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Objective: This study aims to identify key genes that are common to both breast
cancer and thyroid cancer, as well as to determine shared therapeutic targets
relevant to both conditions.
Methods:Weutilized transcriptomedata fromboth breast and thyroid cancers, along
with single-cell data, and applied cell deconvolution techniques to evaluate the extent
of monocyte infiltration. Tumor-related gene modules were identified through
weighted gene co-expression network analysis (WGCNA), followed by enrichment
analysis to uncover significant signals shared within these gene modules. A machine
learning approach was then employed to pinpoint hub genes. Additionally, RT-qPCR
was performed to validate the expression levels of these hub genes in tumor and
adjacent non-tumor tissues from patients with both cancer types.
Results:Our analyses revealed that the transcriptional networks of breast cancer
and thyroid cancer display significant similarities. WGCNA identified two
consensus modules that are strongly associated with both cancers and
monocyte infiltration. Enrichment analysis highlighted glycosaminoglycan
synthesis pathways as critical signals that are common to both cancers. A
total of seven hub genes were identified using the machine-learning
approach. Results from RT-qPCR and immunohistochemistry in clinical
samples showed that the expression levels of PILRA, Mki67, and UBE2C were
markedly different between cancerous and adjacent tissues.
Conclusion: PILRA, MKI67, and UBE2C, as potential diagnostic and prognostic
biomarkers, are anticipated to serve as promising therapeutic targets for the
clinical management of both breast cancer and thyroid cancer.

KEYWORDS

breast cancer, thyroid cancer, shared hub gene, therapeutic targets, PILRa,
MKI67, UBE2C

OPEN ACCESS

EDITED BY

Domenico Mallardo,
G. Pascale National Cancer Institute Foundation
(IRCCS), Italy

REVIEWED BY

Mario Fordellone,
Università degli Studi della Campania Luigi
Vanvitelli, Italy
Meijun Long,
The Third Affiliated Hospital of Sun Yat-sen
University, China

*CORRESPONDENCE

Yongchun Zhou,
chungui7625@163.com

Yuanhua Song,
songyuanhua2024@163.com

RECEIVED 23 April 2025
REVISED 28 September 2025
ACCEPTED 27 October 2025
PUBLISHED 17 November 2025

CITATION

Feng Z, He L, Yang X, Wu A, Wang J, Song Y and
Zhou Y (2025) Single-cell RNA-seq combined
with bulk RNA-seq explores shared gene
signatures between thyroid and breast cancers.
Front. Genet. 16:1609189.
doi: 10.3389/fgene.2025.1609189

COPYRIGHT

© 2025 Feng, He, Yang, Wu, Wang, Song and
Zhou. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 17 November 2025
DOI 10.3389/fgene.2025.1609189

https://www.frontiersin.org/articles/10.3389/fgene.2025.1609189/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1609189/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1609189/full
https://www.frontiersin.org/articles/10.3389/fgene.2025.1609189/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2025.1609189&domain=pdf&date_stamp=2025-11-17
mailto:chungui7625@163.com
mailto:chungui7625@163.com
mailto:songyuanhua2024@163.com
mailto:songyuanhua2024@163.com
https://doi.org/10.3389/fgene.2025.1609189
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2025.1609189


1 Introduction

Breast cancer (BC) and thyroid cancer (TC) are among the most
prevalent malignant tumors in females (Roman et al., 2017).
According to World Health Organization (WHO) statistics from
2023, approximately 2.3 million new BC cases are diagnosed globally
each year (Arnold et al., 2022). The incidence of BC is consistently
higher in women than in men. Due to its high malignancy and
strong metastatic potential, BC remains a major challenge in terms
of treatment and prognosis (Bray et al., 2018). In contrast, TC has
exhibited one of the fastest-growing incidence rates among all
cancers over the past two decades (Vigneri et al., 2015), affecting
approximately 66 individuals per 1 million population worldwide
(Siegel et al., 2016). Both age and gender are important prognostic
factors for TC, with women having a threefold higher incidence
compared to men (Mazzaferri, 1991). Notably, clinical evidence
suggests that patients with TC are at increased risk of developing
secondary BC, and TC is reported to be the most common second
primary malignancy among BC survivors (Muller and Barrett-Lee,
2020). These observations imply the existence of shared etiological
factors, suggesting that BC and TCmay act as mutual risk factors for
one another.

