most strongly associated with low-grade intraepithelial
neoplasia, high-grade intraepithelial neoplasia, and early gastric cancer,
respectively, while magenta was linked to all three stages. Functional analysis
reveals: Pink module: Enriched in inflammation-related pathways. Purple
module: Involved in chemical carcinogenesis and beta-alanine metabolism.
Red module: Associated with immune response and inflammation,
participating in NF-kappa B and Toll-like receptor signaling pathways.
Magenta module: Linked to complement activation and immune response,
enriched in cytokine-cytokine receptor interaction and chemokine signaling
pathways. Core genes are filtered based on gene significance (GS > 0.2) and
module membership (MM > 0.8). Among 20 shared core genes across disease
stages, 13 genes (e.g., FCRL3,EFEMP1ANKRD29,STOX2) were identified as
unfavorable prognostic factors for gastric cancer. External validation
confirmed consistent expression patterns of these genes in training and
validation datasets, with all four genes (FCRL3, EFEMP1, ANKRD29, STOX2)
significantly correlating with poor prognosis.

Conclusion: WGCNA reveals modules associated with gastric precancerous
lesions and cancer progression. FCRL3, EFEMP1, ANKRDZ29, and STOX2 may
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serve as potential biomarkers for monitoring the transition from precancerous
lesions to gastric cancer, offering insights into the mechanisms of gastric
carcinogenesis and supporting early diagnosis and intervention strategies.

WGCNA, key gene, key module, precancerous lesions of the stomach, gastric cancer

1 Introduction

According to the 2024 National Cancer Report released by the
National Cancer Center, gastric cancer (GC) ranks third in cancer-
related mortality (Zheng et al., 2024), posing a significant threat to
public health as a major chronic non-communicable disease.
Approximately 95% of gastric cancers are adenocarcinomas, with
intestinal-type gastric cancer (IGC) and diffuse-type gastric cancer
(DGC) representing the two major histological subtypes. These
subtypes exhibit significant differences at the molecular level.
Notably, IGC exhibits a higher tumor mutational burden and
stronger association with genomic instability compared to DGC,
underscoring its relevance for studying inflammation-driven
typically  follows a

gastritis  (CG) to
precancerous lesions—such as atrophic gastritis (AG), intestinal
(IM), and (IN)—and
ultimately to gastric cancer (GC), a process well described by the

carcinogenesis.  Gastric  carcinogenesis

multistep  progression from  chronic

metaplasia intraepithelial neoplasia
Correa cascade (Correa and Piazuelo, 2012). Accumulating evidence
indicates that this progression is most prominent in IGC, which
accounts for the majority of GC cases and is closely associated with
Helicobacter pylori-induced chronic inflammation (Wang et al,
2022). IN, a critical precancerous stage, is histologically classified
into low-grade (LGIN) and high-grade (HGIN) based on the degree
of cellular atypia, with HGIN carrying a significantly increased risk
of malignant transformation.

Early intervention in the precancerous stages is crucial to
decelerate  disease  progression and  prevent malignant
transformation (Bray et al, 2018; Zhou et al, 2019; Yan-Rui
2024). The
transformation” refers to the pathological continuum whereby

et al, concept of “inflammation-cancer

persistent  inflammation  promotes tumor initiation and
progression through a series of coordinated molecular and
cellular events.

During this transformation process, chronic inflammatory
stimulation prompts the secretion of various cytokines (such as
IL-6), which drives the polarization of macrophages from the
M1 type to the M2 type (Wei et al, 2024). This polarization,
together with the activation of cancer-associated fibroblasts
(CAFs) (Cheng et al, 2023), jointly forms a tumor-promoting
microenvironment. This immune microenvironment provides
favorable conditions for the immune escape of tumor cells and
supports the clonal expansion of transformed epithelial cells,
thereby forming a self-reinforcing cycle that promotes malignant
transformation.

Although WGCNA, a systems biology approach effective in
identifying functionally coordinated gene modules, has been applied
in gastric cancer research (Wu et al., 2025; Zhang et al., 2025), these
studies have primarily focused on tumor tissues alone, with limited
integration of precancerous stages. Consequently, the dynamic gene

co-expression networks driving the stepwise progression from
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chronic gastritis to cancer remain poorly characterized. In this
study, we integrated multi-stage transcriptomic datasets from
patients  with gastric
including CG, low-grade intraepithelial neoplasia (LGIN), high-

intestinal-type cancer-related lesions,
grade intraepithelial neoplasia (HGIN), and early gastric cancer
(EGC). Using WGCNA, we systematically characterized the
dynamic gene expression patterns underlying inflammation-
cancer transformation. We further performed KEGG pathway
enrichment, survival analysis, and external validation to identify
key genes and pathways. Importantly, we coupled this with
comprehensive immune cell infiltration analysis to explore how
the remodeling of the tumor immune microenvironment regulates
this transition. The overall study design is illustrated in Figure 1.

