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Objective: The aim of this study was to identify the markers of Rhizoma
Atractylodis Macrocephalae (RAM) for the prevention and treatment of gastric
cancer using bioinformatics analysis.
Methods: The main active components of RAM were screened using the
Traditional Chinese Medicine Systematic Pharmacology Profiling Platform
(TCMSP) and SwissADME, the target genes of RAM were screened using
WGCNA and three machine learning algorithms, and the target genes were
analyzed clinically and by methylation.
Results: Three core genes, namely, CA2, HSP90AA1, and NR3C1, were screened
by WGCNA and three machine learning algorithms. Clinical correlation analysis
and epigenetic analyses showed that these genes play the most important role in
gastric cancer. In gastric cancer, there was a strong correlation between
NR3C1 methylation and its mRNA expression, suggesting that methylation of
NR3C1may be involved in the regulation of its expression. Therefore, methylation
correlation analysis of NR3C1 was performed, and it was found that the
methylation type of NR3C1 was mainly m6A methylation; the frequency of
methylation hypermutation in the CDS region was also high, and the
homologous region and the promoter of the NR3C1 gene showed
hypomethylation and hypermethylation differences in the analyses of gastric
tissues, races, and gastric cancer subtypes, respectively. Among the methylated
peninsular mutations, the TSS200; 5′UTR, 5′UTR, and TSS1500; 5′UTR regions
were statistically significant.
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Conclusion: NR3C1 can be used as a potential methylation marker of RAM for the
prevention and treatment of gastric cancer.
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1 Introduction

Gastric cancer, a disease with high molecular and phenotypic
heterogeneity, is the fifth most common form of cancer and the third
leading cause of death worldwide (Smyth et al., 2020). Although the
incidence and mortality rates of gastric cancer have decreased in the
recent years in various countries, it is still one of the major diseases
threatening human health (Yang W. J. et al., 2023). According to
epidemiological analyses, stomach cancer is most prevalent in East
Asia, followed by Eastern and Central Europe, and it is most
prevalent in men (Ló et al., 2023). Currently, Helicobacter pylori
remains the primary risk factor for gastric cancer, and evidence
suggests that alcohol, processed foods, and diets high in salt and fat
are also risk factors for gastric cancer (Maddineni et al., 2022). For
the time being, rapid advances in the treatment of gastric cancer are
dependent on advances in the diagnosis and staging of gastric
cancer, genomic classification, surgical resection and treatment,
systemic chemotherapy and radiotherapy, and targeted therapies
and immunotherapies (Johnston and Beckman, 2019).

Currently, medicinal plants are gaining attention because of
their combined food and medicinal value. Several studies have
demonstrated the antitumor activity of medicinal plants, and
they have been shown to enhance the efficacy of chemotherapy,
radiotherapy, targeted therapy, and immunotherapy (Wang S. et al.,
2020). Ginseng and ginsenosides possess anti-colon cancer (Zhao
et al., 2022) and anti-gastrointestinal tumor (Ni et al., 2022)
activities. Similarly, honeysuckle is also used as a medicinal herb,
and its extracts showed cytotoxicity in triple-negative breast cancer
(Li et al., 2023) and the induction of apoptosis in hepatocellular
carcinoma (Zhang et al., 2022) and HeLa cells (Li et al., 2017).
Polyphenol extracts from yam are capable of exerting anti-colorectal
cancer effects through the NF-κB/p6 and STAT3 signaling pathways
(Yang X. et al., 2023). Diosgenin, a constituent of yam, is also a
component that exhibits anticancer activity (Ren et al., 2023).
Rhizoma Atractylodis Macrocephalae (RAM) is a medicinal plant
from the Asteraceae family. Studies have shown that RAM exhibits
anti-inflammatory (Jeong et al., 2019), intestinal microflora
regulatory (Cheng et al., 2023), and anti-cancer (Wang et al.,
2024) activities. Atractylenolide I isolated from RAM ameliorates
cancer cachexia via IL-6 and extracellular vesicles and inhibits the
STAT3 signaling pathway (Fan et al., 2022). RAM polysaccharide
induces antiproliferative activity against glioma C6 cells via the
mitochondrial pathway by activating caspase 6/9 and PARP
production (Li et al., 2014). The ethanol extract of RAM inhibits
gastritis and gastric cancer via the AKT/NF-κB pathway (Amin
et al., 2022). Alcohol-soluble polysaccharides from RAM induce
apoptosis in esophageal cancer cells (Eca-109) via the mitochondrial
pathway (Feng et al., 2019).