Over the past decade, a growing body of research has provided
compelling evidence of a bidirectional pathogenic relationship
between breast cancer and thyroid cancer. Several studies have
indicated that the prevalence of thyroid nodules is higher in
breast cancer patients compared to the general population (Ikeda
et al., 2016). Additionally, research has shown that breast cancer
patients are at an elevated risk of developing thyroid disease both
prior to and following the diagnosis of breast cancer, in comparison
to individuals with other malignancies. Furthermore, individuals
with hypothyroidism have a higher likelihood of developing breast
cancer than those with normal thyroid function (Ortega-Olvera
et al., 2018). Notably, as early as 2013, Van et al. evaluated data from

the American Cancer Society and demonstrated that female thyroid
cancer patients had a 0.67-fold increased risk of subsequent breast
cancer, while the incidence of thyroid cancer in female breast cancer
patients was found to be twofold higher. More strikingly, male
thyroid cancer patients were found to have a 29-fold increased risk
of developing breast cancer, and male breast cancer patients
exhibited a 19-fold increased risk of developing thyroid cancer
(Van Fossen et al., 2013). Research suggests that thyroid and
estrogen signaling pathways may serve as pathogenic factors for
both cancers (Nielsen et al., 2016). Both estrogen receptors (ERα)
and thyroid-stimulating hormone receptors (TSHR) belong to the G
protein-coupled receptor (GPCR) family, which can activate similar
signaling cascades (e.g., via cAMP/PKA, MAPK) to mediate
biological effects. Additionally, estrogen itself has been shown to
influence thyroid function. This shared hormonal dependency
implies that both tissue types may exhibit molecular similarities
in their sensitivity to changes in the hormonal microenvironment
(Bakos et al., 2021). Despite the wealth of studies investigating the
independent risk factors and treatment strategies for breast and
thyroid cancers, there is a notable paucity of research addressing the
common risk factors and potential therapeutic targets shared by
both conditions.

This study integrates transcriptomic and single-cell
sequencing data from breast and thyroid cancers to perform
differential expression analyses, with the aim of identifying genes
and cell types that exhibit concordant alterations in both
malignancies. WGCNA was subsequently applied to identify
gene modules associated with these cell types. Machine
learning algorithms were then employed to pinpoint the hub
gene, which was further examined through regulatory network
analysis to identify its associated microRNAs. Collectively, this
multi-level approach seeks to uncover shared molecular targets
and candidate therapeutics for the treatment of breast and
thyroid cancers.

FIGURE 1
Flowchart of the analysis used in this study.
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2 Materials and methods

2.1 Flow chart

This study integrates transcriptomic and single-cell sequencing
data from BC and TC, and employs a multi-faceted, multi-method
analytical approach to identify shared molecular targets for the
treatment of BC and TC (Figure 1).

2.2 Data sources

Transcriptomic data (RNA-seq) for BC and TC were obtained
from the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/). Specifically, GSE124646 (which includes
90 breast cancer samples and 10 normal samples) and
GSE126698 (comprising 22 thyroid cancer samples and 6 normal
samples) were used for the primary data analysis. For validation of
hub genes, GSE109169 (containing 25 breast cancer samples and
25 normal samples) and GSE140109 (which includes 6 thyroid
cancer samples and 4 normal samples) were utilized.

Single-cell transcriptomic data (scRNA-seq) for BC and TCwere
also sourced from the GEO database. The datasets included
GSE161529, which contains 6 breast cancer samples and
13 normal samples, and GSE191288, which comprises 6 thyroid
cancer samples and 1 normal sample.

