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Background: Prostate cancer has a high incidence and a low 5-year survival rate.
We aimed to combine cholesterol- and immune-related genes to screen
prostate cancer prognosis-related genes and construct a prognostic risk model.
Methods: We obtained publicly released clinical data of prostate cancer through
The Cancer Genome Atlas. Cholesterol- and immune-related genes were
separately collected from the mSigDB and ImmPort databases. The prognostic
model based on the immune-cholesterol-related differentially expressedmRNAs
(DEmRNAs) network was constructed by univariate and multivariate Cox
regression methods. Gene set enrichment analysis (GSEA), mutation landscape
analysis, and immune infiltration analysis were carried out to investigate the role
of immune-cholesterol-related DEmRNAs in prostate cancer.
Results: We identified 11 immune-cholesterogenic-related DEmRNAs (C2orf88,
TRPM4, SAPCD2, RHPN1, RAC3, APOF, PTGS2, TSPAN1, KLK4, ENTPD5, and
C1orf64) as risk factors that were related to the occurrence and development of
prostate cancer by bioinformatics analysis. Immune infiltration analysis suggested
immune-cholesterol-related DEmRNAs may act in an immunomodulatory role
for treatment decisions. The proportion of plasma cells, memory resting
CD4 T cells, and neutrophils in the low-risk group was significantly higher
than that in the high-risk group (p < 0.05). The GSEA revealed DEmRNAs were
enriched in 58 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
consisting of hematopoietic cell lineage, hypertrophic cardiomyopathy, and the
JAK-STAT signaling pathway. The Gleason score of the high-risk group showed a
significant difference from that of the low-risk group after clinical data
analysis (P < 0.05).
Conclusion: The prognostic riskmodel and nomogram constructed based on the
immune-cholesterol-related genes had a great prognostic performance for
prostate cancer.
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Highlight

• Cholesterogenic-related genes can divide prostate cancer patients into two subgroups
with different prognoses.

• Cholesterogenic- and immune-related genes were enriched in smooth muscle
contraction, cGMP-PKG pathway, and focal adhesion.
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• Eleven genes (C2orf88, TRPM4, SAPCD2, RHPN1, RAC3,
APOF, PTGS2, TSPAN1, KLK4, ENTPD5, and C1orf64) were
used to construct a risk model.

• The risk model had good prognostic performance for patients
at 1 year, 2 years, and 3 years.

• The risk score was an independent prognostic factor of
prostate cancer.

Introduction

Prostate cancer is the cancer with the highest morbidity and
mortality rate among men in China. There are projected to be
2.3 million new cases globally by 2024 (Culp et al., 2020). Prostate
cancer growth and development are controlled by 5α-dihydrotropis,
which plays its biological role by binding to the androgen receptor.
When 5α-dihydrotrophil binds to hormone ligands, the receptor is
detached from the helper protein and transferred, then binds to the
androgen response element located in the promoter region of genes
involved in cell proliferation, and escapes from apoptosis (Dehm
and Tindall, 2006). Studies have confirmed that androgens bind to
the androgen receptor, activating androgen receptor signaling and
promoting the development of prostate cancer (Hou et al., 2021b).
At present, androgen deprivation therapy is the preferred treatment
for prostate cancer. The treatment slows disease progression by
lowering circulating androgens to castration levels. However,
androgen deprivation therapy eventually leads to the
development of drug resistance, and the disease process cannot
be stopped (Powers et al., 2020). The treatment of advanced prostate
cancer will change dramatically with the future development of
genomics and bioinformatics. Informational biomarkers are
urgently needed.