2 Materials and methods
2.1 Dataset acquisition

We obtain microarray datasets (GSE130823 and GSE55696) (Xu
et al, 2014; Zhang et al., 2020) from Gene Expression Omnibus
(GEO) database. GSE130823 serves as the training set, and
GSE55696 serves as the validation set. Detailed information
about these datasets is provided in Table 1. FPKM (Fragments
per kilobase of transcript per million mapped reads)-formatted gene
expression data and corresponding clinical data for the STAD
project are obtained from the TCGA database by the Sangerbox
3.0 (Chen et al, 2024) platform for subsequent immune cell
infiltration analysis and clinical feature correlation analysis.

2.2 Dataset preprocessing

The raw gene expression matrix undergoes preprocessing,
including filtering of low-expression genes (retaining only genes
with expression values > 1 in at least 10% of samples) and averaging
expression levels of duplicated gene entries to generate a
standardized gene expression matrix. To integrate two datasets
and mitigate batch effects, the ComBat function from the R
package “sva” is applied for batch effect correction. To evaluate
the effectiveness of correction, box plots and principal component
analysis (PCA) plots are generated for the data before and after batch
adjustment.

2.3 Identification of differentially expressed
genes (DEGs)

Using the limma tool in the Sangerbox 3.0 platform, we perform
differential analysis on the training set with |log2FC| > 0.58 and
p < 0.05 as the criteria for screening differentially expressed genes.
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FIGURE 1
Flow chart of the analysis process conducted in this study.

TABLE 1 Datasets information.

Platform
GSE130823 GPL17077
GSE55696 GPL6480

We obtain DEGs for LGIN, HGIN, and EGC using CG as the control
group and visualize the results. Additionally, we import the DEGs
from the three disease states into the Bioinformatics platform for
further visualization of their distribution.

2.4 Weighted co-expression network
analysis (WGCNA) and key module selection

WGCNA was performed to identify co-expression modules
associated with the inflammation-to-cancer transition in gastric
carcinogenesis. The analysis was conducted on DEGs identified
across the disease continuum (CG — LGIN — HGIN — EGC)
from the training dataset, to enrich for genes with potential
functional relevance.

Gene expression data were imported into Sangerbox 3.0, and an
unsigned co-expression network was constructed. Genes with a mean
standard deviation proportion >50% were retained, and outlier samples
were removed prior to network construction. A soft-thresholding power
(B) was selected to approximate a scale-free topology (R* > 0.85). The
topological overlap matrix (TOM), which measures network
interconnectedness by integrating both direct and indirect gene-gene
correlations, was calculated. Hierarchical clustering and dynamic tree-
cutting (minimum module size = 30, merge cut height = 0.25,
sensitivity = 3) were used to define gene modules.

For each module, the module eigengene (ME; the first principal
component of the standardized gene expression matrix) was
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Samples
CG:LGIN:HGIN:EGC = 47:17:14:16 Experience
CG:LGIN:HGIN:EGC = 19:19:20:19 Validation

computed to represent its overall expression pattern. The Pearson
correlation between ME and each clinical trait (disease stage) was
calculated to assess module-phenotype associations. Modules
showing strong positive or negative correlations (|r] > 0.2,
p < 0.05) with specific stages (LGIN, HGIN, EGC) or across
multiple stages were selected as key modules for downstream
functional and hub gene analysis.

2.5 Hub gene selection

Gene Significance (GS) measures gene—phenotype correlation;
higher GS indicates stronger biological relevance. Module
Membership (MM) is defined by the Pearson correlation
coefficient between a gene’s expression profile and the ME. This
metric quantifies the strength of gene-module association; [MM]|
near one signifies high connectivity within the module. Using
established thresholds ([MM| > 0.8 and |GS| > 0.2) (Tang et al.,
2018b), we identify hub genes in phenotype-associated modules.
Genes differentially expressed across all three disease states are
prioritized as key drivers of gastric carcinogenesis.