2.3 Differential gene analysis and functional
enrichment analysis

Differentially expressed genes (DEGs) between cancer and
normal samples were identified using the limma package in R,
with the thresholds set to adjusted P < 0.05 and |log2FC| >
0.585. Subsequently, the ClusterProfiler package was employed to
perform Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway and Gene Ontology (GO) enrichment analyses on the
identified DEGs, followed by visual representation of the results.
The enrichment analysis parameters were set to pvalueCutoff =
0.05 and qvalueCutoff = 0.5.

2.4 scRNA-seq data analysis

Quality control of the single-cell transcriptomic datasets was
performed using the Seurat R package (v4.1.2). Low-quality cells and
low-expression genes were excluded based on the following criteria:
the number of detected features per cell ranged from 200 to 5,000,
the number of transcripts per cell ranged from 1,000 to 20,000, and
the proportion of mitochondrial gene expression per cell was less
than 20%. Data normalization was carried out using the
NormalizeData function, and highly variable genes were
identified using the FindVariableFeatures function with
nfeatures = 2000.

To correct batch effects, the Harmony R package (version 0.1.1)
was applied. Subsequently, linear transformation was performed
using the ScaleData function. Classification was carried out through
Principal Component Analysis (PCA) and Partial Least Squares

Discriminant Analysis (PLS-DA) models (Chen et al., 2021). The
optimal number of principal components (PCs) was assessed using
the ElbowPlot function, and 50 PCs were selected for further
analysis. Cell clustering was performed using the FindNeighbors
and FindClusters functions (dims = 1:30, resolution = 2).

Cell clusters were annotated based on canonical marker genes
reported in the literature. DEGs among cell types were identified
using the FindAllMarkers function in Seurat, with the parameters
min. pct = 0.1 and logfc. threshold = 0.25, retaining only genes
with p < 0.05.

Additionally, to estimate the cellular composition from bulk
RNA-seq data, the CIBERSORT function in the IOBR R package was
applied for deconvolution analysis, with the permutation count
(perm) set to 100.

2.5 WGCNA analysis

Weighted Gene Co-expression Network Analysis (WGCNA)
was performed using the WGCNA R package (v1.72-1) to identify
gene modules correlated with BC and TC phenotypes. Differentially
expressed genes from the GSE124646 (BC) and GSE126698 (TC)
datasets were used to construct gene expression matrices for
network analysis. To determine the appropriate soft-thresholding
power (β) required for scale-free topology, the pickSoftThreshold
function was applied to both datasets, with optimal β values ranging
from 10 to 12. Subsequently, an adjacency matrix was computed
using the formula (aij = |Sij|β). The adjacency matrix was then
transformed into a topological overlap matrix (TOM), and a
dissimilarity matrix (1−TOM) was calculated. Hierarchical
clustering based on this dissimilarity matrix was performed to
identify distinct gene modules. Modules with strong correlations
to clinical phenotypes were selected as candidate modules for
downstream analyses, including biomarker discovery and
functional annotation.

2.6 Shared hub gene screening and
verification

The “randomForest” R software package was used to use the
random forest (RF) machine learning algorithm to screen central
genes that are highly related to thyroid cancer and breast cancer. The
classification accuracy of different numbers of RF feature genes was
determined, and the feature genes with the highest classification
accuracy were retained to determine the final Hub genes. In order to
test the diagnostic efficacy of Hub genes, the receiver operating
characteristic (ROC) curve and the corresponding area under the
ROC curve (AUC) of each Hub gene were calculated based on the
normalized expression level of each Hub gene.

2.7 Immune cell infiltration analyses and its
correlation with hub genes

The CIBERSORT algorithm was applied to the GSE126698 (TC)
and GSE124646 (BC) datasets to estimate the relative proportions of
22 immune cell types within each sample. Differences in immune
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cell composition between cancer and normal tissues were assessed
using the Wilcoxon rank-sum test, with P values calculated for
statistical significance. To further evaluate tumormicroenvironment
(TME) characteristics at the sample level, the ESTIMATE R package
was employed to calculate the immune infiltration score
(ImmuneScore), stromal cell content (StromalScore), composite
microenvironment score (ESTIMATEScore), and tumor purity
(TumorPurity). Spearman’s rank correlation analysis was
conducted to assess the association between hub gene expression
and immune cell infiltration levels. A P value <0.05 was considered
statistically significant.