Machine learning, which is the process of automatically
extracting laws and patterns from data by allowing computers to
perform specific tasks, can be used to extract nonlinear and

seemingly unrelated factors that are difficult to be detected by
traditional methods, leading to more accurate feature selection.
Therefore, the use of LASSO regression and support vector
machine–recursive feature elimination (SVM-RFE) and random
forest to build a model to detect the target can improve the
accuracy and confidence of the target and overcome the
limitations of previous studies. Network pharmacology
transforms TCM research from a “one-target–one-drug” model
to a “network-target-multi-component” model from the systemic
and molecular level, revealing the association between
drug–gene–disease synergistic modules (Li and Zhang, 2013).
WGCNA is used to characterize the pattern of association
between genes in microarray samples Swimsuit to find genes that
are highly associated with disease and to screen for candidate
biomarkers as well as therapeutic targets (Langfelder and
Horvath, 2008). Relevant studies have shown that WGCNA has
been widely used to predict relevant markers, such as the
identification of diagnostic markers of immunity and oxidative
stress in diabetic nephropathy (Xu et al., 2023) and the
identification of biomarkers for breast cancer (Tian et al., 2020).

In this study, we used network pharmacology to initially find
the relevant targets of RAM for the treatment of gastric cancer
and further screened the most closely related targets of RAM
with gastric cancer by WGCNA and a three-group machine
learning algorithm. The clinical correlation analysis of these
targets was used to identify the core targets, and the related
mechanism of RAM in treating gastric cancer was studied in
depth. The database was used to screen out the upstream
transcription factors of the core target and the possible
downstream targets, and the protein with the lowest binding
energy was predicted by molecular docking between the two
proteins; that is, it is most likely to be the downstream of the core
target. It provides new insights and ideas for the treatment of
gastric cancer with RAM. The experimental flow of the article is
shown in Figure 1.

2 Materials and methods

2.1 Screening of Chinese herbal medicine
active ingredients

The name of the Chinese medicine, Rhizoma Atractylodes
Macrocephala, was searched through the Traditional Chinese
Medicine Systematic Pharmacology Profiling Platform (TCMSP)
database (https://old.tcmsp-e.com/tcmsp.php). In addition, the
preliminary active ingredients were screened by the DL value ≥0.
18 and OB value ≥30%. The preliminary screening results were used
as a basis for further screening of active ingredients on a
pharmacokinetic and drug-likeness basis using the SwissADME
database (http://www.swissadme.ch/).
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2.2 Prediction of target genes of Chinese
herbal medicine active ingredients

The active ingredients identified in section 2.1 were used to
predict target genes using the SwissTargetPrediction (http://www.
swissadme.ch/) database, and they were de-emphasized to obtain the
final predicted target genes.

2.3 Disease database target screening

A search was conducted for gastric cancer-related genes in the
GeneCards database (https://previous.genesgards.org/) using “Gastric
cancer” as keywords; “Gastric cancer” was used as keywords to search
for gastric cancer-related genes in the DisGeNET database (https://
disgenet.com/); “Gastric cancer” was used as keywords to search for
gastric cancer-related genes in the GEO database (https://www.ncbi.
nlm.nih.gov/geo/), and target microarrays were screened for gastric
cancer-related genes by |LogFC|>2, p-value < 0.05.

2.4 WGCNA analysis

The GEO database screening results were used as the destination
matrix, and the weighted gene co-expression network analysis was
performed using the Ouyi Cloud platform (https://cloud.oebiotech.
com/#/) to screen the modules related to gastric cancer, and the
gastric cancer-related genes were obtained.

2.5 Acquisition of targets intersecting TCM
active ingredients and gastric cancer

The target genes screened in section 2.2 were taken as
intersections with the genes associated with gastric cancer in
sections 2.3 and 2.4, and the results were visualized using the
microbiotics platform (http://www.bioinformatics.com.cn/).

2.6 Differential gene analysis

The intersecting genes obtained from section 2.5 were passed
through the GEO database to obtain the expression matrix.
Clustering heatmap visualization and visualization of the top
10 upregulated genes and all downregulated genes were carried
out using the microbiome platform.

2.7 Machine learning to further screen
hub genes

The hub genes obtained from section 2.5 were plotted using
the expression matrix and the results obtained from the three
algorithms, namely, LASSO, random forest, and SVM, and they
were taken as intersections and visualized using the
microbiotics platform. The results obtained from the three
algorithms were plotted on a PPI network using
Cytoscape 3.9.1.