Cholesterol is not only a precursor of male hormones; it is also a
key component of the lipid raft, which is the main platform for
cancer signaling regulation (Ding et al., 2019). Some cancers,
including prostate cancer, have elevated cholesterol levels, and
higher cholesterol levels make raft domains less fluid. Changes in
the structure of raft domains may promote tumor growth by
stimulating related signaling pathways (Hryniewicz-Jankowska
et al., 2019). Elevated cholesterol promotes tumor growth and
reduces apoptosis of prostate cancer cells through the AKT
signaling pathway (Singh et al., 2017). Feeding prostate cancer
mice a high-cholesterol diet led to increased tumor growth
(Jamnagerwalla et al., 2018). However, the molecular mechanism
of cholesterogenic-related genes in prostate cancer and whether they
can be used as prognostic molecular markers of prostate cancer need
further study.

The successful use of immune checkpoint inhibitors in a variety
of cancers, including bladder cancer, has aroused interest in tumor
immunity (Gibney et al., 2016). The impact of immune components
and immune cell types on prostate cancer is complex (Zhao et al.,
2019). The immune cells play a key role in the progression and
metastasis of prostate cancer (Messex and Liou, 2023). An elevation
in CD4+ T cell numbers has been observed in prostate tissue from
prostate cancer patients relative to control samples (Hu et al., 2015).
Macrophages are positively correlated with postoperative aggressive
pathological features of prostate cancer (Strasner and Karin, 2015).
Higher numbers of CD8+ cytotoxic T lymphocytes were found in

CCR6-deficient mice that had bone metastasis from prostate cancer
(Chinetti-Gbaguidi et al., 2017). Immune cell infiltration patterns in
the prostate tumor microenvironment, including Tregs and M1/
M2 macrophages, have been identified as adverse prognostic
indicators for prostate cancer (Andersen et al., 2021). Of note,
clinical studies have confirmed that manipulating cholesterol can
reshape the immune landscape and play a positive role in tumor
treatment (Huang et al., 2020). Cholesterol metabolism has been
shown to impact the function of CD8+ T lymphocytes (Yang et al.,
2016). Additionally, cholesterol homeostasis is vital for macrophage
function (Guo et al., 2018). These findings reveal the important role
of immune cells as well as their relationship with cholesterol
metabolism in prostate cancer. However, the cross mechanisms
related to both cholesterol metabolism and immune cells in prostate
cancer progression have not been fully clarified.

In this study, we aimed to use the large amount of sequencing
and clinical data in The Cancer Genome Analysis (TCGA) database,
combined with cholesterogenic-related genes and immune-related
genes, to screen for prostate cancer prognosis-related genes. These
genes were used to construct a prognostic risk model to provide
some new insights into the mechanism research and prognosis
prediction of prostate cancer (Supplementary Figure 1).

Materials and methods

Data collection

RNAseq (Log2 (FPKM +1)) and clinical data from the TCGA
database (Rosenbloom et al., 2015) for GDC TCGA Prostate Cancer
(PRAD) were downloaded. A total of 551 samples (52 paracancer
samples and 499 tumor samples) with matched sequencing and
clinical data were obtained. Combined with the Gencode database
(Harrow et al., 2012), the Ensembl_ID was converted to a Symbol_
ID to obtain the mRNA expression value.

The gene expression dataset GSE70769 was acquired from the
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/). It included 94 tumor tissue samples and was sequenced on the
GPL10558 platform. This dataset was utilized for external validation
of the prognostic model.

Genes belonging to the molecular signatures database gene sets
“REACTOME_CHOLESTEROL_BIOSYNTHESIS” (n = 24) in the
mSigDB database (Karasinska et al., 2020) were used as
cholesterogenic genes. The immune gene set was obtained from
the ImmPort database (Bhattacharya et al., 2018) and matched with
the TCGA data set to create a 1,315 immune gene expression matrix.

Consensus clustering analysis of
cholesterogenic genes

The ConsensusclusterPlus algorithm (version 1.50.0)
(Wilkerson and Hayes, 2010) was used to cluster all tumor
samples based on the cholesterogenic gene matrix. The
parameters were set as maxK = 6, pItem = 0.8, clusterAlg = “hc”,
distance = “spearman”. The cumulative distribution function (CDF)
was used to identify the most reasonable number of clusters, and the
corresponding sample set was used to obtain the subtype of
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cholesterogenic genes. The log-rank statistical test was performed to
analyze the relationship between cholesterogenic genes subtypes and
prognosis, and Kaplan–Meier (K–M) survival curves were
constructed.

