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Bacterial cold-water disease (BCWD) outbreaks in salmonid aquaculture have
resulted in significant losses in commercial populations. Currently, there is no
commercially available vaccine for the disease caused by Flavobacterium
psychrophilum. BCWD resistance in rainbow trout exhibits moderate
heritability and has been the focus of selection efforts. The understanding of
key genomic regions associated with BCWD resistance has advanced since the
integration of genomic information into genetic evaluations, proving successful
in enhancing BCWD resistance in some commercial lines. Here, we report the
results of a genome-wide association study for BCWD resistance in an important
commercial rainbow trout line to further our understanding of the genetic
architecture of the trait and infer a selective breeding strategy for this line.
Different scenarios were tested, including the use of all single-nucleotide
polymorphisms (SNPs) passing quality control, removal of SNPs with major
effect, elimination of consistent “major SNPs” in subgroups of the population,
and exclusion of SNPs within haplotypes with major effect. Prediction accuracy
was evaluated with different SNP weighting strategies, utilizing cross-validation
groups formed either randomly or based on principal components and cluster
analyses of genotypic data. Comparative analysis of cross-validation methods
suggested that partitioning of the dataset using K-means clustering reduced
overfitting. The incorporation of SNP weighting further confirmed the oligogenic
nature of the trait under investigation. Prediction accuracy with pedigree-based
best linear unbiased prediction (PBLUP) was 0.27 and increased to 0.36 with
genomic information. The accuracy obtained with a single largest effect
haplotype was 0.23. Moreover, a decrease in accuracy was observed upon
excluding major SNPs and haplotypes, providing supplementary evidence of
their importance on phenotypes. The two largest association peaks on
OmyA31/Omy25 and Omy8 were consistent with previous reports.
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1 Introduction

Bacterial cold-water disease (BCWD) outbreaks in salmonid
aquaculture lead to morbidity (Madsen and Dalsgaard, 1999; Nilsen
et al., 2011) and high mortality rates across populations (Dalsgaard
and Madsen, 2000; Nematollahi et al., 2003; Loch and Faisal, 2015).
The disease is caused by a treatable bacterium, Flavobacterium
psychrophilum. However, the use of antibiotics may increase
production costs, environmental build-up, and promote the
selection of pathogen strains that may be resistant to antibiotics.
Vaccination is another form of addressing the issue by improving
the protection of immunocompetent fish (Hoare et al., 2017; 2019).
However, at present, there is no commercially available vaccine for
BCWD (Vallejo et al., 2022). Genomic selection has been proved
successful in substantially improving BCWD resistance in rainbow
trout, and for this reason, it has been adopted for commercial
implementation (Vallejo R. et al., 2017; 2018). In recent years,
following the development of improved genome resources for
rainbow trout (Palti et al., 2015b; Gao et al., 2021), many more
reports have been published from a variety of labs reporting on the
use of genome-wide association studies and the use of genomic-
enabled predictions for selection in resistance to other pathogens
and for other important aquaculture production traits (Ali et al.,
2019; Reis Neto et al., 2019; Silva et al., 2019; Yoshida et al., 2018;
Ahmed et al., 2022; Calboli et al., 2022; Fraslin et al., 2022; 2023;
Garcia et al., 2023; Kudinov et al., 2024; Palti et al., 2024).

Typical statistical approaches in genomic selection often assume
every locus to have influence over complex traits (Meuwissen et al.,
2001; VanRaden, 2008; Aguilar et al., 2010). This assumption is
suitable for polygenic traits (Santana et al., 2023) and large data sets
(Lourenco et al., 2017). However, there are scenarios when using
variable selection methods (Mehrban et al., 2017) or an SNP
weighting approach (Vallejo et al., 2019) will lead to higher
accuracies. By assigning weights to single-nucleotide
polymorphisms (SNPs) during the construction of the genomic
relationship matrix, it is possible to ease the assumption that all
markers have a uniform contribution to the phenotypic expression
(VanRaden, 2008). Alternative assumptions in terms of the
distribution of the markers’ effects were beneficial for accounting
for particular genetic architectures, especially for oligogenic traits
(Wang et al., 2012; Zhang et al., 2016; Fragomeni et al., 2017, 2019;
Lourenco et al., 2017).

