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Introduction: Predicting interactions between microRNAs (miRNAs) and
competing endogenous RNAs (ceRNAs), including long non-coding RNAs
(IncRNAs) and circular RNAs (circRNAs), is essential for understanding gene
regulation. With the development of Graph Neural Networks (GNNs), existing
works have demonstrated the ability to capture information from miRNA-ceRNA
interactions to predict unseen associations. However, current deep GNNs only
leverage node-node pairwise features, neglecting the information inherent in the
RNA chains themselves, as different RNAs possess chains of varying lengths.

Methods: To address this issue, we propose a novel model termed the BERT-
based ceRNA Graph Predictor (BCGP), which leverages both RNA sequence
information and the heterogeneous relationships among IncRNAs, circRNAs,
and miRNAs. Our BCGP method employs a transformer-based model to
generate contextualized representations that consider the global context of
the entire RNA sequence. Subsequently, we enrich the RNA interaction graph
using these contextualized representations. Furthermore, to improve the
performance of association prediction, BCGP utilizes the Neural Common
Neighbour (NCN) technique to capture more refined node features, leading to
more informative and flexible representations.

Results: Through comprehensive experiments on two real-world datasets of
INcRNA-miRNA and circRNA-miRNA associations, we demonstrate that BCGP
outperforms competitive baselines across various evaluation metrics and
achieves higher accuracy in association predictions. In our case studies on
two types of miRNAs, we show BCGP’'s remarkable performance in predicting
both miRNA-IncRNA and miRNA-circRNA associations.

Discussion: Our findings demonstrate that by integrating RNA sequence
information with interaction relationships within the graph, the BCGP model
significantly enhances the accuracy of association prediction. This provides a new
computational tool for understanding complex gene regulatory networks.

IncRNA, circRNA, miRNA, ceRNA, pre-train, graph neural network
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1 Introduction

MicroRNAs (miRNAs) are a class of small, non-coding RNA
molecules that play a crucial role in the regulation of gene expression
(Ye et al,, 2019). MiRNAs are present in plants, animals and some
viruses and they can significantly affect a broad range of biological
processes (Bartel, 2018). Specifically, they primarily regulate gene
expression through binding to the 3 untranslated regions (UTRs) of
target mRNAs, leading to their degradation or inhibition of
translation. The degree of complementarity between the miRNA
and the target mRNA is crucial, as it determines the mechanism of
repression. MiRNA sponges, also known as competing endogenous
RNAs (ceRNAs), embody a sophisticated biological mechanism that
serves to regulate the activity of miRNAs within cellular
environments (Alkan and Akgil, 2022). Such a mechanism
leverages RNA molecules containing multiple miRNA binding
sites to effectively “absorb” or “sponge” certain miRNAs. As a
result, it diminishes the suppressive impacts of these miRNAs on
their intended target mRNAs. There are numerous previous studies
that have employed machine learning to forecast the miRNA-disease
associations, achieving satisfactory results (Chen et al.,, 2021; Ha
et al., 2020).

Long non-coding RNAs (IncRNAs), a unique type of RNA with
over 200 nucleotides, do not have protein-coding capacity. Circular
RNAs (circRNAs) constitute another category of non-coding RNA,
distinguished by their unique covalently closed-loop configuration.
Unlike linear RNAs, circRNAs lack both a 5’ cap and a 3’ poly-A tail
in their sequences. They are synthesized through a mechanism
known as back-splicing, wherein a splice donor site downstream
is connected to a splice acceptor site upstream, resulting in the
circularization of the RNA molecule (Kristensen et al., 2022). Both
IncRNA and circRNA are considered as the major types of ceRNAs,
where they can sponge specific miRNAs when they have miRNA
binding sites, which can potentially alleviate the inhibitory effects
these miRNAs exert on their target mRNAs.

Inspired by methods for predicting miRNA-disease associations
(Ha et al, 2019), several approaches for ceRNA association
prediction have emerged in recent years. For example, Zhu et al.
(2017) discovered that Inc-mg promotes myogenesis by sponging
microRNA-125b to regulate the abundance of the IGF2 protein.
Furthermore, Zhang et al. (2018) identified that IncRNA MARI acts
as a miR-487b sponge to promote skeletal muscle differentiation and
regeneration. Similarly, Yang et al. (2018) found that circ-ITCH can
sponge miR-17 and miR-224, thereby upregulating the expression of
p21 and PTEN, which in turn suppresses the aggressive biological
behaviors associated with bladder cancer.