Screening differentially expressed mRNAs

The T-test provided by the limma package (version 3.10.3)
(Smyth, 2005) of R software was used to test the mean
expression difference between tumor and paracancer samples.
The adjusted P-value <0.05 and | logFC (fold change) | > 1 were
set to screen differentially expressed mRNAs (DEmRNAs).
ggplot2 was used to visualize the results.

The Pearson correlation coefficient (PCC) between DEmRNAs
and cholesterogenic genes was calculated to identify the
cholesterogenic-related DEmRNAs using the cor() function in R.
We also calculated the PCC between DEmRNAs and immune genes
to obtain the immune-related DEmRNAs. A P-value <0.01 and |r| >
1 were set as the threshold. Finally, cholesterogenic-related
DEmRNAs and immune-related DEmRNAs were intersected to
obtain immune-cholesterogenic-related DEmRNAs.

Enrichment analysis of immune-related
DEmRNAs and cholesterogenic-
related DEmRNAs

ClusterProfiler (Yu et al., 2012) was used to perform the Gene
Ontology (GO) (Kanehisa and Goto, 2000) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Carbon et al., 2019) enrichment
analysis of immune-related DEmRNAs and cholesterogenic-related
DEmRNAs. Enrichment terms with count ≥2 and
P-value <0.05 were identified as significant terms.

Construction and verification of a
prognostic risk model

After removing TCGA tumor samples with a survival time of
less than 30 days, 496 samples remained. We randomly divided the
sample into a training set and a validation set in a ratio of 3:2.
Univariate Cox regression analysis using the survival package
(version 4.0–2) was used to identify immune-cholesterogenic-
related DEmRNAs that were significantly correlated with
progression-free interval (PFI). The best λ values were obtained
by using the LASSO Cox regression model (Tibshirani, 1997) of the
R package glmnet (version 4.0–2) (Engebretsen and Bohlin, 2019).
The ten-fold cross-validation was conducted, and the lambda.min
was used for selecting the optimal combination of characteristic
genes for model construction.

The prognostic riskmodel was constructed by combining the gene
expression value in each tumor sample, the PFI, and the PFI time of
each sample according to the following formula: Risk score = βgene1 ×
exprgene1 + βgene2 × exprgene2 +. . .+ βgenen × exprgenen. In the
formula, β represents the prognostic correlation coefficient of each
gene in LASSO regression, while expr represents the expression value
of the corresponding gene. The samples with a risk score ≥ optimal

cut-off point were classified as the High_risk group. The Low_risk
group was defined as samples with a risk score < optimal cutpoint.

To verify the accuracy of the risk model, the risk model with the
internal validation set and the entire data set, respectively, were
reconstructed based on the internal validation and entire data sets, as
well as the external validation dataset, and the β value obtained from
the training set was used. A K–Mcurve was used to visualize whether
there was a significant difference in PFI between the two groups.
SurvivalROCwas used to collate the survival time and survival status
of the samples. The receiver operating characteristic curves (ROC)
(version 1.0.3) (Heagerty et al., 2000) of 1-year, 2-year, and 3-year
patient survivals were described. We also calculated the
corresponding area under the curve (AUC). Then, the samples
were divided into high and low expression groups according to
the optimal expression level of the samples, and a log-rank statistical
test was performed. Finally, a K–M survival curve was drawn to
visualize the relationship between model genes and
patient prognosis.

Independent analysis of the prognostic
model and establishment of a nomogram

We performed univariate and multivariate Cox analyses to
screen independent prognostic factors. The enrolled factors
included Gleason score, pathologic N, pathologic T, age, therapy
outcome, radiation therapy, and risk score. A log-rank test was used
for difference analysis, and a P-value <0.05 was selected as the
threshold. The nomogram was plotted using the rms nomogram
function (version 6.1-0) (Zhang et al., 2017) in R, combined with
independent prognostic factors. The predictive power of the
nomogram was evaluated using calibration curves.