Genomic regions identified as significant for BCWD have been
consistent across studies in rainbow trout. Two major quantitative
trait loci (QTL) on chromosomes Omy08 and Omy25 were shown to
explain more than 10% of the additive genetic variance for BCWD
resistance (Liu et al., 2018; Vallejo R. L. et al., 2017). Furthermore, a
QTL on Omy25 was validated in an independent population, and
individuals carrying the favorable allele exhibited a significantly
higher survival rate (Mathiessen et al., 2023). Important associations
identified in genome-wide association studies (GWAS) are not
expected to change drastically over several generations in a
population until recombination can start to break down the
association between genetic markers and the causative QTL
variant. Additionally, exceptions might occur when divergent
individuals are introduced into the population (Uffelmann et al.,
2021), in polygenic traits (Fragomeni et al., 2014), or due to allele
fixation (Muir et al., 2008).

Troutlodge, Inc., the largest distributor of rainbow trout eggs in
the United States and worldwide, maintains a year-round
production of eggs using four distinct broodstock lines, with peak
spawning in February, May, August, and November. Phylogenetic
analyses based on genotypes from 96 Fluidigm SNP assays indicated
that all four lines are genetically distinct (Liu et al., 2017). Previously,
we identified two significant QTL for BCWD resistance on
chromosomes Omy08 and Omy25p_OmyA31 in the May
spawning line (Vallejo R. L. et al., 2017), which have been shown
to be effective in a marker-assisted selection (MAS) breeding
strategy in that line (Liu et al., 2018; 2022).

Genome-wide association studies (GWAS) may be adopted to
elucidate a trait’s genetic architecture (Goddard et al., 2016). As a
consequence, they may provide better insights about assumptions of
SNP effect’s distribution, and additionally, be used to improve SNP
array design (Moghaddar et al., 2022), target genomic regions for
gene editing (Lee and Fidock, 2014), inform drug development
programs (Uffelmann et al., 2021), and for MAS (Liu et al., 2018).

In the present study, we conducted genomic analyses in the
Troutlodge February spawning nucleus breeding population, which
represents a distinct genetic line that is equally important to the U.S.
aquaculture industry as the previously studied Troutlodge May line.
Hence, the objective of this study was to perform GWAS for BCWD
resistance in this distinct and commercially important rainbow trout
line while adopting distinct approaches to compute SNP effects,
methods to validate major SNPs, and identify haplotypes associated
with the trait. Additionally, this study aimed to predict accuracy
when different SNP weighting strategies were adopted to elucidate
the most effective selective breeding strategy for this commercial
rainbow trout line.

2 Materials and methods

2.1 Ethics statement

This study used rainbow trout fin clips collected after controlled
infection with Flavobacterium psychrophilum (Fp) at the Center for
Aquaculture Technology (CAT) research facility (Souris, PE,
Canada) as part of the Troutlodge, Inc., selective breeding
program. As farm animals used in a commercial breeding
program, these fish are exempt from regulation under the U.S.
Animal Welfare Act and, therefore, not subject to oversight by an
Institutional Animal Care and Use Committee or other such ethics
committee. This exemption is defined in U.S. Code title 7, chapter
54, section 2132g. However, experimentation and handling were
conducted in accordance with U.S. government principles for the
use and care of vertebrate animals used in testing, research, and
training, which include provisions to minimize animal suffering.
Specific measures for amelioration of animal suffering during the
fish pathogen testing included minimization of handling and
maintenance of optimal water temperature and oxygen
saturation; additionally, the fish were fed a standard fish meal
diet to satiation daily. Fish near death from severe symptoms of
infection during the observation period were removed and
terminated (by immersion in a lethal dose of MS-222) before the
collection of fin tissue to minimize suffering. After the 24-day
observation period, surviving fish were terminated by immersion
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in a lethal dose of 500 mg/L of MS-222 for 30 min before sampling
and disposal.