Traditionally, determining the associations between miRNA and
ceRNAs requires the use of technologies such as High-Throughput
Sequencing (Li et al., 2018), RNA Immunoprecipitation (Gawronski
et al, 2018) and Dual-Luciferase Reporter (Cao et al, 2016).
However, these methods can cost a large investment of time and
resources. With the advancement of deep learning technologies
especially the deep Graph Neural Networks (GNNs) (Kipf and
Welling, 2016) and the accumulation of historical experimental
data, there has been a surge in efforts to predict IncRNA-miRNA
and circRNA-miRNA associations using computational techniques.
For example, Wang W. et al. (2022) proposed a model, named
GCNCREF, to predict IncRNA-miRNA associations based on the
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graph convolutional network (GCN) and conditional random field.
Furthermore, a recent work (Wang Z. et al., 2023) has employed a
sequence pre-training-based Graph Neural Network to predict
associations between IncRNAs and miRNAs.

Although still have
limitations. First, most of the graph-based models have not

effective, existing methods several
effectively utilized the information contained within RNA
sequences. As the foundational elements, an RNA sequence
contains nearly all the information of the RNA (Charles Richard
and Eichhorn, 2018). Using an appropriate sequential model to
these RNA

characteristics of each RNA. Furthermore, most previous studies

analyze sequences could uncover enormous
used only homogeneous or bipartite graphs to predict the
IncRNA-miRNA  or circRNA-miRNA.
However, according to the mechanism of ceRNAs (Zhong et al.,
2018), circRNAs and IncRNAs, although two different types of

RNAs, both function as miRNA sponges within this network.

associations between

Therefore, a heterogeneous graph can be used to construct the
ceRNA network among circRNA, IncRNA, and miRNA to further
boost the performance.

To address the aforementioned challenges, we propose a novel
framework, the BERT-based ceRNA Graph Predictor (BCGP),
which
information for comprehensive ceRNA interaction prediction.
Unlike BCGP
Bidirectional Representations

uniquely integrates sequence-level and structural

existing  methods, innovatively ~ combines

Encoder from Transformers
(BERT) for sequence pre-training and a heterogeneous graph
model for fine-tuning. Specifically, our framework incorporates
IncRNAs, miRNAs, and
circRNAs to capture both contextual and relational dependencies.

In the pre-training stage, BCGP uses BERT with Masked Language

heterogeneous relations between

Modeling (MLM) as the training objective, a choice justified by
extensive comparative analysis, to derive high-quality embeddings
for different types of RNA sequences. These embeddings are then
seamlessly integrated into a heterogeneous graph, where nodes
represent RNAs and edges capture their intricate relationships. In
the fine-tuning stage, BCGP leverages the Neural Common
Neighbour (NCN) method (Wang X. et al, 2023), further
enhancing the expressive power of the graph embeddings by
incorporating relational patterns. Extensive experiments have
demonstrated the effectiveness of our novel BCGP framework,
consistently outperforming other state-of-the-art models. Our
ablation studies confirm the critical contributions of each
component within BCGP, while case studies on two specific
miRNAs, hsa-miR-143 and hsa-miR-6808-5p, validate the
superior practicality and real-world relevance of our approach.
By bridging the gap between sequence-level and structural
modeling, our work establishes a new paradigm for ceRNA
interaction prediction.