FIGURE 1
Flowchart.
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2.8 Clinical correlation analysis of hub genes

Differential expression, graded staging, copy number, and
survival curve analyses were performed via the GEPIA website
(http://gepia.cancer-pku.cn/). For analysis using the GEPIA
database, |Log2FC| cutoff = 1 and p-value cutoff = 0.01 were
used as positive judgment values. Violin plot analysis of
differential expression of target genes was performed via
SangerBox (http://www.bioinformatics.com.cn/). In this process,
samples with an expression level of zero were filtered, and
samples with less than three gastric cancer samples were also
excluded. GSEA was performed using the CAMOIP (http://www.
camoip.net/) website. Differential expression analysis in different
subtypes of gastric cancer was performed using the GSCA (Liu et al.,
2023) (https://guolab.wchscu.cn/GSCA/#/) website. In this process,
samples with a tumor sample size greater than 10 were selected for
analysis. Immunohistochemistry and immunofluorescence analyses
of each target gene were performed using the Protein Atlas database
(http://www.protein.org/).

2.9 Analysis of mutation sites in hub genes

The analysis of mutation sites and mutation subtypes of each
target gene was performed using the GSCA website to obtain the
waterfall plot of SNV mutation frequency and the bubble plot
analysis of the association of the negative mutation variant
(CNV) of each target gene in gastric cancer among heterozygotes
and heterozygotes. The mutational associations of the driver and
hub genes in gastric cancer and MSI expression levels were obtained
through CAMOIP database analysis.

2.10 Epigenetic regulation of hub genes

Methylation expression level profiles of the hub genes in normal
and gastric cancer subtype groups were obtained from TCGA data in
the UALCAN database (https://ualcan.path.uab.edu/index.html).
The correlation of the methylation levels of hub genes in gastric
cancer subtypes with CTL markers and the survival curves of
hypermethylated subgroups and hypomethylated subgroups were
obtained by selecting Query Gene through the TIDE database
(http://tide.dfci.harvard.edu/). Spearman’s correlation of
methylation levels of each core target with mRNA expression in
gastric cancer and bubble plots were obtained using the
GSCA database.

2.11 Correlation of hub genes with
methylation-related genes

The correlation of the core targets with methylation write-,
erase-, and read-related genes in gastric cancer was obtained from
the TIMER2 database (http://timer.cistrome.org/) and summarized
as a table file, and the correlation heatmap was drawn using the
application of ChiPlot (https://www.chiplot.online/).

2.12 Relationship of hub genes to
methylation mutation types and
mutant regions

Mutations in the hub genes were obtained using the RMBase
database (https://rna.sysu.edu.cn/rmbase3/modgene.php) group
with mammal as an option, genome with Homo sapiens as an
option, and assembly with hg38 as an option, and they were
utilized for microbial letter visualization. The mutated regions of
m6A Num, m5C Num, 2′-O-Me Num, and RNA-editing Num were
also visualized using microbiotics.

2.13 Hub genes and DNA methylation

The EWAS Data Hub database (https://ngdc.cncb.ac.cn/ewas/
datahub) was used to obtain methylation of core gene ontologies and
promoters in different tissues, the methylation levels of the six major
races, differences in methylation levels between patients and healthy
samples in gastric cancer, survival curve analysis, and scatterplots of
methylation in relation to the expression.

2.14 Survival analysis of hub genes with CpG
methylation patterns

Univariate and multivariate analyses were performed using the
MethSurv database (https://biit.cs.ut.ee/methsurv/) and the Cox risk
model based on the methylation level of the patient’s CpG site
(probe) according to the region of the hub genes based on the gastric
cancer database, which was analyzed by Kaplan–Meier (KM) plots
survival differences between hypomethylation and
hypermethylation. Cluster analysis of individual CpGs in hub
genes was performed using a heatmap format to correlate
methylation levels with available patient characteristics and gene
subregions. Heatmapmethylation levels (1 = completely methylated;

TABLE 1 Active components of Atractylodes macrocephala.

Mol ID Molecule name OB (%) DL

MOL00072 8β-Ethoxy atractylenolide Ⅲ 35.95 0.21

MOL00049 3β-Acetoxyatractylone 54.07 0.22

MOL00020 12-Senecioyl-2E,8E,10E-atractylentriol 62.40 0.22

MOL00022 14-Acetyl-12-senecioyl-2E,8E,10E-atractylentriol 63.37 0.30

MOL00021 14-Acetyl-12-senecioyl-2E,8E,10E-atractylentriol 60.31 0.31
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FIGURE 2
Targets of bitter almond active ingredients and differentially expressed genes in gastric cancer. (A) Network diagram of bitter almond active
ingredient-targets. Purple color represents the ingredients of bitter almonds, and blue color represents all the targets of active ingredients. (B) All genes of
gastric cancer and the number of targets of bitter almond active ingredients. (C) Volcano plot of differentially expressed genes of GSE49051, where
orange represents downregulated genes, green represents upregulated genes, and gray indicates no difference or no significance. (D) Cluster
dendrogram of WGCNA analysis. (E) Left figure is the correlation coefficient corresponding to different power, and the right figure is the average
connection degree of the network constructed by different power values. (F) Vertical axis represents each module, the horizontal axis represents each
trait, and the correlation betweenmodules and traits is shown in the results, with positive correlation in red and negative correlation in green. (G)Heatmap

(Continued )
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0 = completely unmethylated) are shown as continuous variables
from blue to red. Rows correspond to CpG, and columns correspond
to patients. The factors covered include age, survival status, and
ethnicity, among others.