2.2 Fish rearing and disease challenge

Equal volumes of ~30 eyed eggs per full-sib (FS) family from
148 families were pooled randomly at the Troutlodge hatchery
facility in Sumner, Washington, United States, and shipped
overnight to the research facility of the Center for Aquaculture
Technologies in Canada (Souris, PE). Throughout all phases of the
study, water was maintained with 90%–130% oxygen saturation.
Flow through freshwater maintained at 8 °C with a daily fluctuation
of ±1 °C was used during the egg incubation and hatching phases.
Heath stacks remained covered throughout incubation, and dead
eggs were removed daily. Once yolk sacs were absorbed, fry were
transferred to larger holding units and were held under a 24-h light
photoperiod in recirculating 12 °C ± 1 °C freshwater, at flow rates set
to allow for adequate flushing/waste removal and maintenance of
environmental parameters. The fish were fed to satiation twice daily.
At 80 days post hatching, equal numbers of fry were divided to three
replicate tanks for the BCWD challenge and 24-day survival trial.
Average body weight on the first day of the disease challenge was
1.52 g with a standard deviation of ±0.44 g. The disease challenge
protocol developed by the USDA-ARS group from Leetown, WV,
United States (Silverstein et al., 2009; Leeds et al., 2010), was
followed in this study. Fish within a respective holding tank were
grouped into cohorts of N = 50 and anesthetized via immersion
prior to being intraperitoneally (IP) injected with 0.1 mL of PBS with
the F. psychrophilum bacterial strain CSF-295-93 (4.7 × 106 CFU/
fish). This is a pathogenic strain of the bacteria that has been shown
to cause consistent mortality in the lab challenge model, with a
strong correlation with survival performance after outbreaks in the
field. The strain was isolated by Dr. Scott LaPatra in 1993 from a
farm outbreak in Idaho, United States. It was used to derive a live
attenuated vaccine and has been characterized biologically and
immunologically (Lafrentz et al., 2007; Lafrentz et al., 2009;
Lafrentz et al., 2011; Sudheesh et al., 2007). The genome of this
strain was sequenced and characterized by Wiens et al. (2014). The
bacterial strain isolate, with specific storage conditions and culture
know-how information, can be obtained upon request and
appropriate arrangements for research material transfer from the
corresponding author. The injection process took approximately 2 h
per holding tank, or 6–7 h in total. Once injected, fish were placed in
their respective holding tank for recovery and observation. The
sham control group included two random cohorts, each composed
of 50 fish from the pool of 148 families that were injected with PBS
and kept at similar density and water conditions to the larger three
replicate tanks with the bacteria-injected fish throughout the 24-day
survival trial. No mortalities were observed in the sham control
group. Fish welfare checks were performed twice daily during the
growth phase from hatching to day 80 post hatching and following
the disease challenge. Dead and moribund fish were removed,
recorded, and fin clip samples were taken from the removed fish
daily during the 24-day survival trial following the disease challenge.
Fin clips from the sampled fish were stored individually in 95%
ethanol at room temperature for up to 2 months until DNA
extractions.

The dose used in the injections was identified empirically to
accomplish an approximately 50% survival rate per tank, which is
the typical goal of disease resistance studies that aim to maximize
phenotypic diversity in order to exploit the genetic diversity in the
population. Previous work by the USDA group has shown that for
Fp infection to induce BCWD in rainbow trout, the IP injection
model provided the most consistent results across challenges,
populations and over time and that significant response to
selection using the lab IP model corresponded with significant
improvement in survival after disease outbreaks in the field
(Silverstein et al., 2009; Leeds et al., 2010; Wiens et al., 2013a;
Wiens et al., 2018). It has also been a very successful model for
detecting QTL and for developing genomic selection predictions
with very good accuracy (Vallejo et al., 2022; Liu et al., 2022; Vallejo
et al., 2018; Vallejo R. et al., 2017) and has been used to analyze gene
expression responses to infection in the host (Marancik et al., 2015;
Wiens et al., 2023).