2 Materials and methods
2.1 Overview
In this section, we will describe our proposed method BCGP that

we use to generate pre-trained embeddings for IncRNAs, circRNAs,
or miRNAs and fine-tune with general Graph Neural Networks to
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FIGURE 1

Overview framework of the proposed BCGP model. In the pre-training stage, BCGP first tokenizes an RNA sequence with k-mers and utilizes the
BERT model to learn contextualized embeddings for each RNA sequence. In the fine-tuning stage, BCGP leverages GNN and Neural Common Neighbour
(NCN) to capture the complex relationship and learn informative node representations. (A) Pre-training stage. (B) Fine-tunning stage.

recover the unseen associations between them. Additionally, we
integrate a novel training method, Neural Common Neighbour
(NCN) (Wang X. et al, 2023) to further
performance of the fine-tuning GNNs. In Section 2.2, we will

enhance the

present the notations used in this article and briefly describe our
research problem formulation. Second, in Section 2.3, we
demonstrate the pre-training stage of BCGP, where we use the
k-mers method to split all RNA sequences into fragments of equal
length, then we use Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2018), which is a transformer-
based contextualized language representation model to generate pre-
trained embeddings. Third, in Section 2.4, we describe a general fine-
tuning method to incorporate a GNN to leverage the pre-trained
embeddings obtained from Section 2.3. To boost the performance of
the fine-tuning GNN, we also present the integration of a novel
training method named Neural Common Neighbour. We use
Figure 1 to illustrate the overview of our BCGP method. The
detailed mathematical formulation of our model is provided in
Equations 1-13.
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2.2 Preliminaries

To initialize our task, we first define all entities and their
associated information. In particular, we denote sets of IncRNAs,
circRNAs and miRNAs as Vi, Ve and Vi respectively.
Considering the associations between IncRNAs, circRNAs, and
miRNAs we construct an undirected graph G = {V, £, A}, where
V is the set of all RNAs (V= Vi U Ve U Vi), ECV XV
represents the set of associations between RNAs and adjacency

RYN jsa symmetric matrix, which is defined as follows:

1
Auv_{o

where N = |V| is the number of all types of RNAs. The degree of
node u is d(u,A) = YN A,,. The neighbours of node u are the
nodes  connected to u, which is  defined as
Ne(u,A) ={v|veV,A, >0}. For brevity, we use Ne(u) to
denote Ne(u,A) since A is fixed. The common neighbour refers

matrix A €

if (u,v) €€,
otherwise,

(1)
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to the nodes connected to i and j: Ne(i) N Ne(j). Let S be the
collection of RNA sequences, including all IncRNAs, circRNAs and
miRNAs. Specifically, S = {s;, s, . .
unique RNA sequence.

., 8N}, where each s; represents a

In this next section, we will provide a detailed description of our
proposed method, including the techniques in the pre-training and
fine-tuning stages.

2.3 Pre-training stage

During the pre-training stage, our goal is to effectively project
the information of RNAs from their nucleotide sequences to latent
embeddings. Specifically, we aim to simplify computational
demands while enriching the semantic content of the
embeddings, which captures the intrinsic patterns and relations
within RNA sequences. Such embeddings not only preserve the
biological significance and genetic information of RNA sequences
but also serve as the initial features of nodes for the subsequent fine-
tuning stage so that those sequence information can be encoded into
the graph representation.

Instead of treating each base (A, C, G, U) as an individual token,
given an RNA sequence s;, we leverage the k-mers tokenization to
segment s; into overlapping and equal-length segment, with k
.y CN}
be the collection of RNA k-mer sequences, and C; can be denoted

indicating the length of each segment. Let C = {C;,C,,..

as follows:
G = {si,[j:ﬁk] | j= 1,2,...,M}, 2)

where M = L; — k + 1 represents the total number of k-mers of s; and
L; represents the length of s;. For example, the RNA sequence
‘UAACAC can be tokenized to a sequence of four 3-mers: UAA,
AAC, ACA, CAC. This method not only enables the implementation of
sequence embedding algorithms, but also deepens the understanding of
richer contextual information for each nucleic acid sequence.

After tokenizing each RNA sequence into the overlapping
segment using k-mer tokenization, we utilize BERT to capture
both contextual and structural information from the whole
corpus of RNA sequences with an attention mechanism. As a
widely used transformer-based language representation model,
BERT enables the generation of contextualized representations
that consider the global context of the entire sequence, allowing
the identification of the intricate patterns and relationships within
the RNA sequences.