2.8 TF regulatory network and miRNA
network analysis of hub genes

Tumor-related microRNAs (miRNAs) were retrieved from the
Human miRNA Disease Database (HMDD) (http://www.cuilab.cn/
hmdd). Hub gene-associated mRNA–miRNA interaction pairs were
obtained from the miRWalk database (http://mirwalk.umm.uni-
heidelberg.de/), and intersected with the tumor-related miRNAs
to identify relevant mRNA–miRNA regulatory relationships. Only
pairs with a target score >80 were retained for further analysis. To
identify potential long non-coding RNAs (lncRNAs) interacting
with the tumor-associated miRNAs, predictions were performed
using the ENCORI database, and corresponding lncRNA–miRNA
interaction pairs were collected.

For transcriptional regulatory analysis, the RcisTarget R package
was used to predict transcription factors (TFs) targeting the hub
genes (Aibar and González-Blas, 2017). Motif enrichment analysis
was conducted to identify significant TF-binding motifs, which were
then used to construct the TF regulatory network.

2.9 RT-qPCR

Fresh tumor tissues and corresponding adjacent normal tissues
were collected from six patients diagnosed with both TC and BC,
ensuring the integrity and freshness of all specimens. Each sample
was rinsed with physiological saline and homogenized into a tissue
suspension. Total RNA was extracted using TRIzol reagent
according to the manufacturer’s protocol, followed by DNase
treatment to eliminate genomic DNA contamination. Reverse
transcription was performed using a commercial reverse
transcription kit to synthesize cDNA. For qRT-PCR, 2 μL of
cDNA was placed into an EP tube and amplified using a SYBR
Green pre-mix. GAPDHwas used as the internal reference gene. The
threshold cycle (Ct) values were determined, and relative mRNA
expression levels were calculated using the 2−ΔΔCT method.

2.10 Immunohistochemistry

Tissues from six patients with concurrent TC and BC, including
tumours and adjacent normal tissues, were fixed with 4%
paraformaldehyde, then embedded in paraffin and sectioned. The
sections were stained according to themanufacturer’s instructions to
observe the expression levels of relevant proteins in the sections.

2.11 Statistical analysis

All calculations and statistical analyses in this study were
performed using R (https://www.r-project.org/, version 4.1.2). To
determine the statistical significance of differences between two
groups of normally distributed data, an independent Student’s
t-test was used, while the Mann-Whitney U test (i.e., Wilcoxon
rank-sum test) was employed to assess differences between non-
normally distributed variables. All p-values were calculated based on
two samples, and p-values less than 0.05 were considered statistically
significant. Additionally, Spearman correlation analysis was used in
this study to obtain the correlation coefficients between variables.
P-values were calculated on both sides of the equation, and values
less than 0.05 were considered statistically significant.

Immunohistochemistry and RT-qPCR data were analysed using
SPSS 26.00 statistical software. All data are presented as mean ±
standard deviation. A non-parametric t-test was used to compare
the two groups of data. A p-value <0.05 was considered statistically
significant.

3 Results

3.1 Identification of common differentially
expressed genes (Co-DEGs) in breast and
thyroid cancer

Differential expression analysis of the BC dataset identified a
total of 1,242 dysregulated genes, including 626 upregulated and
616 downregulated genes (Figure 2A). In the TC dataset, 101 genes
were upregulated and 342 were downregulated (Figure 2B). Cross-
comparison of the two datasets revealed 76 overlapping genes (Co-
DEGs) shared between BC and TC (Figures 2C,D). Among them,
50 genes were consistently downregulated, 22 consistently
upregulated, and 4 displayed divergent expression trends between
the two cancers. GO and KEGG pathway enrichment analyses
indicated that the Co-DEGs were predominantly involved in
ECM-receptor interaction, ABC transporter regulation, and
cortisol synthesis and secretion (Figures 2E–H).