Statistical analysis of clinical data

To compare the differences in clinical characteristics (age,
pathologic N, pathologic T, and Gleason score) between the
High_risk and Low_risk groups, GGStatsplot (version: 0.5.0)
was used to calculate the proportion of each clinical
characteristic. The chi-square test was used to compare the
difference between the two groups. A P-value <0.05 was
considered the threshold value.

Screening of differentially expressed genes
between the High_risk and Low_risk groups

For differentially expressed gene (DEG) screening, the T-test in
the limma package (version 3.10.3) (Smyth, 2005) in R was used. An
adjusted P-value <0.05 and |logFC| > 0.585 were selected as
the threshold.

Gene set enrichment analysis (GSEA) was used to compare the
different pathways between the High_risk and Low_risk groups
using clusterProfiler (version 3.16.0) (Yu et al., 2012) in the R
package. c2. cp.kegg.v7.5.1.symbols.gmt in the MSigDB database
was set as the enrichment background. GSEA was performed after
sorting according to the logFC of all genes obtained by grouping
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comparison. An adjusted P-value <0.05 was considered
the threshold.

Immune infiltration analysis

The Cibersort algorithm (Newman et al., 2015) was applied to
analyze the infiltration of 22 kinds of immune cells in groups using
tumor tissue expression profile data. The gene expression
characteristic template was the LM22 dataset provided by the
Cibersort website. perm = 100 and QN = F were set as the
parameters.

Mutation analysis

The somatic mutation file called by TCGA’s mutect software was
downloaded. Maftools (version 2.0.16) (Mayakonda et al., 2018) of
the R package was used to draw a summary diagram of the groups,
and statistical analysis of somatic mutation information
was performed.

Results

Consistent clustering analysis

Consistent clustering analysis of cholesterogenic-related genes
revealed that tumor samples should be divided into two subtypes
(Figure 1A). The K–M curve revealed that the survival probability
(P = 0.0061) showed a significant difference (Figure 1B) between the
two clusters. This result prompted us to continue to investigate the
relationship between cholesterol levels and prognosis in prostate
cancer patients.

Screening of cholesterogenic-related
DEmRNAs and immune-related DEmRNAs

The results of differential analysis showed that there were
518 DEmRNAs (156 upregulated and 362 downregulated)
between the tumor and the adjacent tissue (Figure 2A).
Moreover, to screen the cholesterogenic-related DEmRNAs and
immune-related DEmRNAs, we calculated the PCC between
DEmRNAs, cholesterogenic-related genes, and immune-related
genes. There were 508 immune-related DEmRNAs and
187 cholesterogenic-related DEmRNAs. To further screen the
immune-cholesterogenic-related DEmRNAs, the cholesterogenic-
related DEmRNAs and immune-related DEmRNAs were
intersected. Finally, 186 immune-cholesterogenic-related
DEmRNAs were obtained (Figure 2B).

Functions of cholesterogenic-related
DEmRNAs and immune-related DEmRNAs

The 187 cholesterogenic-related DEmRNAs were enriched in
five GO terms, including muscle system process, muscle contraction,
regulation of blood pressure, smooth muscle contraction, and
diterpenoid biosynthetic process (Figure 3A). The
cholesterogenic-related DEmRNAs also participated in five
KEGG pathways, including the cGMP-PKG signaling pathway,
vascular smooth muscle contraction, oxytocin signaling pathway,
insulin secretion, and serotonergic synapse (Figure 3B).

The 508 immune-related DEmRNAs were enriched in 304 GO
terms, including muscle system process, muscle contraction, and
regulation of metal ion transport (Figure 3C). These mRNAs were
also enriched in 21 KEGG pathways, such as the cGMP-PKG
signaling pathway, vascular smooth muscle contraction, and focal
adhesion (Figure 3D).