2.6 Functional enrichment analysis

GO and KEGG enrichment analyses of key modules are
performed on the Sangerbox 3.0 platform. The platform uses
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FIGURE 2

Intersection and specific DEGs in EGC, HGIN, and LGIN compared to CG. The bar height represents the number of genes in each intersection set, the
numbers above the x-axis indicate the total number of differentially expressed genes for each disease group, and the numeric labels on the connecting
lines denote the number of genes in the corresponding overlapping or unique category.

gene GO annotations from the R package org. Hs.e.g.,.db (version
3.1.0) as background, maps genes to this set, and obtains the latest
KEGG Pathway gene annotations as another background for
mapping. Enrichment analysis is carried out using the R
package clusterProfiler (version 3.14.3) to get gene set
enrichment results. The minimum gene set is set to 5 and the
maximum to 5,000, with p < 0.05 indicating statistical
significance.

2.7 Survival analysis

To evaluate the prognostic value of key genes in gastric
cancer, we first obtain TCGA-STAD (Stomach Adenocarcinoma)
survival information data using the gene names from the
Sangerbox 3.0 platform. We then perform survival analysis using
the “survival” package in R and visualize the results with the
“survminer” package. Gene expression data are log-transformed
[log (x + 0.001)], and samples with zero expression or
survival time less than 30 days are excluded. The optimal
expression cutoff for each gene is determined using the maxstat
package (0.7.26), limiting group sizes to between 25% and 75% of the
total cohort. Patients are stratified into high-expression and low-
expression groups, and Kaplan-Meier curves are generated using the
survfit function of the survival package. Survival differences are
assessed by the log-rank test, with statistical significance set
at p < 0.05.
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2.8 External validation

To assess the reliability of the key genes, we extract their
expression profiles from both the training and validation
datasets. Prior to comparative analysis, the ComBat method
is applied to correct for batch effects and ensure data
comparability. We then perform Analysis of Variance on
each dataset separately, with the aim of examining
whether the expression trends of the key genes across
different disease states are consistent between the validation

and training sets.

2.9 Correlation analysis of key genes with
immune cell infiltration and clinical
characteristics

The functional status of immune cells in the tumor
microenvironment (TME) is critically important for tumor
progression and patient investigate the
association between key genes and immune cell infiltration, this
study utilizes RNA-seq data from the TCGA-STAD cohort. Prior
to immune infiltration analysis, the dataset was filtered to retain

prognosis. To

only intestinal-type EGC samples. This filtering step was
performed to ensure consistency with our previous analyses,
which were conducted exclusively on this subset of samples,
thereby guaranteeing the reliability and comparability of the
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FIGURE 3

Volcano plot and heatmap analysis. (A—C) Volcano plots showing the DEGs of LGIN, HGIN, and EGC compared with CG. (D—F) Heatmaps of the
differentially expressed genes under the corresponding conditions. In (A=C), blue dots represent downregulated DEGs, red dots represent upregulated
DEGs, and gray dots represent non-differentially expressed genes. In the heatmaps (D-F), the color gradient from blue to red indicates the gene

expression level from low to high.

immune infiltration results. Immune cell infiltration
was quantified using the CIBERSORT algorithm, and samples
with a P-value <0.05 were selected as a reliable dataset for
downstream analysis. To identify immune cells with significant
infiltration differences between gastric cancer tissues and
adjacent normal tissues, comparative statistical analysis was
performed. To explore the potential mechanisms through
which key genes regulate immune infiltration in gastric cancer,
Spearman correlation analysis was applied to evaluate the
relationship between the expression levels of key genes and the
infiltration proportions of 22 immune cell types. Furthermore, to
elucidate the association between key genes and clinical
characteristics, statistical analysis was performed to examine the
expression differences of the key gene different

across
tumor grades.

2.10 Statistical methods

Data are analyzed using the SPSSPRO online platform
(Scientific 2021)
visualized with GraphPad Prism 8.0.2. For key genes, we first

Platform Serving for Statistics, and
test normality and homogeneity of variance. Genes with normal
distribution are analyzed using one-way ANOVA, while those
with normality but not homogeneity of variance are analyzed
using Welch’s ANOVA. LSD is used for multiple comparisons
between groups, with p < 0.05 considered statistically

significant.
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3 Results

3.1 Differential expression gene
analysis results

Compared with the CG group, we identify 4,065 DEGs in
LGIN (2030 downregulated, 2035 upregulated), 3,428 DEGs in
HGIN (1,618 downregulated, 1810 upregulated), and 2,706 DEGs
in EGC (1,075 downregulated, 1,631 upregulated), as shown in
the volcano plots (Figure 2). The UpSet plot (Figure 3) reveals
1,439 common DEGs across the three disease states after
intersection. This observation can be attributed to more
extensive mucosal remodeling and activation of molecular
pathways during the precancerous stages, whereas intestinal-
type gastric cancer, driver
mutations or signaling pathways, undergoes clonal selection

upon acquisition of specific

that leads to a reduction in the number of differentially
expressed genes.