Given a sequence of k-mers C; derived from an RNA sequence
si, we first initialize each k-mer into a high-dimensional vector
through an embedding process, resulting in the embedding matrix
X; € RM*P| where D denotes the dimension of the embedding
vectors. To obtain contextual and informative embedding Z;,
BCGP performs the multi-head self-attention mechanism on X;,
which is defined as:

MultiHead (X;) = ® (head;;, heady, . .., head;;)W°,  (3)

"o
heady, = soﬁmax<m>v,ﬁ, (4)
\dy
where Q; =X,W?, Ky =X,Wy, Vi, = X;W), (5)
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where @ denotes the concatenation operation, WO, WQ, Wff and WX
are the learnable parameters for linear projection for the h-th head.
Here, H represents the number of attention heads, and dj is the
scaling factor used to maintain numerical stability and facilitate
stable gradients during training, often set to D/H. After applying the
multi-head self-attention mechanism multiple times, we can derive
the contextual embedding Z; from the output of the last layer, which
is denoted as:

Zi = MultiHeadLm (X,) (6)

Building upon the aforementioned self-attention mechanism,
we adapt the Masked Language Modeling (MLM) to train the BERT
model on RNA sequences. For each RNA sequence, we randomly
select regions constituting 15% of the sequence and mask
contiguous k-mers within these regions. Using the surrounding
context, the model is then trained to predict the masked k-mers.
The training objective to minimize the cross-entropy loss which is
defined as follows:

T
Ly = - ) yilog(y,), 7)

i=1

where y! represents the one-hot encoded ground-truth vector for the
masked k-mers and y; denotes the predicted probability distribution
over the k-mer vocabulary for each of the T' masked positions.
Specifically, the predicted probability distribution y; for a masked
position is defined as follows:

y; = Softmax (z;W, +b), (8)

where z; is the i-th encoded representation from Z;, W, and b, are
the parameters of the linear classifier respectively.

2.4 Fine-tuning stage

After obtaining the initial RNA embeddings for IncRNAs,
circRNAs and miRNAs from BERT during the pre-training stage,
we construct a heterogeneous graph. This graph integrates known
associations between IncRNAs and miRNAs, as well as the high-
quality associations between circRNAs and miRNAs, with these
relationships represented as edges. The pre-trained RNA sequence
embeddings are utilized as node features in this graph. To obtain
effective node embeddings, we leverage GNNs to capture the
intricate and complex relationships between entities.

The current de facto design of GNNs follows the message
passing framework (Kipf and Welling, 2016), which is based on
the core idea of recursive neighborhood aggregation. Specifically, for
an L-layer GNN, the representation learning function of the I-th
layer is represented as:

b = AGGREGATE({h' "} U {h'": je Ne()}), (9

h’ = COMBINE(h"™",b{"), (10)
where bi(l) is a message vector computed from the representations of
the neighbors Ne (i) from the previous layer i.e., | — 1-th layer, Ne (i)
is a set of nodes adjacent to v;, hi(l) is the representation of node v; at
the I-th layer with hi(o) =1z, and AGGREGATE(:) and
COMBINE(+) are the component functions of GNN layers. It is
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worth noting that our proposed BCGP approach is a general
framework that can be incorporated with various GNNGs.

To further boost the performance of association prediction, we
leverage the Neural Common Neighbour (Wang X. et al,, 2023) to
capture more refined node features such as multi-hop structure and
attribute information. Specifically, after obtaining the representation
h; of node v;, instead of directly using the node representation for link
prediction, BCGP focuses on the pairwise relationships between
nodes, specifically leveraging the common neighbours of each pair
nodes under consideration. For a target link between node i and node
j» BCGP sums up the representation of their common neighbours
obtained from the GNNs. This emphasizes the structural context and
the shared neighbourhood, which are pivotal for predicting the
existence of a link. Formally, the pairwise representation e;jfor a
potential link between node i and node j can be represented as:

e,-j = z

ueNe (HNNe (j)

GNNp (1, A, Z), (11)

where 0 represents the parameters of the GNN, Ne (i) N Ne(j)
denotes the set of common neighbours between node i and node j.
The aggregated pairwise representation e;; is then used to compute
the probability y;; of a link between node i and node j. This is
achieved by passing e;; through a final prediction layer, such as a
fully connected layer with a sigmoid activation function, which is
denoted as follows:

i’ij = G(W,,e,-j + bn), (12)
where o denotes the sigmoid function, and W,, and b,, are learnable
parameters of the prediction layer.