FIGURE 1
Consistent cluster analysis of cholesterogenic genes. (A) The cumulative distribution function curves when the cluster number changes from k to
k+1. The optimal k = 2. (B) Survival curves of patients in cluster-1 and cluster-2.
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FIGURE 2
Screening of immune-cholesterogenic-related differentially expressed mRNAs (DEmRNAs). (A) The volcano map of DEmRNAs between the tumor
and the adjacent tissues. (B) Venn analysis of immune-cholesterogenic-related DEmRNAs.

FIGURE 3
Enrichment analysis of cholesterogenic-related DEmRNAs and immune-related DEmRNAs. (A) The GO analysis terms of cholesterogenic-related
DEmRNAs. (B) The KEGG analysis of cholesterogenic-related DEmRNAs. (C) The GO analysis of immune-related DEmRNAs. (D) The KEGG analysis of
immune-related DEmRNAs.
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The risk model

Immune-cholesterogenic-related DEmRNAs were used to
screen the PFI-related genes. The result indicated that 25 genes
were significantly correlated with PFI. Further LASSO Cox
regression analysis revealed that only 11 PFI-related genes
(C2orf88, TRPM4, SAPCD2, RHPN1, RAC3, APOF, PTGS2,
TSPAN1, KLK4, ENTPD5, and C1orf64) were selected as the
optimized prognostic markers (Figures 4A,B).

Then, we combined the 11 PFI-related genes with the training
set to construct a risk model. K–M survival analysis revealed that the
High_risk group’s prognosis was significantly worse than the Low_
risk group’s (P < 0.0001). ROC curves showed that our model had
good prognostic performance for patients at 1 year (AUC = 0.794),
2 years (AUC = 0.752), and 3 years (AUC = 0.707) (Figures 4C,D).
We verified the performance of the prognostic risk model using the
internal validation set (Figures 4E,F), the entire data set (Figures
4G,H), and the external validation dataset GSE70769 (Figures 4I,J),
and consistent results were obtained. These data indicated that the
constructed risk model had high performance for
predicting prognosis.

The independent prognostic factors

Univariate and multivariate Cox regression analyses
were performed to screen the independent prognostic clinical
factors. Univariate Cox regression analysis revealed that
risk score, pathologic T, pathologic N, Gleason score,
therapy outcome, and radiation therapy were significantly
related to prognosis (P < 0.05) (Figure 5A). Multivariate Cox
regression analysis showed the Gleason score and risk score
were significantly correlated with prognosis (P < 0.05)
(Figure 5B) and were considered independent
prognostic factors.

We constructed a nomogram combined with the Gleason score
and the risk score (Figure 5C). The calibration curve was used to
assess the predictive power of the nomogram. The prognosis
predicted by the nomogram showed a good agreement with the
actual prognosis (Figure 5D).

Comparison of clinical data

The proportions of clinical factors were compared
between the High_risk and Low_risk groups. The proportion
of T3 patients was highest in the High_risk group, while
the proportion of T2 patients was highest in the Low_risk
group (P < 0.05) (Supplementary Figure 2A). There were
significantly more patients older than 65 years in the High_

FIGURE 4
Construction of a risk model. (A) Selection of the tuning
parameter (lambda) in the LASSO model by 10-fold cross-validation
based on the minimum criteria for OS. (B) LASSO coefficient profiles.
(C) The progression-free interval (PFI) of the TCGA training set.
(D) Survival-dependent ROC curve validation at 1 year, 2 years, and
3 years of prognostic value of the prognostic index in the TCGA
training set. (E) The PFI of the TCGA validation set. (F) Survival-
dependent ROC curve validation at 1 year, 2 years, and 3 years of
prognostic value of the prognostic index in the TCGA validation set.
(G) The PFI of the entire TCGA data set. (H) Survival-dependent ROC