3.2 WGCNA results and key
module selection

With a correlation coefficient threshold of 0.85, the soft
threshold B is determined to be 16 (Figures 4A-C). At this
parameter setting, the modules divided under such conditions are
more consistent with the characteristics of a scale-free network and
thus possess greater biological significance. Setting the minimum
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FIGURE 4

Analysis results of the weighted co-expression network module. (A) Sample clustering dendrogram. (B) Soft threshold determination. (C) Average
connectivity. (D) Dynamic tree cutting to classify and merge modules with high similarity to gene clustering trees. (E) Number of genes in different
modules. (F) Heatmap of module-phenotype correlation. Each square in the heatmap consists of two triangles. The upper-left triangle represents the
correlation between different disease states and the module, with red indicating a positive correlation and green indicating a negative correlation.

The lower-right triangle represents the p-value of the correlation, where darker blue indicates a smaller p-value.

module size at 30 and sensitivity at 3, we identify 9 modules  and 766 genes, respectively. The grey module comprises unassigned
(Figure 4D): cyan, purple, magenta, pink, red, blue, green, brown,  genes, while the other 8 modules contain the genes as shown
and grey. These modules contain 41, 99, 110, 116, 223, 305, 485, 697, in Figure 4E.
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The module-phenotype correlation analysis (Figure 4F)
indicates unique correlations of several modules with EGC
development. The modules most associated with LGIN, HGIN,
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and EGC are the pink (r = -0.42, p < 0.05), purple (r = -0.26,
p < 0.05), and red (r = 0.43, p < 0.05), respectively. The magenta
module is correlated with all three disease states (r = —0.34 to 0.26,
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TABLE 2 Key module genes.

Key module Key gene

10.3389/fgene.

2025.1613682

p <0.05). A positive correlation indicates that the overall expression

profile of the module increases with disease progression (e.g., higher
in EGC than in CG), suggesting potential oncogenic or progression-

Pink EFEMPI promoting roles. In contrast, a negative correlation implies that the
Purple ABCC5, FZD8, ALDH3AL MAL, SLC26A9, REP15, ANKRD29, module’s expression decreases during progression (e.g., lower in
RDHI2, PHYHDI, SOSTDCI, STOX2, MAP7D2, FAM20A, advanced stages), which may reflect loss of gastric differentiation or
ZNF662, CWH43, CYP2ABIP tumor-suppressive functions. Thus, we select the pink, purple, red,
Red FCRL3, PRKCB and magenta modules as key modules for subsequent analysis.
There are 45 hub genes in the pink module for LGIN, 35 in the
Magenta IGHG3 .
§ purple module for HGIN, 85 in the red module for EGC, and 76, 49,
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FIGURE 6

Results of survival analysis of key genes. The horizontal axis represents survival time (days), and the vertical axis represents survival probability. Red

indicates low expression of the gene, and blue indicates high expression of the gene. HR > 1 indicates that high expression of the gene is unfavorable for
the prognosis of gastric cancer patients. P < 0.05 and HR > 1 indicate that the adverse effect of the gene on the prognosis of gastric cancer patients is
statistically significant.
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TABLE 3 The results of survival analysis.
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and 59 hub genes for LGIN, HGIN, and EGC, respectively, in the
magenta module.