To train the model on the link prediction (LP) task, we use the
binary cross-entropy loss, which is denoted as:

> [vilog(¥y;) + (1 -y, )log(1-¥,)]:

(ij)em

ﬁLp = (13)

1
Ml
where M represents the set of all node pairs, which contains both
positive (existing links) and negative (non-existing links) samples,
| M| denotes the total number of node pairs in the set M, yij is the
ground truth label for the link between nodes i and j, wherey;; = 1if
a link exists and y;; = 0 otherwise.

3 Results

In this section, we present the evaluation performance of our
BCGP. We begin by describing the datasets used in our experiments.
Following this, we introduce the experimental results, including the
evaluation of pre-training, fine-tuning, performance comparisons
with baselines, hyperparameter analysis, and case studies. For more
details on the evaluation metrics and experimental settings, please
refer to Sections 1, 2 of the Supplementary Material.

3.1 Datasets

In this study, we focus on leveraging a comprehensive dataset to
model IncRNA-miRNA and circRNA-miRNA associations. We
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have constructed a total of four datasets: IncRNA-miRNA
association 1 (LMA1), circRNA-miRNA associations 1 (CMA1),
IncRNA-miRNA association 2 (LMA2), and circRNA-miRNA
associations 2 (CMA2). For the IncRNA-miRNA associations in
LMAI, based on previous research (Wang Z. et al., 2023), we utilized
the LncACTdb 3.0 (Wang P. et al, 2022) database. From this
database, we extracted 1,057 experimentally verified IncRNA-
miRNA associations, containing 284 IncRNAs and 520 miRNAs.
Regarding the circRNA-miRNA associations in CMAI, building
upon prior studies (Guo et al., 2024), we used CircBank (Liu et al.,
2019) as the primary data source, obtaining 20,771 high-quality
associations involving 3,802 circRNAs and 1,273 miRNAs. The
IncRNA-miRNA associations in LMA2 were sourced from
IncRNASNP V3.0 (Yang et al, 2023), comprising a total of
8,502 IncRNA-miRNA associations, including 467 IncRNAs and
254 miRNAs. As for the circRNA-miRNA associations in CMAZ2,
they were derived from the dataset 1 of the KGANCDA (Lan et al.,
2022), with a total of 702 circRNA-miRNA associations,
encompassing 471 circRNAs and 439 miRNAs. The sequences of
IncRNAs were sourced from LNCipedia (Volders et al., 2019) and
NONCODE (Zhao et al,, 2021), the sequences of circRNAs were
obtained from CircBase (Glazar et al., 2014), and the sequences of
miRNAs were acquired from miRBase (Griffiths-Jones et al., 2007).

3.2 Examination of pre-training

To rigorously evaluate the performance of pre-training within
our method, we compare several pre-training methods commonly
used for initializing node embedding in GNN. We include two
baselines, namely, the Random Embedding and the Adjacency
Matrix Embedding methods which do not consider any RNA
The Random Embedding method
initializes node embeddings with random values generated from

sequence information.
a Gaussian distribution, while the Adjacency Matrix Embedding
method
relationships between nodes in a IncRNA-miRNA-circRNA

leverages the adjacency matrix, representing the
association graph, to generate node embeddings. Furthermore, we
also compare three sequence-specific pre-training methods,
including Text2vec (Mikolov et al., 2013), Doc2vec (Le and
Mikolov, 2014) and HyenaDNA (Nguyen et al, 2024). Firstly,
Text2vec employs a “bag of words” model for the k-mer
representations of RNA sequence, converting each IncRNA,
circRNA or miRNA sequence into a numerical representation
based on k-mer occurrence frequency. Meanwhile, Doc2vec
extends the Word2vec algorithm that generates document-level
embeddings of the RNA sequences. Additionally, HyenaDNA
leverages pre-trained HyenaDNA to generate the embeddings of
RNA sequences at the nucleotide level, capturing the long-range
dependencies within the RNA sequences.