(Continued )

FIGURE 4 (Continued)

curve validation at 1 year, 2 years, and 3 years of prognostic value
of the prognostic index in the entire TCGA data set. (I) The PFI of the
external validation dataset GSE70769. (J) Survival-dependent ROC
curve validation at 1 year, 2 years, and 3 years of prognostic value
of the prognostic index in the external validation dataset GSE70769.
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risk than in the Low_risk group (P < 0.05) (Supplementary
Figure 2B). The Gleason scores of the two patient groups
also showed a significant difference (P < 0.05). The High_
risk group had the most patients with a Gleason score of 9,
while the Low_risk group had the most patients with a
Gleason score of 7 (Supplementary Figure 2C). The number of
patients at stage N1 was significantly higher in the High_risk
group than in the Low_risk group (P < 0.05)
(Supplementary Figure 2D).

GSEA between the groups

There were 167 DEGs (27 upregulated and 140 downregulated)
screened. GSEA revealed that DEGs were enriched in
58 KEGG pathways. Fourteen pathways that were negatively
related to the High_risk group included cell_cycle, oxidative_
phosphorylation, parkinsons_disease, ribosome, spliceosome,
and so on (Figure 6A). Forty-four pathways that positively
related to the High_risk group included vascular_smooth_muscle_
contraction, dilated_cardiomyopathy, hematopoietic_cell_lineage,
hypertrophic_cardiomyopathy, jak_stat_signaling_pathway, and so
on (Figure 6B).

Immune infiltration analysis

The plasma cells, memory resting CD4 T cells, and neutrophils
showed a significantly higher fraction in the Low_risk group than in
the High_risk group (P < 0.05). The regulatory (Tregs) T cells and
M2macrophages showed a significantly higher fraction in the High_
risk group than in the Low_risk group (P < 0.05)
(Supplementary Figure 3).

Mutation of two groups

The top five genes with mutation frequencies in the High_risk
group included TP53, SPOP, TTN, FOXA1, and MUC16
(Supplementary Figure 4A). The top five genes with mutation
frequencies in Low_risk patients included SPOP, TTN, TP53,
KMT2D, and KDM6A (Supplementary Figure 4B).

Discussion

Cholesterol metabolism has been shown to play an
immunomodulatory role in tumors. Targeted therapies targeting

FIGURE 5
Independent prognostic validation of the risk model genes. (A) Forest plot of univariate Cox regression analysis. (B) Forest plot of multivariate Cox
regression analysis. (C) The nomogram combined with the Gleason score and the risk score. (D) The calibration plot for internal validation of
the nomogram.
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cholesterol metabolites in cancer cells and immune cells are
considered a promising approach (Huang et al., 2020). We
discussed the feasibility of using immune-related genes and
cholesterogenic-related genes to construct a prostate cancer risk
model combining immunity and cholesterol metabolism.

Consistent cluster analysis revealed that cholesterogenic-related
genes could divide tumor samples into two subtypes. These results
prompted us to further explore the correlation between
cholesterogenic-related genes and prostate cancer prognosis. The
KEGG and GO analyses showed that the cholesterogenic-related
DEmRNAs were enriched in smooth muscle contraction. Patients
with benign prostatic hyperplasia usually show dystonia of the
smooth muscle of the prostate. Patients’ symptom scores can be
improved by administering drugs that relax smooth muscle (Wang
et al., 2016). Studies have shown that chronic prostatitis may be
related to the development and progression of prostate cancer (De
Nunzio et al., 2011). These cholesterogenic-related genes were also
involved in the cGMP-PKG signaling pathway, which controls
intracellular processes such as vasodilation and cell
differentiation. GMP-dependent PKG2 inhibits the proliferation
of cancer cells. It is reported that activation of the GMP-PKG
pathway plays a role in prostate cancer (Wang et al., 2020).