2.15 Molecular docking of hub genes with
active ingredients in traditional
Chinese medicine

Based on the hub genes screened out, their corresponding
active ingredients were confirmed according to section 2.2. The
PDB database (https://www.rcsb.org/) was used to download the
PDB file format of the corresponding proteins and imported into
PyMOL software to remove water molecules and ligands. The
mol2 file format of the corresponding active ingredient was
downloaded from the TCMSP database, imported into
AutoDock Tools 4.2.0 for molecular docking, and visualized
using PyMOL.

2.16 Screening of upstream transcription
factors and downstream proteins of
hub genes

The hTFtarget database (http://bioinfo.life.hust.edu.cn/
hTFtarget), the ChIP-Atlas database (https://chip-atlas.org/), the
JASPAR database (https://jaspar2022.genereg.net/docs/), the
PWNEnrich database (https://www.bioconductor.org/packages/
release/bioc/html/PWMEnrich.html), and the GTRD database
(http://gtrd20-06.biouml.org/) were used to obtain the upstream
transcription factors of the hub genes and visualize them by taking
the intersections by microbial letters and by using Cytoscape 3.9.1.
Downstream target proteins of the hub genes were obtained based
on the STRING database ((https://cn.string-db.org/) and
GeneMANIA database (http://genemania.org/) and visualized by
microbiological signaling intersections and by using Cytoscape 3.9.1.

2.17 Molecular docking between hub genes
and downstream target proteins

According to the UniProt database (https://www.uniprot.org/),
we obtained the entry numbers of the hub genes and downstream
proteins and imported them into the AlphaFold Protein Structure
Database (https://alphafold.com/) to download the corresponding
PDB files. We imported the corresponding PDB file into the
GRAMM database (https://gramm.compbio.ku.edu/) for
molecular docking and viewed the alignment table for
visualization using PyMOL software application.

3 Results

3.1 Screening of Chinese herbal medicine
active ingredients

According to the TCMSP database, a total of 55 active
ingredients of RAM were obtained, and seven active ingredients
were screened based on the DL value ≥0.18 and OB value ≥30%.
Then, the heavy species of active ingredients were screened on the
basis of pharmacokinetic and drug-likeness. A total of five
ingredients were found to satisfy the high absorption of GI
absorption and the presence of more than two ”yes” in drug-
likeness, so all five active ingredients were confirmed as preferred
active ingredients (Table 1).

3.2 Prediction of target genes of Chinese
herbal medicine active ingredients

Based on the above five active ingredients and the
SwissTargetPrediction database, a total of 376 target genes were
obtained, which were de-emphasized, resulting in 212 target
genes (Figure 2A).

3.3 Disease database target screening

A total of 11,369 gastric cancer-related genes were obtained after
taking the concatenated set by the GeneCards database, DisGeNET
database, and GES49051 gene chip from the GEO database, and the
histogram is as follows (Figures 2B,C).

3.4 WGCNA analysis

Weighted gene co-expression network analysis of the expression
matrix of gastric cancer-related genes by the Ouyi Cloud platform
showed that among the 18 color modules, the blue and turquoise
modules had the highest correlation with gastric cancer, with a total
of 11,822 genes (Figures 2D–G).

3.5 Acquisition of targets intersecting TCM
active ingredients and gastric cancer

The gastric cancer-related genes obtained from the database
were intersected with the genes in the module with the highest
correlation with gastric cancer in WGCNA and the target genes of
the active ingredients of traditional Chinese medicines, and a total of
38 intersected genes were obtained (Figure 2H).