The experimental results on the LMA1 and CMAI datasets
presented in Table 1, demonstrate the effectiveness of BCGP-BERT.
For IncRNA-miRNA prediction, BCGP-BERT achieves the highest
scores across all evaluation metrics, with an F1 score of 0.439, AUC
of 0.904, AP of 0.435, and NDCG of 0.816, outperforming all other
pre-training methods. Similarly, for circRNA-miRNA prediction,
BCGP-BERT excels in all metrics, with an F1 score of 0.572, AUC of
0.948, AP of 0.712, and NDCG of 0.957. These results suggest that
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TABLE 1 Overall performance comparison of different pre-training methods fine-tuned with GCN on IncRNA-miRNA and circRNA-miRNA association
prediction tasks using the LMA1 and CMA1 datasets.

Methods IncRNA-miRNA circRNA-miRNA

Pre-train F1 AUC F1 AUC

BCGP-Random 0.397 0.891 0.397 0.801 0.500 0.921 0.591 0.933
BCGP-Text2vec 0.428 0.900 0.425 0.809 0.550 0.928 0.650 0.945
BCGP-Doc2vec 0413 0.895 0381 0.780 0.545 0.932 0.652 0.944
BCGP-HyenaDNA 0.427 0.894 0.393 0.789 0.542 0.940 0.663 0.948
BCGP-BERT 0.439 0.904 0.435 0.816 0.572 0.948 0.712 0.957

The best results of four evaluation metrics (F1, AUC, AP, and NDCG) are highlighted in bold.

TABLE 2 Overall performance comparison of different fine-tuning GNN methods on IncRNA-miRNA and circRNA-miRNA association prediction tasks using
the LMA1 and CMAL1 datasets.

Methods IncRNA-miRNA circRNA-miRNA

Fine-tune F1 AUC F1 AUC

GAT 0.310 0.768 0.211 0.697 0.462 0.919 0.527 0.910
GATv2 0.329 0.723 0.187 0.685 0415 0.884 0.430 0.887
FiLM 0.443 0.894 0.367 0.772 0473 0.931 0.612 0.939
GraphSAGE 0.302 0.756 0.202 0.691 0.483 0.935 0.620 0.941
SGC 0.399 0.895 0421 0.818 0571 0.947 0.698 0.954
GCN 0.439 0.904 0.435 0.816 0.572 0.948 0.712 0.957

The pre-training method used is BCGP-BERT. The best results of four evaluation metrics (F1, AUC, AP and NDCG) are highlighted in bold.

BCGP-BERT enhances association prediction by learning
contextualized representations that capture the global context of
entire sequences. Furthermore, the findings also highlight the
effectiveness of using the BERT model trained on task-related
data through Masked Language Modeling, enabling BCGP-BERT
to discover the intricate pattern of RNA sequences and demonstrate
its robustness in predicting RNA interactions. Additional pre-
training results on the LMA2 and CMA2 datasets are provided
in Supplementary Appendix S3.

3.3 Examination of fine-tuning

To evaluate the performance of BCGP integrated with different
fine-tuning methods, we conduct association prediction
experiments using six different GNNs. Specifically, we compare
GAT (Velickovi¢ et al., 2017), GATv2 (Brody et al.,, 2021), FiLM
(Brockschmidt, 2020), GraphSAGE (Hamilton et al., 2017), SGC
(Wu et al, 2019), and GCN (Kipf and Welling, 2016) using the
BCGP-BERT pre-training framework. All methods share the same
embedding dimension. As detailed in Table 2, for the IncRNA-
miRNA association prediction, GCN outperforms all other fine-
tuning methods, achieving an F1 score of 0.439, AUC of 0.904, AP of
0.435, and NDCG of 0.816. For the circRNA-miRNA association
prediction, GCN also demonstrates a robust performance with an
F1 score of 0.572, AUC of 0.948, AP of 0.712, and NDCG of 0.957,
while SGC closely follows with competitive performance. These
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results demonstrate that GCN is the most effective fine-tuning
method on BCGP-BERT for predicting IncRNA-miRNA and
circRNA-miRNA interactions. Further fine-tuning results on the
LMA2 and CMA2 datasets are provided in Supplementary
Appendix S3.