Immune-related genes were involved in smooth muscle
contraction and the cGMP-PKG signaling pathway. In the
lipopolysaccharide-induced inflammatory microenvironment,
knockdown of STEAP4 could suppress prostate cancer cell
proliferation through the activation of the cGMP-PKG pathway
(Li et al., 2021). A recent study also showed that low-dose metformin
inhibits castration-resistant prostate cancer through modulating
PDE6D-induced changes in purine metabolism and activating the
cGMP-PKG pathway (Cai et al., 2025).

The regulation of metal ion transport was an enrichment
function of the immune-related genes. It has been reported that
the prostate is normally rich in zinc and that zinc reduction is a

marker of prostate cancer development (To et al., 2020). The
immune-related genes were also involved in focal adhesion, and
focal adhesion kinase was involved in the occurrence of the cancer.
Focal adhesion kinase is positively correlated with tumor stage and
Gleason score in prostate cancer patients (Atılgan et al., 2020). The
activation of the focal adhesion signaling pathway by
MYO6 contributes to tumor progression in castration-resistant
prostate cancer (Zheng et al., 2024). Overall, it can be speculated
that the immune-related genes may contribute to prostate cancer via
modulating these pathways.

Eleven genes (C2orf88, TRPM4, SAPCD2, RHPN1, RAC3,
APOF, PTGS2, TSPAN1, KLK4, ENTPD5, and C1orf64) were
selected by LASSO analysis to construct a risk model. It has been
reported that C2orf88 may be a potential driver gene of prostate
cancer (Peng et al., 2021), and the methylation of C2orf88 may be
associated with prostate cancer (Babalyan et al., 2018). As a non-
selective monovalent cation channel, TRPM4 expression can
mediate the invasion and migration of cancer cells (Gao and
Liao, 2019). TRPM4 was expressed in benign and malignant
prostate tissues. Higher levels of TRPM4 were associated with
higher rates of recurrence after prostatectomy (Berg et al., 2016).
Silencing SAPCD2 could inhibit the proliferation, migration, and
invasion of prostate cancer cells (Sun et al., 2021). RAC3 enhances
the transcriptional activity of many steroid receptors. Moreover,
endogenous RAC3 can interact with androgen receptors to increase
their activity (Gnanapragasam et al., 2001).

The role of PTGS2 in various cancers has been widely reported.
Further studies revealed that miR-124-3p inhibited the AKT/NF-κB
pathway by targeting PTGS2 to play an antitumor effect in prostate
cancer (Zhang, 2021). Some studies have reported that TSPAN1 is
controlled by androgen, and higher TSPAN1 expression is
associated with a lower Gleason score (Stinnesbeck et al., 2021).
Munkley et al. also found that TSPAN1 expression was low in
metastatic tumors (Munkley et al., 2017). KLK4 was found to

FIGURE 6
Enrichment plots of differentially expressed gene sets from gene set enrichment analysis (GSEA). (A) The top five KEGG pathways that were
negatively related to the High_risk group. (B) The top five KEGG pathways that were positively related to the High_risk group.
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remodel the prostate tumor microenvironment (Gao et al., 2007).
ENTPD5 is typically expressed only in prostate tumors compared to
normal samples (de Campos et al., 2021). Overexpression of
RHPN1 is found to be linked to poor prognosis in prostate
adenocarcinoma (Hou et al., 2021a). APOF plays a key role in
lipid metabolism, and this process has been associated with the risk
of multiple cancers, including prostate cancer (Marrone et al., 2023;
Shi et al., 2023). C1orf64 (also named SRARP) is a tumor suppressor
that can be used to predict the clinical outcomes of malignant
tumors, potentially including prostate cancer (Marrone et al., 2023).

In this study, a prognostic risk model constructed by these
immune-cholesterogenic-related genes demonstrated a good
ability for predicting prostate cancer prognosis. Determining
the expression levels of these genes may help identify high-risk
patients who are more likely to experience poor outcomes,
enabling personalized treatment plans. Additionally, the model
could be integrated into current diagnostic protocols by combining
gene expression data with other clinical and molecular biomarkers,
enhancing the accuracy. While this prognostic risk model
demonstrated promising predictive performance, its practical
application in clinical settings can be further realized by
integrating it into existing diagnostic protocols and treatment
strategies. This would ultimately contribute to the advancement
of precision medicine for patients with prostate cancer.