3.2 Identification of shared cellular
components in breast and thyroid cancer

To explore shared cellular components between BC and TC, we
integrated scRNA-seq data and deconvolution analysis. scRNA-seq
datasets GSE161529 (BC) and GSE191288 (TC) were analyzed
separately. Following quality control (Figure 3A) and batch effect
correction (Figure 3C), 75,069 cells from the BC dataset were
classified into 11 distinct cell types (Figure 3D), and
deconvolution analysis confirmed significant variation in these
cell types across samples (Figure 3E). In the TC dataset,
32,735 cells were classified into 9 cell types (Figures 3B,F,G), and
similarly, transcriptome deconvolution revealed significant
heterogeneity across TC samples (Figure 3H). Notably, both BC
and TC patients exhibited increased monocyte infiltration compared
to healthy controls (Figure 3I). This observation led to a focus on
monocyte infiltration in subsequent analyses.
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3.3 Identification of shared gene modules
via WGCNA

To identify gene expression modules shared by BC and TC,
WGCNA was performed. For the BC dataset, a soft-threshold
power of 10 was selected to ensure scale-free topology (Figures
4A,B), resulting in the identification of 14 co-expression modules,
each represented by a unique color (Figure 4C). Module–trait
relationships were assessed to identify modules significantly
associated with BC phenotypes (Figure 4D). Similarly, WGCNA
was applied to the TC dataset using a soft-threshold power of 12
(Figures 4E,F), which yielded 8 distinct modules (Figure 4G). The
correlation between each module and TC phenotypes was also
analyzed (Figure 4H). To assess cross-cancer module conservation,
we evaluated the overlap between BC-specific and TC-specific

modules. The analysis revealed substantial overlap, indicating
shared transcriptional networks between BC and TC (Figure 4I).

Moreover, consistent with the single-cell analysis findings,
WGCNA revealed a significant positive correlation between
monocyte infiltration and both the turquoise module in BC and the
blue module in TC. Therefore, these two modules were designated as
key consensus gene modules shared between breast and thyroid cancer.

3.4 Key consensus module gene signatures
differentiate breast and thyroid cancer from
healthy controls

We next evaluated whether the gene signatures from key
consensus modules could distinguish patients with BC and TC

FIGURE 2
Identification of Common Differentially Expressed Genes (Co-DEGs) in Breast and Thyroid Cancer. (A) Volcano plot shows DEGs between healthy
samples and breast cancer samples; (B) Volcano plot shows DEGs between healthy samples and thyroid cancer; (C) Overlapping DEGs between breast
cancer and thyroid cancer; (D)Co-DEG in Differential change folds under different diseases; (E–G)GO enrichment analysis of Co-DEG; (H) KEGG results
of Co-DEG.
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FIGURE 3
Identification of Shared Cellular Components in Breast and Thyroid Cancer (A,B) Quality control chart of BC and TC; (C,F) UMAP chart of batch
samples from two sets of data sets; (D,G) UMAP annotation of different cell types from two sets of data sets; (E,H) Histogram of cell type proportion in

(Continued )
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FIGURE 4
Identification of Shared Gene Modules via WGCNA. (A,E) Indicates the sample clustering diagram; (B,F) Indicates the scale-free fitting index and
average connectivity of 1–20 soft threshold power (β); (C,G)Clustered tree diagram; (D,H)Heat map representing the correlation between characteristic
factors and phenotypes of each module; (I) Number of overlapping genes in the breast cancer module and thyroid cancer module.

FIGURE 3 (Continued)

samples after reverse convolution of transcriptome data; (I)Heat map of the proportion of each cell type in cancer samples versus healthy samples.
*:p < 0.05; **:p < 0.05; ***:p < 0.001.
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from healthy individuals. Analyses were performed using Co-DEGs
from the blue module of the BC consensus network and the blue
module of the TC consensus network. Heatmap visualization
revealed two major findings: (1) Co-DEGs were consistently
upregulated in both BC and TC patients compared to controls.
(2) Hierarchical clustering of key consensus module genes effectively
separated cancer patients from healthy controls (Figures 5A,E).
Principal PCA based on DEGs from the consensus gene modules
of BC and TC demonstrated clear separation between the disease
and control groups (Figures 5B,F), with distinct clustering patterns
observed for patients with the two cancer types. Additionally, further
validation using PLS-DA also revealed different classification
patterns between patients with the two cancer types (Figures 5C,G).