Key gene HR 95% ClI P Value
ANKRD29 177 1.28-2.44 0.0006
CYPIABIP o1 24325 00044 3.3 Functional enrichment of key modules
EFEMPI 1.94 127-2.97 0.0021 The pink module (linked to LGIN) is associated with cell
FAM20A 1.94 1.40-2.68 0.0001 adhesion, angiogenesis, and inflammation, and is involved in
pathways like basal cell carcinoma and proteoglycans in cancer
FZD8 1.74 1.18-2.58 0.0056 . . .
(Figures 5B,F). The purple module (linked to HGIN) is related to
MAL 143 1.03-1.97 0.0303 doxorubicin metabolism, TNF secretion regulation, and cell response
MAP7D2 157 112-2.22 0.0096 to reactive oxygen species, and is involved in pathways such as
chemical carcinogenesis and drug metabolism (Figures 5C,G). The
PHYHDI 1.88 1.29-274 0.0010 red module (linked to EGC) is associated with immune response and
PRKCB 1.57 1.13-2.19 0.0075 inflammation, and is involved in pathways like NF-kappa B signaling
and Toll-like receptor signaling (Figures 5D-H). The magenta module
RDHI2 143 1.01-2.01 0.0424 . . ) L
(linked to all three disease states) is related to complement activation
REPI5 1.57 112-2.19 0.0081 and immune response, and is involved in pathways such as cytokine-
STOX2 150 1.08-2.07 0.0142 cytokine receptor interaction and chemokine signaling (Figures 5A,E).
ZNF662 1.80 1.29-2.50 0.0005
3.4 Key genes and survival analysis
We identify 20 key genes by intersecting hub genes from WGCNA
modules with differentially expressed genes common to all three
A Sample Boxplot Before batch correction B Sample Boxplot After batch correction Dataset
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FIGURE 7

Batch Effect Evaluation of GSE130823 and GSE55696 Datasets. (A,B) Box plots of gene expression values before (left) and after (right) batch effect
correction. (C,D) Principal component analysis (PCA) plots before (left) and after (right) batch effect correction.
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Expression of key genes in the GSE130823 dataset. Different colors on the horizontal axis represent different disease stages, and the vertical axis
represents gene expression levels. Each graph shows the expression levels of key genes across different disease stages, where P < 0.05 indicates that the
difference in expression between two disease stages is statistically significant.

disease states (Table 2). Survival analysis reveals that 13 of these genes
are significantly associated with poor prognosis in gastric cancer
patients (log-rank test, p < 0.05, HR > 1; Figure 6), and are thus
highlighted as prognostic candidates (Table 3).

3.5 Validation results of key genes

Batch effect correction and visualization are performed on the
two datasets, and it is found that there is almost no batch effect
between them (Figure 7). When analyzing the key genes in the
validation set, 5 key genes are not present. After conducting
analysis of variance on the remaining 15 key genes, it is
observed that the expression levels of these 15 key genes show
significant differences across different disease stages (p < 0.05).
According to the analysis results, in the training set, IGHG3,
FCRL3, and PRKCB have the highest expression in EGC, while
other genes have the highest expression in CG (Figure 8). Five key
genes (IGHG3, CYP2ABIP, REP15, SLC26A9, ZNF662) are not
annotated or expressed in the validation set. For the remaining
15 genes, expression analysis shows that FCRL3 and PRKCB have
the highest expression in EGC, while the other genes have the
highest expression in CG (Figure 9).

Frontiers in Genetics

3.6 Association of key genes with immune
infiltration and clinical features

CIBERSORT analysis of the TCGA-STAD dataset reveals

distinct immune infiltration patterns in gastric cancer.
Compared to normal tissues, tumor tissues exhibit elevated
infiltration of resting dendritic cells, while showing reduced
levels of B cells naive, T cells follicular helper, and mast cells
resting. Spearman correlation analysis demonstrates that the key
gene EFEMPI is positively correlated with B cells naive and
dendritic cells resting; ANKRD29 is positively correlated with
mast cells resting; and STOX2 shows positive correlations with
dendritic cells resting, B cells naive, and T cells follicular
helper (Figure 10).

To evaluate clinical relevance, we analyze the association
between key gene expression and tumor grade. Notably, the
expression levels of FCRL3 and EFEMPI are significantly
correlated with tumor differentiation, with both genes showing
significantly lower expression in G2 (moderately differentiated)
G3  (poorly differentiated)

(Figure 11). No significant differences are observed for other key

tumors compared to tumors

genes across tumor grades. These findings suggest that high

expression of FCRL3 and EFEMPI may be associated with tumor
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Expression of key genes in GSE55696 dataset. Different colors on the horizontal axis represent different disease stages, and the vertical axis
represents gene expression levels. Each graph shows the expression levels of key genes across different disease stages, where P < 0.05 indicates that the
difference in expression between two disease stages is statistically significant.

dedifferentiation and disease progression, highlighting their
potential as prognostic biomarkers in gastric cancer.