We constructed a nomogram combined with the Gleason score
and the risk score. The nomogram showed great prognostic
potential. We also found that the proportion of T3 was highest
in the high-risk group, while the proportion of T2 was highest in the
Low_risk group. The K–M curve of the risk model indicated that
patients in the High_risk group had a worse prognosis. Patients in
the High_risk group were older, had higher Gleason scores, and had
more patients in the N1 stage. This is consistent with previous
research findings (Hall et al., 2005).

Increasing evidence has shown that various immune cells are
implicated in the progression of prostate cancer (Novysedlak et al.,
2025). Immune cell infiltration into prostate tissue has been
associated with prostate cancer progression and lipid metabolism
disturbances (Siltari et al., 2022). The lipid-mediated crosstalk
between cancer cells and immune cells in the tumor
microenvironment can affect immune cell functions and plays an
essential role in cancer progression and immune evasion (Zeng et al.,
2022). Cholesterol metabolism may influence the tumor
microenvironment by affecting immune cell function and
infiltration. In prostate cancer, such metabolic shifts could affect
the immune microenvironment by promoting immune suppression
or resistance to immunotherapies.

We analyzed the relationship between immune cell infiltration
and the risk model. Immune infiltration analysis indicated that
M2macrophages and Tregs showed a significantly higher fraction in
the High_risk group. M2 macrophages are thought to influence
disease outcomes by stimulating angiogenesis and
immunosuppression. An increased number of Tregs in men with
prostate cancer always accompanies a poor prognosis and reduced
survival (Erlandsson et al., 2019). Therefore, we conclude that the
infiltration of these immune cells may affect prostate cancer
progression and patient outcomes. Notably, a promising strategy
for therapeutic intervention involves tumor cell membrane-based
vaccines, which utilize tumor-derived membrane vesicles to

stimulate antitumor immunity (Yang et al., 2024). Given that
lipid molecules, including cholesterol, affect cell membrane
properties, it is plausible that metabolic modulation of these
membranes could optimize the presentation of tumor antigens
and increase the efficacy of tumor vaccines. By integrating
metabolic biomarkers with immune-targeting therapies, a new
avenue for precision immunotherapy could be realized, where
treatment is fine-tuned to both the metabolic state of the tumor
and the immune landscape of the patient.

This study identified seven key immune-cholesterogenic-related
genes and successfully developed a prognostic model integrating
cholesterol metabolism and immune-related gene signatures for
prostate cancer, offering valuable insights into the potential of
metabolic-immune crosstalk in shaping tumor progression and
patient outcomes. However, there were some limitations. First,
sequencing data and clinical data were obtained from public
databases. The results were not validated by clinical cohorts.
Second, this was a retrospective study, which may introduce
potential biases, such as selection bias and unmeasured
confounders. Further prospective studies are required to validate
these findings. Third, this study did not account for potential
confounders that could influence cholesterol levels and immune
responses, such as patient comorbidities or lifestyle factors such as
diet and smoking. Future studies that incorporate these confounders
are needed to better assess the relationship between lipid metabolism
and immune response in prostate cancer. Finally, while this study
identified prognostic genes and pathways, their functional roles in
prostate cancer were not experimentally validated. Functional
studies, such as in vitro or in vivo experiments, are necessary to
further support their biological conclusions.

In conclusion, we constructed a risk model based on
cholesterogenic-related and immune-related genes to predict the
prognosis of prostate cancer. The model and the nomogram had
great prognostic performance. These immune-cholesterol-related
genes and the model may serve as valuable prognostic biomarkers,
guiding personalized treatment strategies for prostate
cancer patients.
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