FIGURE 2 (Continued)

of all gene clustering. (H) Intersection plot of bitter almond and gastric cancer targets. Green and blue represent gastric cancer and bitter almond,
and pink and yellow represent the GEO andWGCNA datasets, respectively. (I) The top 10 upregulated and downregulated genes in the intersection target
list. (J) Heatmap of intersecting targets. Pink and green represent the tumor group and normal group, respectively.
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FIGURE 3
Core target prediction in R (A–E). Key gene prediction. (A,B) Data obtained from the LASSO algorithm. (C,D) Data obtained from Support Vector
Machine (SVM). (E) Data obtained from Random Forest. (F) LASSO target intersection plot. Green and blue represent Random Forest and Support Vector
Machine respectively, with pink denoting LASSO. (G) Target intersection network diagram. (H) LASSO target intersection histogram.
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FIGURE 4
Clinical correlation analysis of hub genes. (A) GSEA graph of hub genes. (B) Expression levels of hub gene mRNA. Red represents the tumor group,
and green represents the normal group. (C) Expression levels of hub genes copy number. Red represents the tumor group, and green represents the
normal group. (D) Expression level of hub gene protein. (E) Expression levels of hub genes in gastric cancer subtypes. (F) Correlation between hub genes
and clinical stage of gastric cancer. (G) Survival curve diagram of hub genes. The horizontal coordinate represents the survival time.
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3.6 Differential gene analysis

The expression matrix of the 38 intersecting genes was analyzed
by clustering heatmap, and a total of 35 upregulated genes were
found, such as CSF1R, F2, and CCND1. The downregulated genes
were MMP1, KCNH2, and FKBP5 (Figures 2I, J).

3.7 Machine learning algorithms to further
screen hub genes

According to the three algorithms, namely, LASSO, random
forest, and SVM in the machine algorithm, the hub genes obtained
were 6, 21, and 5, respectively (Figures 3A–E). After taking the

intersection, CA2, NR3C1, and HSP90AA1 were found to be their
common targets (Figures 3F–H).

3.8 Clinical relevance analysis

Clinical correlation analysis of CA2, NR3C1, and
HSP90AA1 revealed that only CA2 was statistically significant
(p = 0.0267) in the analysis of the KEGG pathway in gastric
cancer (Figure 4A), and in the analysis of TCGA gastric cancer
samples (tumor = 414, normal = 211), CA2 (p < 0.0001), NR3C1
(p < 0.01), and HSP90AA1 (p < 0.0001) were significant (Figure 4B).
Analysis by the GEPIA database revealed (tumor = 408, normal =
211) that CA2 and HSP90AA1 were differentially expressed in

FIGURE 5
Expression and prognostic analysis of hub genes. (A) Immunohistochemistry of hub genes in normal gastric tissue and gastric adenocarcinoma
tissue. Brown color shows the expression level of hub genes. (B) Fluorescence localization map of hub genes in tumor tissues. Blue represents the
nucleus, red represents microtubule organization, and green represents hub genes.
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FIGURE 6
Effect of mutations in the hub genes on gastric cancer. (A) SNV mutation sites and types of MET. The circle color represents the mutation type, and
the line length represents the mutation frequency. (B)Waterfall plot of SNV mutation frequency of hub genes. The upper bar indicates the proportion of
hub gene mutations in the 51 samples. (C) Bubble plots of heterozygous and pure heterozygous CNVmutations in the hub genes. The larger the bubble,
the higher the proportion of mutations. (D) Mutational associations of driver genes with the hub genes. (E) Box plot of MSI expression levels of
hub genes.
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gastric cancer, CA2 (p < 0.05) was lowly expressed in gastric cancer,
and HSP90AA1 (p < 0.05) was highly expressed in gastric cancer
(Figures 4C, D). In the correlation analysis of grading and staging,

NR3C1 (p = 0.000994) and HSP90AA1 (p = 0.0359) showed
significant differences (Figure 4F). In addition, the level of
NR3C1 expression (p = 0.034) also significantly affected the

FIGURE 7
Hub genes are involved in epigenetic regulation. (A) Expression level map of hub gene methylation. Blue and red represent the normal and tumor
groups, respectively. (B) Correlation between hub genemethylation levels and CTL markers. (C) Survival curves of hypermethylated and hypomethylated
subgroups of hub genes were plotted. (D) Expression of core target methylated mRNA in STAD.
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survival time of the patients (Figure 4G). Among different subtypes
of gastric cancer, CA2 mRNA was significantly different in CIN and
MSI (p = 0.003) and GS and MSI (p = 0.013). nR3C1 mRNA was

significantly different in CIN and GS (p = 1.8e-09), CIN and MSI
(p = 0.00049), EBV and GS (p = 0.0006), EBV and MSI (p =
0.00044), and GS and MSI (p = 6.7e-12). HSP90AA1 mRNA was