To explore potential functional relevance, KEGG pathway
enrichment analysis was performed on DEGs from the consensus
module of BC and TC. Notably, the glycosaminoglycan biosynthesis
pathway was significantly enriched in both cancer types (Figures
5D,H), suggesting a potentially important role for this pathway in
the pathogenesis of both BC and TC.

3.5 Identification and validation of hub genes
shared between breast and thyroid cancer

To identify hub genes within the key consensus modules, DEGs
from the BC turquoise module (n = 16) and TC bluemodule (n = 13)
were analyzed using a random forest classifier. The optimal mtry
parameter was selected based on the lowest classification error
(Figures 6A,E). For BC, the error rate stabilized when the
number of decision trees reached 1,500 (Figure 6B), while for

TC, stabilization occurred at 500 trees (Figure 6F). These values
were used for subsequent analyses, with all other parameters set to
default. Based on the Gini coefficient, the top 10 most informative
genes for each cancer type were identified (Figures 6C,D,G,H).
Intersection of the top-ranked genes from BC (n = 15) and TC
(n = 12) yielded seven shared hub genes: MKI67, TAP1, UBE2C,
CENPF, PILRA, SPP1, and TMEM51. Receiver operating
characteristic (ROC) curve analysis showed that each hub gene
exhibited moderate discriminatory ability between cancer patients
and healthy controls (Figures 6I,J).

3.6 Immune infiltration analysis of hub genes

We further assessed immune infiltration patterns using single-
cell transcriptomic data and tumor microenvironment (TME)
scoring at the sample level. CIBERSORT analysis revealed
significant differences in CD4 memory resting T cells and
regulatory T cells (Tregs) between BC and TC samples (Figures
7A,D). ESTIMATE analysis also indicated significant variation in
ImmuneScore between BC and TC (Figures 7B,E). These findings
suggest that T cell populations may play a central role in shaping the
immune landscape in both cancers.

Spearman correlation analysis between the seven hub genes and
immune cell proportions showed that, in both BC and TC: Hub
genes were negatively correlated with CD4 memory resting T cells
andmonocytes. Hub genes were positively correlated with Tregs and
M1 macrophages (Figures 7C,F). These results suggest that hub
genes may influence BC and TC progression through modulation of
immune cell infiltration.

FIGURE 5
Key Consensus Module Gene Signatures Differentiate Breast and Thyroid Cancer from Healthy Controls. (A) Expression heat map of DECs in breast
cancer; (B) PCA analysis of DEGs in breast cancer; (C) PLS-DA analysis of breast cancer; (D) KEGG analysis of DEGs in breast cancer; (E)Heatmap of DEGs
in thyroid cancer; (F) PCA analysis DEGs in the thyroid cancer; (G) PLS-DA analysis of thyroid cancer; (H) KEGG analysis of DEGs in the thyroid cancer.
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FIGURE 6
Hub Gene Analysis and Validation. (A,E) The change curve of the average error rate of the random forest algorithm as mtry increases;
(B,F) Error rate fluctuation curve of random forest algorithm with increasing ntrees; (C,G) The accuracy ranking of each gene; (D,H)

(Continued )
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3.7 Transcription factor and miRNA
regulatory network analysis of hub genes

To investigate potential regulatory mechanisms underlying the
expression of the identified hub genes, we analyzed both TF and
miRNA regulatory networks. Tumor-associated miRNAs were
obtained from the Human miRNA Disease Database (HMDD).