3.4 Method comparison

Next, we compare our BCGP to the state-of-the-art SPGNN
(Wang Z. et al,, 2023), which utilizes the k-mer technique, Doc2Vec
model and fine-tuning with GNN for RNA association prediction.
Additionally, we include GCNFormer (Yao et al., 2024), which
leverages graph convolutional networks and transformers for
predicting IncRNA-disease associations, as a baseline. The
experimental results in Table 3 illustrate that our BCGP
consistently outperforms SPGNN across all metrics for both
IncRNA-miRNA and circRNA-miRNA association predictions.
For IncRNA-miRNA associations, our BCGP achieves an
F1 score of 0.439, AUC of 0.903, AP of 0.435, and NDCG of
0.812, outperforming SPGNN’s scores of 0.430, 0.894, 0.419, and
0.828, respectively. Similarly, for circRNA-miRNA, BCGP obtains
an F1 score of 0.572, AUC 0f 0.948, AP 0f 0.712, and NDCG 0of 0.957,
significantly outperforming SPGNN. Additionally, we evaluate the
effect of the NCN technique on the performance of BCGP.
Compared to the BCGP without NCN, the integration of NCN
shows improvements in both IncRNA-miRNA and circRNA-
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TABLE 3 Overall performance comparison of SPGNN and our BCGP method on IncRNA-miRNA-circRNA association prediction task.

Methods IncRNA-miRNA circRNA-miRNA

F1 AUC F1 AUC
SPGNN (Wang et al,, 2023b) 0.430 0.894 0.419 0.828 0.403 0.840 0.510 0.911
GCNFormer (Yao et al., 2024) 0.305 0.677 0.226 0.686 0.350 0.730 0.453 0.815
BCGP (w/o NCN) 0.4321 0.901" 0.432° 0.808 0.492" 0.919" 0.577" 0.929"
BCGP (w/NCN) 0.4391 0.903F 0.4351 0.812 0.572 0.9481 0.712% 0.957+

The best results of four evaluation metrics (F1, AUC, AP, and NDCG) are highlighted in bold. In each dataset, significant improvements over the base model are marked with 1 (paired t-test,

p < 0.05$).
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FIGURE 2
Overall performance (F1, AUC, AP, and NDCG) of BCGP-BERT-GCN across varying k values in k-mers for IncCRNA-miRNA (first row) and circRNA-

miRNA (second row) association predictions.

miRNA association predictions. These results demonstrate that
BERT has a stronger capability to capture contextual information
than the classic Doc2vec method, which allows our method to
effectively capture complex and intricate relationships between
RNA  sequences, predictions.
Furthermore, integrating the NCN technique enables our method

leading to more accurate

to learn more refined node representations, which ultimately
enhances the prediction accuracy in complex RNA interactions.
3.5 Analysis of hyperparameters

In this section, we investigate the impacts of two important

parameters of the BCGP, including the k-value in k-mers and the
RNA embedding vector size in the pre-training stage.

Frontiers in Genetics
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3.5.1 Examination of k-value

In our BCGP method, we employ the k-mers tokenization to
segment RNA sequences into equal-length segments, where k
denotes the segment length. To determine the impact of k value,
we investigate the performance of BCGP across different k values,
limiting k to a maximum of 6 due to computational constraints. As
illustrated in Figure 2, the experimental results indicate that k = 3
provides the optimal performance for both IncRNA-miRNA and
circRNA-miRNA association predictions. For IncRNA-miRNA
associations, the k =3 setting consistently achieves the highest
F1, AP, and NDCG scores. Similarly, for circRNA-miRNA
associations, k = 3 obtains the highest scores for F1 and NDCG.
These results suggest that the choice of k = 3 can help BCGP capture
sufficient sequence context and identify the most informative
patterns for RNA association predictions.
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miRNA (second row) association predictions.

TABLE 4 Top-10 Predicted IncRNAs Linked to hsa-miR-143.

Rank IncRNA PMID

1 MALAT1 28,543,721
2 MEG3 32,520,926
3 NEAT1 33,744,906
4 UCA1 32,130,788
5 DANCR Not found
6 HOTAIR 29,336,659
7 TUGI1 31,264,280
8 GAS5 36,769,379
9 KCNQI10T1 30,691,798
10 MIAT Not found

TABLE 5 Top-10 Predicted IncRNAs Linked to hsa-miR-6808-5p.