FIGURE 8
Hub genemethylation correlation analysis (A). Correlation between hub genes andmethylation-related genes (B). NR3C1 methylation type number
histogram (C). Frequency pie chart of mutation sites in each methylation type.
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FIGURE 9
NR3C1 methylation correlation analysis (A). Relationship between gene ontology and promoter methylation levels and DNA expression (B).
Methylation expression levels of gene ontology and promoter in various tissues (C). Methylation expression of gene ontology and promoter is different in
different species (D). Methylation expression of gene ontology and promoter is different in different types of gastric cancer (E). Survival curves of high and
low methylation of gene body and promoter.
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significantly different in CIN and GS (p = 0.0006), CIN andMSI (p =
0.0055), EBV and GS (p = 0.0032), and GS and MSI (p = 1.9e-07)
(Figure 4E). According to the immunohistochemistry results, it was

found that CA2 showed a low expression status in the tumor group,
which was consistent with the results of the GEPIA database analysis
(Figure 5A). According to the immunofluorescence results, it was

FIGURE 10
Graphical abstract.
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found that NR3C1 was mainly expressed in the nucleus and
HSP90AA1 was mainly expressed in the cytoplasm (Figure 5B).

3.9 Analysis of mutation sites in hub genes

According to the GSCA database, the somatic mutation rate of
CA2 was found to be 1.14%, the somatic mutation rate of
NR3C1 was found to be 2.28%, and the somatic mutation rate of
HSP90AA1 was found to be 2.28%, in which CA2 mainly had
missense mutation and base deletion, NR3C1 mainly had missense
mutation and a nonsense mutation, and HSP90AA1 mainly had
missense mutation with in-frame deletion mutation. Among them,
NR3C1 had nonsense mutation in gastric cancer (Figures 6A, B).
CA2 had the largest percentage of heterozygous amplification, and
NR3C1 and HSP90AA1 had the largest percentage of heterozygous
deletion; CA2 had the largest percentage of pure heterozygous
amplification, and only HSP90AA1 had a certain percentage of
pure heterozygous deletion (Figure 6C). In the CA2 high-expression
group compared with the low-expression group, there were no
statistical differences in some typical driver genes. Whereas
NR3C1 had differences in driver genes such as TTN (p <
0.0001), TP53 (p < 0.05), MUC16 (p < 0.05), and SYNE1 (p <
0.001), HSP90AA1 had differences in TTN (p < 0.05), CSMD3 (p <
0.01), FAT4 (p < 0.05), and KMT2D (p < 0.01), which had more
significant differences (Figure 6D). The MSI expression levels of
NR3C1 and HSP90AA1 were significantly different in the high-
expression group versus the low-expression group, with
NR3C1 having higher MSI expression in the low-level group
(p < 0.0001), whereas HSP90AA1 had higher MSI expression in
the high-level group (p < 0.0001) (Figure 6E).

3.10 Epigenetic regulation of hub genes

None of the promoter methylation expression levels of CA2,
NR3C1, and HSP90AA1were significantly different in gastric cancer
(Figure 7A). NR3C1 (p = 0.0197) and HSP90AA1 (p = 0.00981) had
a strong correlation with CTL markers and were significantly
different (Figure 7B). Survival analysis of patients with high
versus low methylation levels found only NR3C1 to be
statistically significant (p = 0.0382) (Figure 7C). Spearman’s
correlation showed that NR3C1 methylation had one of the
strongest negative correlations with its mRNA expression and
FDR = 0.00 (Figure 7D).

3.11 Correlation of hub genes with
methylation-related genes

Among the methylation transferase DNMT family, DNM1 and
DNMT3B were strongly correlated with HSP90AA1 and DNMT3A
was strongly correlated with NR3C1. Among the genes related to
methylation, PCNA, UHRF1, and HDAC2 were all strongly
correlated with HSP90AA1, whereas DMAP1 was strongly
correlated with NR3C1. Among the erasure-related genes,
TE11 and TET2 were strongly correlated with NR3C1 (Figure 8A).

3.12 Relationship of hub genes with
methylation mutation types and
mutant regions

Based on the histogram statistics of relevant mutation types,
NR3C1 methylation was mainly in m6A, m5C, 2′-O-Me, and RNA-
editing mutations (Figure 8B). According to the frequency map of
the mutated regions, among the m6A mutations, the highest
mutation frequency was mainly in the four regions of CDS-1,
CDS-3, intron-8, and UTR3′-9, which were 10.03%, 11.35%,
12.14%, and 15.04%, respectively. As for the m5C mutation
types, the mutations were mainly concentrated in the CDS
region, including CDS-1, CDS-2, and CDS-3, with mutation
frequencies of 27.27%, 27.27%, and 29.09%, respectively. Among
the 2‘-O-Me mutations, the main mutations were in the intron-8
and UTR3’-9 regions, both with a frequency of 50%. Among the
RNA-editing mutations, the mutated regions were all in the intron
regions, mainly intron-2, 3, 4, 7, and 8. The mutation frequencies
were 16.36%, 18.18%, 16.36%, 22.73%, and 22.73%,
respectively (Figure 8C).