4 Discussion

This study aims to explore key molecular mechanisms in the
progression of gastritis to gastric cancer and identify potential early -
diagnosis biomarkers. We first use the limma package to screen
DEGs in LGIN, HGIN, and EGC. However, since disease
development usually involves multiple genes rather than single
one (Barabasi et al, 2011; Hanahan and Weinberg, 2011), we
further perform WGCNA to capture key modules associated with
these disease stages, which allows systematic analysis of gene co-
regulation, suitable for studying complex disease mechanisms
(Langfelder and Horvath, 2008; Tang et al., 2018a).

Through WGCNA, we identify key modules and genes related to
the three disease stages in gastric carcinogenesis. These key genes,
with high connectivity in modules, may play a crucial role in disease
development (Zhang and Horvath, 2005).

Notably, the magenta module shows a U-shaped correlation
pattern across gastric carcinogenesis: positively correlated with
chronic gastritis (CG; r = 0.23, p = 0.02) and early gastric cancer
(EGG; r = 0.26, p = 0.01), but negatively correlated with low-grade
(r=-0.34, p = 7.5 x 107°) and high-grade intraepithelial neoplasia
(HGIN; r = -0.24, p = 0.02). This dynamic trajectory suggests stage-
specific roles of B cell-mediated immunity.

The module is enriched in B cell activation, plasma cell
differentiation, and humoral immunity pathways, including
intestinal immune network for IgA production and primary
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immunodeficiency. This highlights the central involvement of
B-lineage cells.

In CG, the module likely reflects protective immune responses
against pathogens like H. pylori. Its downregulation in LGIN/HGIN
may indicate impaired B-cell function or immune evasion during
dysplasia. In contrast, reactivation in EGC could drive a pro-
through tertiary
immunoglobulin-mediated

tumorigenic microenvironment

lymphoid
structure formation, complement
activation, and recruitment of suppressive myeloid cells.

Thus, the magenta module represents a context-dependent
immune axis—shifting from protective immunity to tumor-
promoting inflammation—highlighting the dual roles of adaptive
immunity in gastric cancer development.

To evaluate the clinical significance of key genes, survival
analysis is conducted. Among the 20 key genes, 13 are
significantly associated with poor patient prognosis, indicating
they might be risk factors. Suppressing overexpression could be
beneficial for gastric cancer patients.

Univariate analysis of the 20 key genes, combined with their
expression in the validation set, revealed that four genes (e.g.,
FCRL3, EFEMPI1, ANKRD29, STOX2) showed expression trends
highly consistent with the original dataset. Among these, survival
analysis for FCRL3 (HR = 1.17, 95% CI 0.85-1.61, p = 0.343) shows
no statistically significant difference. While EFEMPI1 (HR = 1.94,
95% CI 1.27-2.97, p < 0.001), ANKRD29 (HR = 1.77, 95% CI
1.28-2.44, p < 0.001), and STOX2 (HR = 1.50, 95% CI 1.08-2.07, p =
0.014) are all associated with a positive prognostic value for gastric
cancer patients. Eleven genes (e.g., ABCC5, ALDH3A1, SOSTDCI,
etc.) show inconsistent expression trends compared to the original
dataset, possibly due to sample heterogeneity.
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FIGURE 10

Comprehensive correlation network of key genes and immune cell infiltration. The outer chord diagram visualizes the correlations between the key
genes (FCRL3, EFEMP1, ANKRD29, STOX2) and 22 immune cell types. Red chords represent significant positive correlations, blue chords represent
significant negative correlations, and gray chords represent non-significant associations. The thickness of each chord is proportional to the absolute
value of the correlation coefficient, with thicker chords indicating stronger relationships. The inner triangular heatmap illustrates the pairwise
correlation matrix among the immune cell types themselves. The color intensity and scale bar (ranging from —0.5 to 0.5) represent the strength and

direction of these cell-cell correlations.

The protein encoded by the FCRL3 gene is primarily expressed
in B lymphocytes and enhances the activation of both NF-kB and
MAPK signaling pathways in TLR9-stimulated B cells (Li et al.,
2013). The MAPK pathway consists of multiple core kinases and is
divided into several cascades, including ERK and JNK(Lei et al.,
2022; Yuan et al,, 2024). Through the ERK/MEK/RAF cascade, it
promotes migration and invasion of gastric cancer cells, while also
facilitating cell proliferation and differentiation—processes that may
contribute to gastritis—cancer transformation. The JNK pathway, on
the other hand, is associated with cellular stress response and
apoptosis, and may promote tumor cell survival and proliferation
in gastric cancer through activation of transcription factors such as
c-Jun. NF-«kB represents a class of transcription factors whose
aberrant activation has been linked to increased invasiveness,
metastasis, and chemotherapy resistance in gastric cancer (Lei
et al.,, 2022).