2.3 Data

Phenotypic data for days to death (DAYS) were collected from
3,784 rainbow trout fish. The number of fish with survival
phenotype data collected from tanks C1, C2, and C3 were 1,279,
1,210, and 1,295, respectively. DAYS is a discrete variable
representing the number of post-challenge days survived in a
period of 24 days. All survivors at the end of the challenge were
assigned the phenotype of 24 days. A total of 3,784 DAYS records
were collected, with an average value of 16.32 and a standard
deviation (SD) of 7.68. The average (SD) DAYS per tank were
16.86 (7.59), 16.29 (7.75), and 15.84 (7.69). There were no significant
differences between tanks 1 and 2 (p > 0.05), and tank 3 was
significantly different from the other two tanks (p < 0.05) with a
difference of 1.02 DAYS according to two-sample t-tests. Therefore,
comparisons between outcomes from models with and without the
tank effect were conducted and will be included in the next section.
The fish with phenotypes were assigned to 141 full-sib families using
a low-density SNP array following previously described methods
(Liu et al., 2016; Vallejo et al., 2022). The median number of fish per
family was 28, with an average of 26.8, a minimum of 1, and a
maximum of 38. The overall pedigree file contained
6,658 individuals spanning over 12 generations.

A total of 2,121 fish from 141 families were genotyped by a
commercial genotyping service provider (Center for Aquaculture
Technologies, San Diego, CA) using the rainbow trout 57K Axiom
Genotyping SNP Array 384-well format (Thermo Fisher Scientific
catalog number 550571) (Palti et al., 2015a). Genotype calls were
done by the authors using the Affymetrix Array Power Tools kit for
the rainbow trout Axiom array, followed by bioinformatics
processing of the data for quality control (QC) and formatting
for the BLUPF90 analysis using standard methods as previously
described (Palti et al. 2015a; Vallejo R. et al., 2017). Of the genotyped
animals, 1,897 had phenotypic records with a mean of 16.28 DAYS
and a standard deviation of 8.28. A total of 1,231, 224, and
442 individuals were genotyped from tanks C1, C2, and C3,
respectively. All the animals with phenotypes from tank C1 were
genotyped. The animals genotyped from tanks C2 and C3 were
selected from families of greater importance for the breeding
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program due to high genetic merit predictions for other production
traits. The remaining 224 genotyped animals had no phenotype
records and were the ancestors of the individuals in the challenge.

A total of 36,676 SNP markers passed QC filtering. The dataset
of filtered markers provided good coverage for all 32 chromosomes
in the reference rainbow trout genome. During QC, samples and
markers with a call rate of less than 0.90 or with 10% or more
Mendelian conflicts were removed. Additionally, markers with
minor allele frequency (MAF) less than 0.05 were also removed.
Finally, markers from unplaced contigs and the mitochondria were
excluded from the analysis.

2.4 Model and analyses

Pedigree and genomic breeding values (estimated breeding
values (EBV) and genomic estimated breeding values (GEBV),
respectively) for DAYS were calculated from the following linear
model (Equation 1):

y � Xb + Za + e, (1)

where y is the vector of phenotypes (DAYS); b is the vector of
fixed effects, which includes the overall mean; a is a vector of
random individual additive genetic effects; e represents the
random residuals; and X and Z are the incidence matrices for
vectors b and a, respectively.

In a second model, potential predominant haplotype(s), which
would be closely aligned with a specified major SNP identified in
GWAS, were incorporated as an additional fixed effect as a covariate.
Details of the haplotype identification process are provided in
Section 2.6. Model 2 (Equation 2) had a fixed effect that
distinguishes groups based on the presence of none, one, or two
haplotype copies of the highly associated haplotype(s), andW is the
incidence matrix for the hp vector:

y � Xb +Whp + Za + e. (2)

In Model 2, the variance explained by the detected haplotype
was computed to account for changes in the additive genetic
variance due to the inclusion of the haplotype effects: hp2

i 2piqi,
where hpi is the estimated fixed effect of the ith haplotype.