3.13 Hub genes and DNA methylation

The scatterplot of the methylation level and mRNA expression
of NR3C1 gene ontology and promoter showed that NR3C1 gene
ontology was more densely and highly expressed at a low
methylation level; on the contrary, the NR3C1 promoter was at a
high methylation level type with a high mRNA expression level
(Figure 9A). Through the methylation of NR3C1 gene ontology and
promoter in different tissues, it can be seen that the NR3C1 gene
ontology is at a low level of methylation in gastric tissues, whereas
the NR3C1 promoter is at a high level of methylation in gastric
tissues (Figure 9B). The methylation level of NR3C1 is at a low level
of methylation among the six major ethnic groups, among which
Aboriginal Australian methylation levels were the lowest and the
highest levels were in African American or Afro-Caribbean. The
NR3C1 promoter, on the other hand, was hypermethylated in all five
major ethnic groups (Figure 9C). The NR3C1 gene ontology was
hypomethylated in all four portions of the stomach, and the tumor
group had higher methylation levels than the control group in all
four portions of the stomach. The NR3C1 promoter, on the other
hand, was at high methylation levels in all four parts of the gastric
tissue, and except for the gastric antrum (gastric sinus), the
methylation levels were higher in the control group than in the
gastric cancer group in the remaining three parts (Figure 9D). The
NR3C1 gene ontology was at high and low methylation with a
boundary of 0.295, and for the high and low methylation survival
analysis, the survival time of hypermethylation was significantly
shorter than that of hypomethylation, but the hypomethylation level
and hypermethylation level survival curves were not statistically
significant (p = 0.08696), whereas the NR3C1 promoter was divided
into high and low methylation with the boundary of 0.91, and the
results showed that the survival time of both high and low
methylation of the NR3C1 promoter were approximately
10 years, and there was no statistical significance (p =
0.9134) (Figure 9E).
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3.14 Survival analysis of hub genes with CpG
methylation patterns

Survival time in the survival curves for both hypermethylation
and hypomethylation was shown to be 3,500 days for all six mutant
regions of NR3C1, with a total of 16 CpG probes, and in the
TSS200; 5′UTR region, the three probes cg00629244 (p = 0.00048),
cg11152298 (p = 0.0095), and cg18019515 (p = 0.011) were all
statistically significant, and all three had a higher likelihood of
survival at high methylation levels than at low methylation levels
(S2A). In the 5′UTR region, cg06521673 (p = 0.033) and
cg17617527 (p = 7.9e-05) were statistically significant in both
probes (S2B). In the TSS1500; 5′UTR region, all three probes, that
is, cg10847032 (p = 0.00098), cg16335926 (p = 0.017), and
cg21702128 (p = 0.0051), were statistically significant (S2C). In
the 5‘UTR; TSS1500 region, the first exon; 5’UTR region, the
TSS1500; 5′UTR; TSS200 regions, and the above three gene
regions, a total of eight gene probes were not statistically
significant (S2D-G).

3.15 Molecular docking of hub genes with
active ingredients in traditional
Chinese medicine

The molecular docking results showed that the docking sites of
NR3C1 and MOL00021 were HIS-453, YTR-478, and ASN-461,
with a docking energy of −2.74 kcal/mol (S3A). The docking site of
NR3C1 and MOL00022 was TYR-455, with a docking energy
of −0.22 kcal/mol (S3B). Based on the docking energy
comparison, NR3C1 was found to dock best with
MOL00021 (S3C).

3.16 Screening of upstream transcription
factors and downstream proteins of
hub genes

Transcription factor prediction for NR3C1 was performed by
five databases, namely, hTFtarget, FIMO_JASPAR, PWMEnrich_
JASPAR, GTRD, and ChIP_Atlas, and the prediction cases were 194,
155, 94, 590, and 515 (S4A), respectively. After taking the
intersection, it was found to have a common intersecting
transcription factor, TFAP2C, and the intersection situation was
visualized (S4B). The downstream proteins were predicted by the
STRING database and GeneMANIA, and it was found that both
predictions had the same downstream proteins, NCOA1 and
NCOA2 (S4C, D).

3.17 Molecular docking between hub genes
and downstream target proteins

Based on molecular docking of NR3C1 with the downstream
predicted proteins NCOA1 and NCOA2, it was found that
NR3C1 has multiple binding sites with NCOA1, and the number
of binding sites is redundant with that of NR3C1 with NCOA2 (S4E,
F). The docking energy of NR3C1 with NCOA1 was −51.2 kcal/mol,

which is much larger than that of NR3C1. The docking energy with
NCOA2 was −27.6 kcal/mol (S4G).