mRNA–miRNA interaction pairs involving hub genes were
extracted from the miRWalk database and intersected with
657 tumor-related miRNAs, resulting in 12 validated
mRNA–miRNA interaction pairs (Figure 8A). Using the
ENCORI database, we then predicted lncRNAs interacting with
these tumor-associated miRNAs, and corresponding interaction
pairs were identified (Figure 8B). In parallel, motif enrichment

FIGURE 7
Hub Gene Analysis and Validation. (A,D) Box plots of immune infiltration analysis for thyroid cancer and breast cancer; (B,E) Analysis of
ImmuneScore, StromalScore, ESTIMATEScore, and TumorPurity for thyroid cancer and breast cancer; (C,F) Bubble plots showing the correlation
between hub genes and immune cells. ns, no statistical difference; *:p < 0.05; **:p < 0.05; ***:p < 0.001.

FIGURE 6 (Continued)

The Gini coefficient ranking of each gene; (I) The Hub gene’s ranking in breast cancer data ROC analysis; (J) ROC analysis of Hub gene in thyroid
cancer data.
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analysis was performed to identify key TFs potentially regulating the
hub genes. The results suggested that hub gene expression may be
regulated by transcription factors such as NFYB, NR4A2, and
BPTF (Figure 8C).

3.8 Validation of hub gene expression

To validate hub gene expression, we performed RT-qPCR on
tumor and adjacent normal tissue samples. In TC tissues, the
expression levels of SPP1, TAP1, PILRA, TMEM51, UBE2C, and
MKI67 were significantly upregulated compared to adjacent normal
tissues, whereas CENPF did not show a statistically significant
difference (Figures 9A–G). In BC tissues, TAP1, PILRA, UBE2C,
TMEM51, and MKI67 were significantly upregulated, while the
expression levels of SPP1 and CENPF remained unchanged between
cancer and adjacent tissues (Figures 9H–N). Subsequently, we
selected PILRA, MKI67, and UBE2C, which were significantly
upregulated in both cancer types, for further validation using
immunohistochemistry. The IHC results confirmed that the
protein levels of these three genes were significantly elevated in
both BC and TC tissues compared to adjacent normal tissues
(Figures 8O–R).

4 Discussion

BC and TC are the two most prevalent malignancies among
women, and increasing evidence indicates a bidirectional association
between them. Epidemiological studies have shown that women
diagnosed with TC have a higher risk of subsequently developing
BC, and vice versa, suggesting the existence of shared etiological
factors (Bolf et al., 2019). Although this co-occurrence has been
reported worldwide, the underlying molecular mechanisms remain
largely unexplored. Therefore, investigating the common
pathogenic pathways and potential therapeutic targets shared by
BC and TC is of vital importance.

In this study, we integrated scRNA-seq and bulk transcriptomic
data to explore shared molecular mechanisms and therapeutic
targets in BC and TC. Transcriptome analysis identified
76 shared differentially expressed genes (Co-DEGs). Combined
scRNA-seq and deconvolution analyses further revealed that
monocyte infiltration is significantly enriched in both cancers,
highlighting a shared immune microenvironment component.
Using WGCNA and integrating immune infiltration features, we
identified two consensus gene modules—the turquoise module in
BC and the blue module in TC—as key regulatory units. A
subsequent random forest classifier identified seven hub genes

FIGURE 8
TF and miRNA Regulatory Network Analysis of Hub Genes. (A) Breast cancer and thyroid cancer-related miRNAs and the Venn diagram of miRNAs
related to Hub genes extracted from the miRWalk database; (B) The miRNA network of Hub genes; (C) Transcription factor enrichment analysis of
Hub gene.
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FIGURE 9
Hub gene expression level. (A–G) RT-qPCR to detect the expression level of Hub gene in thyroid cancer; (H–P) RT-qPCR to detect the expression
level of Hub gene in breast cancer. (Q) Immunohistochemistry to detect the expression level of PILRA, MKI67, UBE2C in thyroid cancer and

(Continued )
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shared by BC and TC: MKI67, TAP1, UBE2C, CENPF, PILRA,
SPP1, and TMEM51. Among these, PILRA, MKI67, and UBE2C
showed consistently elevated expression in both cancers and were
validated through RT-qPCR and immunohistochemistry, suggesting
their potential as therapeutic targets.