EFEMPI, a fibulin family member containing epidermal growth
factor, functions in the extracellular matrix. It has diverse roles in
various cancers, acting as both an oncogene and a tumor suppressor
(Yang et al,, 2013). In lung cancer cells, downregulated EFEMPI is
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linked to tumor growth and invasion (Lang et al., 2015). It also inhibits
hepatocellular carcinoma cell migration (Dou et al., 2016), with its
downregulation being associated with increased migration and related
to ERK1/2, MMP2, and MMPS9 expression. Given its potential to inhibit
tumor growth and invasion in different cancers, EFEMPI - targeted
therapies may have clinical potential in future gastric cancer treatment.

ANKRD?29 belongs to the ankyrin repeat domain (ANKRD)
protein family, which is widely involved in protein - protein
interactions and signal transduction in eukaryotes. It may
influence patients’ treatment responses by modulating the
immune microenvironment and drug sensitivity, suggesting
potential applications in immunotherapy and chemotherapy
(Zhao et al, 2023a). Specifically, ANKRD29 acts as a tumor -
suppressor gene, particularly in non - small cell lung cancer
(NSCLC) tumorigenesis. It inhibits NSCLC progression by
regulating cell proliferation, migration, and apoptosis. Reduced
ANKRD29 expression significantly NSCLC  cell
proliferation and migration, while restoring its expression

enhances

suppresses tumor growth by inhibiting the cell cycle and
modulating relevant signaling pathways (Zhao et al., 2023a).
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Expression of key genes across different gastric cancer grades. Horizontal axis: Tumor grades (G2, G3; G2 = moderately differentiated, intermediate
malignancy; G3 = poorly differentiated, high malignancy with significant cellular atypia). Vertical axis: Key gene expression levels. (A) FCRL3; (B) EFEMPL1.
P < 0.05 indicates statistically significant differences in gene expression among grades.

STOX2 encodes a transcription factor. When inhibited by miR -
30a, it activates multiple tumor - progression - related signaling
pathways, including ERK, AKT, and P38. Activation of these
pathways promotes cell survival, proliferation, and metastasis
(Guo et al., 2022).

To further explore the potential roles of these four key genes in the
transition from gastritis to gastric cancer, we performed an in-depth
interpretation of the above findings. CIBERSORT analysis based on the
TCGA-STAD dataset revealed that resting dendritic cells were
significantly more enriched in early gastric cancer tissues compared
to normal gastric mucosa, suggesting their involvement in the early
remodeling of the tumor immune microenvironment. Previous studies
have reported elevated levels of resting dendritic cells in high-risk
molecular subtypes of gastric cancer and their association with poor
prognosis (Zhao et al., 2023b). Although dendritic cells can contribute
to antigen presentation within tertiary lymphoid structures (TLSs) and
initiate anti-tumor immunity, their resting or immature state is often
linked to impaired T-cell activation and the induction of immune
tolerance (Bai et al., 2022). Thus, the accumulation of resting dendritic
cells may undermine immune surveillance and facilitate tumor
progression.

Spearman correlation analysis shows that the expression of
EFEMPI and STOX2 was
infiltration level of resting dendritic cells, implying that these

positively correlated with the

genes may contribute to the recruitment or maintenance of an
microenvironment. Furthermore, clinical
that EFEMPI

significantly higher in G3 (poorly differentiated) tumors than in

immunosuppressive
stratification analysis reveals expression is
G2 (moderately differentiated) tumors, reinforcing its association
with tumor dedifferentiation and aggressive phenotypes.
Collectively, EFEMPI may play a pro-tumorigenic role in gastric
carcinogenesis by promoting the accumulation of resting dendritic
cells, potentially serving as a molecular link between chronic
inflammation and malignant transformation, as well as a

candidate prognostic biomarker.
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5 Conclusion

This study integrates multi-stage transcriptomic data and
employs WGCNA to systematically identify potential key genes
driving the inflammation-to-cancer transformation from a dynamic
perspective of “gastritis—precancerous lesion-early gastric cancer”
progression. We not only identify 20 key genes consistently
differentially expressed throughout this transformation process
but also validate four highly robust core genes—FCRL3, EFEMP]I,
ANKRD?29, and STOX2—with significant prognostic impact using
external datasets. The expression patterns of these genes show high
consistency across multiple independent cohorts, and their elevated
expression is significantly correlated with poorer overall survival in
gastric cancer patients, highlighting their substantial as novel
prognostic biomarkers and targets for clinical translation.