Rank IncRNA Evidence
1 hsa_circ_0082878 Found

2 hsa_circ_0020316 Found

3 hsa_circ_0049111 Found

4 hsa_circ_0057955 Found

5 hsa_circ_0037997 Found

6 hsa_circ_0000726 Found

7 hsa_circ_0049109 Found

8 hsa_circ_0049112 Found

9 hsa_circ_0016773 Found

10 hsa_circ_0085900 Not Found

3.5.2 Examination of embedding size in the pre-
training stage

After analyzing the impact of k value, we examine the effect of
RNA embedding vector size within the BERT model during the pre-
training stage. Due to the memory constraint, we vary the
embedding size from 64 to 512 and fixed the k-value in k-mers
at 3. As depicted in Figure 3, the embedding size significantly
impacts the performance of both IncRNA-miRNA and circRNA-
miRNA association predictions. For IncRNA-miRNA, the optimal
performance is achieved with an embedding size of 256. In contrast,
for circRNA-miRNA, we can observe a consistent improvement
across all metrics with increasing embedding sizes. The findings

Frontiers in Genetics

suggest that while larger embedding sizes tend to enhance the ability
of the model to capture complex interactions, the optimal
embedding size may vary between datasets.

3.6 Case study

Prediction of new circRNA-miRNA and IncRNA-miRNA
interactions can reveal new biomarkers, identify therapeutic
the

validate

targets, and enhance understanding of regulatory

To the
practicality of our method, we select two miRNAs, namely

mechanisms networks.

of biological
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hsa-miR-143 and hsa-miR-6808-5p, to verify the prediction
results of miRNA-IncRNA and miRNA-circRNA associations
generated by BCGP. External literature is employed to validate
miRNA-IncRNA
associations recorded in CircBank (Liu et al., 2019) are used

the predictions for associations, while
for verifying miRNA-circRNA associations. For the target
miRNAs, 8 out of the top-10 predicted miRNA-IncRNA
associations are confirmed in Pubmed, and 9 out of the top
10 miRNA-circRNA associations are validated in Circbank.

Using the BCGP model, we predict IncRNAs linked to hsa-
miR-143. As illustrated in Table 4, the top-10 predicted IncRNAs
are MALATI1, MEG3,NEAT1, UCA1, DANCR, HOTAIR, TUGI,
GAS5, KCNQI1OTI1, and MIAT, with 8 of these associations
being validated in external literature. For instance,
MALAT1 the top-ranked IncRNA, was shown in a study by
Chen et al. (2017) to regulate ZEB1 expression by sponging
miR-143-3p and promoting the progression of Hepatocellular
Carcinoma. Additionally, Dong et al. (2020) has demonstrated
that MEG3 overexpression inhibited LPS-induced injury in
PDLCs by deactivating the AKT/IKK pathway by sponging
miR-143-3p.

Similarly, we predict circRNAs that are potentially associated
with hsa-miR-6808-5p validated by CircBank. The results
presented in Table 5 reveal that the top-10 ranked circRNAs
as hsa_circ_0082878, hsa_circ_0020316, hsa_circ_0049111, hsa__
circ_0057955, hsa_circ_0037997, hsa_circ_0000726, hsa_circ_
0049109, hsa_circ_0049112, hsa_circ_0016773, and hsa_circ_
0085900. Upon searching CircBank for hsa-miR-6808-5p, we
find 9 out of the top 10 predicted results in the CircBank
dataset. The results of the case study indicate that BCGP
possesses commendable practicality.

4 Conclusion

In this article, we propose a novel method named BCGP, to
RNA  sequence
relationships to enhance the prediction of IncRNA-miRNA and
circRNA-miRNA
contextual and structural information, BCGP integrates BERT in

leverage information and heterogeneous

associations. To comprehensively capture
the pre-training stage to consider the global context of the entire
sequence. To further enhance the performance of association
prediction, BCGP leverages the Neural Common Neighbour
technique in the fine-tuning stage to learn more informative and
flexible representations. Extensive experiments on two real-world
benchmark datasets demonstrate the effectiveness of our BCGP,
showing that it significantly improves prediction accuracy by
capturing complex interactions in both IncRNA-miRNA and
circRNA-miRNA association prediction tasks compared with
competitive baselines.
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