PILRA (Paired Immunoglobulin-like Type 2 Receptor Alpha) is
an immune-inhibitory receptor containing two immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) and is mainly expressed in
monocytes, dendritic cells, and granulocytes (Lu et al., 2014; Kogure
et al., 2011). Prior research has shown its involvement in regulating
immune cell infiltration and promoting inflammatory responses
(Shi et al., 2023). In this study, elevated PILRA expression in both
BC and TC coincided with increased monocyte infiltration,
supporting the hypothesis that PILRA may mediate tumor
progression through immune regulation.

Mki67, also known as Ki67, is an excellent marker of active cell
proliferation in normal and tumor cell populations (Schlüter et al.,
1993). Very low levels of Ki67 have been reported in normal healthy
breast tissue (Loibl et al., 2021). And the expression of Ki67 is
significantly higher in proliferatively enlarged lobular units than in
adjacent normal terminal ductal lobular units (Lee et al., 2006) and is
associated with subsequent breast cancer risk (Zhang et al., 2021).
However, Ki67 has limited use in thyroid cancer pathology
compared to breast cancer (Agarwal et al., 2021). Nevertheless,
he can also distinguish between non-neoplastic and neoplastic
thyroid lesions.

UBE2C, an E2 ubiquitin-conjugating enzyme, is widely
recognized for its role in tumor progression and poor prognosis
across various cancers (Huang et al., 2021; Presta et al., 2020). In BC,
UBE2C overexpression is linked to higher histological grade,
lymphovascular invasion, and early metastasis. Mechanistically,
UBE2C knockdown restores PTEN expression and suppresses the
AKT/mTOR/HIF-1α pathway, thereby reducing proliferation and
invasiveness (Guo et al., 2023; Zheng et al., 2023). Although less
studied in TC, recent findings suggest that UBE2C knockdown can
suppress TC cell proliferation and migration while enhancing
chemosensitivity (Xiang and Yan, 2022).

In addition, KEGG pathway enrichment analysis of the
consensus gene modules revealed significant enrichment in the
glycosaminoglycan (GAG) biosynthesis pathway. GAGs are long-
chain, highly sulfated polysaccharides (e.g., heparan sulfate,
chondroitin sulfate, dermatan sulfate, hyaluronic acid)
synthesized by specific glycosyltransferases (Wieboldt and Läubli,
2022). They regulate growth factor signaling, ECM remodeling, and
tumor metastasis. Abnormal GAG accumulation, especially of
chondroitin sulfate, is associated with poor prognosis in both BC
and TC (Yen et al., 2024; Sui et al., 2024), while SDC-1, a heparan
sulfate proteoglycan, promotes invasion via cell-cell and cell-ECM
adhesion (Bologna-Molina et al., 2010; Hassan et al., 2023). These
findings highlight the glycosaminoglycan pathway as a promising
therapeutic targe.

In summary, we identified three core genes (PILRA, MKI67,
UBE2C) as potential therapeutic targets in BC and TC. In vitro
validation supported their elevated expression and clinical
relevance. However, our study has certain limitations. Although
key genes were identified, the exact molecular mechanisms
through which they influence tumor progression remain to be
elucidated. Furthermore, due to dataset constraints, we were
unable to conduct subgroup analyses (e.g., based on hormone
receptor status or cancer subtype), which may affect the
generalizability of the results. In future studies, we plan to
collect clinical samples from patients with secondary co-
occurrence of BC and TC, enabling a more precise evaluation
of core gene pathways in disease development and prognosis. This
will enhance the clinical translation of our findings and potentially
inform targeted treatment strategies.

5 Conclusion

In summary, this study suggests that PILRA, MKI67, and
UBE2C may serve as both diagnostic biomarkers and therapeutic
targets for breast and thyroid cancers. These findings not only
enhance our understanding of the shared molecular mechanisms
underlying the co-morbidity of these two malignancies but also offer
valuable insights for the development of targeted clinical therapies.
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