In the NF-kB/MAPK signaling axis, ANKRD29 directly regulates
the MAPK pathway (Zhao et al., 2023a), while FCRL3 and EFEMP1
exert their effects primarily through indirect mechanisms. The
immunosuppressive functions of FCRL3 (e.g., restricting T cell
activation) may create an inflammatory environment in the tumor
microenvironment (TME), thereby indirectly promoting NF-kB-
mediated inflammatory signaling. EFEMPI potentially affects the
MAPK pathway (e.g, ERK signaling) via the EGFR axis (Ying
et al, 2021; Shen et al,, 2023); however, its secretory property may
regulate the extracellular matrix of the TME and interfere with NF-
kB-controlled stromal cell interactions (Almeida et al., 2023). As a
MAPK regulator, the low expression of ANKRD29 may amplify pro-
tumor signals in the TME of non-small cell lung cancer (NSCLC).

Within the TME, NF-kB governs the crosstalk between immunity,
inflammation, and tumor progression (Cao et al., 2024; Alipourgivi and
Lu, 2025). Through immunomodulation (e.g., suppressing T cell
function), FCRL3 may reinforce the immunosuppressive phenotype
of the TME and enhance NF-kB-dependent drug resistance (Li et al,
2024). The secretion of EFEMP1 promotes metastasis and TME
remodeling, which may synergize with NF-kB-driven TME changes
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(Almeida et al,, 2023). In contrast, high expression of ANKRD29 inhibits
the proliferation and migration of NSCLC cells, improves anti-tumor
immunity by enhancing T cell cytotoxicity (Zhao et al,, 2022a), and may
counteract the pro-tumor effects of the NF-kB/MAPK axis.

FCRL3
immunomodulation, which may be associated with the NF-kB

influences the TME indirectly mainly through

inflammatory axis; EFEMPI promotes tumor metastasis and
TME signaling; ANKRD29
directly regulates the MAPK pathway, exerts a tumor-suppressive

remodeling via EGFR-mediated

effect in NSCLC, and enhances immune responses in the TME.
Within the NF-kB/MAPK signaling axis, the roles of these three
molecules contribute to cancer development and TME dynamics
primarily through independent or indirect pathways. Furthermore,
integrating immune infiltration analysis and key gene-clinical
correlation results, we propose that in gastric cancer, FCRL3 may
partially suppress tumor invasion and metastasis by reducing
M2 macrophage infiltration, yet overall it still plays a role in
promoting cancer progression.

FCRL3 exerts regulatory functions in immune responses by
recruiting inhibitory molecules through its cytoplasmic domain,
thereby reducing the activation capacity of T cells. This
immunosuppressive  mechanism may influence immune
infiltration in gastric cancer, particularly in the MSI and EBV
subtypes (Bianchi et al., 2026). EFEMP1 has been identified as a
metastatic biomarker in osteosarcoma, promoting lung metastasis
and associated with poor prognosis. These mechanisms may be
relevant to the metastatic process in gastric cancer (Almeida et al.,
2023), especially in the CIN subtype, which is commonly
characterized by chromosomal instability and distant metastasis.

In summary, although numerous previous studies have employed
WGCNA to identify key genes associated with gastritis or gastric
cancer, the present study specifically focuses on the molecular
mechanisms underlying the transition from gastritis to early
intestinal-type gastric cancer. By integrating multiple datasets, we
systematically screened potential key genes involved in this multistep
process, providing novel insights into the stage-specific molecular
dynamics of gastric carcinogenesis and highlighting candidate targets
for intercepting precancerous progression and developing therapeutic
interventions. However, it should be noted that our findings are
primarily relevant to the intestinal subtype of gastric cancer, which
follows a distinct pathogenetic pathway (e.g., the Correa cascade)
compared to diffuse or other subtypes. Therefore, the identified
mechanisms and gene signatures may not be generalizable to other
histological or molecular subtypes of gastric cancer. Furthermore, this
study relies entirely on publicly available datasets and computational
validation. The lack of experimental or clinical validation represents a
significant limitation, which may affect the biological significance and
translational potential of our findings.
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