4 Conclusion

In this experiment, WGCNA and machine learning algorithms
were used to predict CA2, HSP90AA1, and NR3C1, the core targets
of white Atractylodes against gastric cancer. Clinical correlation and
epigenetic regulation analyses revealed that the methylation of
NR3C1 was highly correlated with mRNA expression in gastric
cancer and that the correlation between NR3C1 and methylated
erasure genes, the TET family, was high. This suggests that
NR3C1 may be involved in the regulation of methylation.
NR3C1 was identified as a potential methylation marker of
Atractylodes macrocephala against gastric cancer (Figure 10).
TFAP2C was screened through multiple databases for possible
upstream transcription factors of NR3C1 and possible
downstream proteins NCOA1 and NCOA2. Molecular docking
revealed that NR3C1 has a lower docking energy with NCOA1,
so NCOA1 is more likely to be a downstream protein target
of NR3C1.

NR3C1, a gene encoding the glucocorticoid receptor, acts as
a regulator of several transcription factors. NR3C1 regulates the
downstream transcription factor NRF2 and inhibits human
mammary cell proliferation and autophagy, and it promotes
dendritic cell differentiation and maturation (Xiong et al., 2021).
NR3C1 can act as a direct target of ginsenoside Rg5 to regulate
the expression levels of HSPB1 and NCOA4 and inhibit
glioblastoma progression (Zhang et al., 2024). Meanwhile,
NR3C1, as a transcription factor, is also regulated by a
variety of genes. CPEB3 regulates the translation of NR3C1 to
restore stress disorder in mice (Lu et al., 2021). Meanwhile,
NR3C1 methylation can be involved in a variety of diseases
as it is highly correlated with methylation. NR3C1 methylation
balances autophagy in pancreatic β-cells and affects
impaired insulin secretion and poor glucose tolerance (Wu
et al., 2023). Methylation of NR3C1 is associated with
alterations in the hypothalamic–pituitary–adrenal axis in
schizophrenic patients (Misiak et al., 2021). DNMT1-induced
NR3C1 hypermethylation is associated with colorectal cancer
cells, and NR3C1 restoration inhibits pro-angiogenic effects on
the cells (Zhai et al., 2024).

TFAP2C (activating enhancer-binding protein 2γ) is mainly
distributed in the nucleus and functions in the regulation of
transcription and cellular signaling. TFAP2C regulates c-Myc to
inhibit apoptosis and promotes somatic cell reprogramming
through EMT (Wang Y. et al., 2020). TEAD17 is also an
important downstream target of TFAP2C, and
TEAD17 transcription can activate Th1 and Th4 cells and
exacerbate inflammation (Zhang et al., 2023; Zhang et al.,
2025). TFAP2C has also been extensively studied in tumors.
For example, TFAP2C regulates TGFBR2 transcription and
promotes lung tumorigenesis and EMT (Kim et al., 2016), and
TFAP2C regulation of CST1 transcriptional activation promotes
breast cancer progression and inhibits iron death (Yuan et al.,
2024). Nuclear receptor coactivator activator protein 1 (NCOA1)
has a variety of biological activities. NCOA1 is a coactivator
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necessary for the transcriptional activity of STAT6 and is able to
mediate the transcription of STAT6 (Lee et al., 2017). At the same
time, DNMT1 is also able to regulate methylation and, thus, the
overexpression of NCOA1, which triggers myocardial
dysfunction (Peng et al., 2022). In summary, we found that
TFAP2C–NR3C1–NCOA1 could be a possible pathway for the
treatment of tumors.

In this study, the advantage of WGCNA module analysis and the
advantage of the high accuracy of the machine learning algorithm
predicted that RAM may prevent gastric cancer through CA2,
HSP90AA1, and NR3C1, which provides new drugs and targets for
the prevention and treatment of gastric cancer, but there is no clinical and
experimental verification. RAM, as a medicinal plant with high efficiency
and low toxicity, has been rarely studied in the treatment of tumors, and
its specificmechanism in gastric cancer is not clear. Follow-up studies are
needed to validate the efficacy of RAM for gastric cancer through clinical,
cellular, and animal experiments; our screened methylation biomarker
NR3C1 should be analyzed further; the reliability of the target should be
validated through gene silencing and other means; and the target should
be analyzed through immunoprecipitation and other related techniques.
Immunoprecipitation and other related techniques can be utilized to
analyze the interactions between NR3C1 and NCOA1; dual luciferase
and ChIP and EMSA can be utilized to explore the relationship between
the transcription factor TFAP2C andNR3C1 to increase the credibility of
this study.
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