The assumption of the variances of the random effects was

y ~ MVN � μ, var[ ],
where μ =

0
0

[ ], var
a
e

[ ] � Aσ2a 0
0 Iσ2e

[ ], σ2a is the additive

genetic variance, σ2e is the residual variance, A is the numerator
relationship matrix (NRM), and I is the identity matrix. This
approach, where only pedigree information was used to model
the covariance between individuals, will be referred to
throughout this document as PBLUP. The assumptions are
modified to include genomic information under a single-step
GBLUP approach (ssGBLUP), which is the method of choice
when not all animals are genotyped (Aguilar et al., 2010;
Christensen and Lund, 2010). The ssGBLUP approach reduces
biases in populations under selection by properly weighting
information obtained from pedigree and phenotypes (Vitezica
et al., 2011; Legarra et al., 2014). This method uses the same
models as traditional pedigree-based evaluations, and the

genomic information is incorporated by replacing the NRM with
the H matrix, which includes full pedigree and genomic
relationships (Legarra et al., 2009). The matrix H, as defined by
Legarra et al. (2009), is its inverse, which can be obtained as in
Aguilar et al. (2010):

H−1 � A−1 − 0 0
0 G−1 − A−1

22
[ ],

whereA−1 is the inverse of the numerator relationship matrix,A−1
22 is

the inverse of the numerator relationship matrix only for genotyped
animals, and G−1 is the inverse of the genomic relationship matrix,
which was calculated as (VanRaden, 2008)

G � MM′
∑m

j�12pjqj
,

where M is a matrix of gene content, centered on the allele
frequencies that are obtained from the entire genotyped
population being evaluated, pj is the allele frequency of the
major allele of the jth SNP, and qj � (1 − pj).

The variance components analyses were performed with PBLUP
and ssGBLUP under an AIREML approach for DAYS with Model 1.
Breeding values were calculated by solving the system of equations
using the variance components calculated in the previous step. All
computations were performed using BLUPF90+ software (Misztal
et al., 2015).

An additional model was tested, similar to Model 1, but without
the fixed effect of the tank from which the fish were reared as a fixed
effect with values ranging from 1 to 3. This model utilized complete
phenotypic records under ssGBLUP. The GEBVs calculated under
this model scenario correlated at 0.99 with those from Model 1.
Therefore, only results from Model 1 without the tank effect are
reported because there may be a risk of a confounding effect between
genetics and tank.

2.5 Cross validation for predictive ability

Predictive ability was defined as the correlation between
predicted and observed phenotype (Legarra et al., 2008) and was
estimated using cross validation. The observed phenotypes were
corrected by subtracting the fixed effects calculated in a preliminary
run with complete data (Lourenco et al., 2015). The estimated
breeding values (EBV) and genomic estimated breeding values
(GEBV) were estimators of the phenotypes.

In an initial approach, genotyped animals were randomly assigned
to five groups of equal size. In each cross-validation round, four of the
groups were included in a training set and the one remaining groupwas
used for validation. This step was repeated five times, so all genotyped
fish would be included in the validation group once. The validation
group’s phenotypes were masked and not used in the (g)EBVs
computation. Full pedigree and genomic data were used for all
animals. Fish without genotypes had their phenotypes included in
the training groups. Predictive ability was the average correlation
between corrected phenotypes and (g)EBV for the validation fish
across the five random groups. Additionally, the regression
coefficient (b1) of the corrected phenotype on the (g)EBVs was
used to verify inflation (b1 > 1) or deflation (b1 < 1) of predictions.
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In a second scenario, fish with identified genotypes were
assigned to groups according to their genomic relationships
based on principal components and K-means clustering of the
genotypic data (Saatchi et al., 2011). K-means clustering is an
algorithm used to group similar data points into clusters. In this
study, it was used to generate groups of samples for cross validation
compared to random grouping. Individuals exhibiting greater
genetic similarity were grouped together. The training and
validation procedures were similar to the previous approach,
where four groups were in the training group and one was in the
validation set each time. Similarly, ungenotyped fish with
phenotypic information were included in the training groups.
The numbers of records or genotypes for the cross-validation
groups are presented in Table 1.

2.6 Haplotype identification and
model inclusion

Haplotypes were identified with findhap.f90 version 3
(VanRaden et al., 2013). The program initially processes the
haplotypes of close ancestors from the oldest to the youngest
individuals. Genotypes are phased into haplotypes based on
either ancestor haplotypes or the most common non-conflicting
haplotype (VanRaden et al., 2015). Haplotypes of varying lengths
were utilized as priors and to identify the ideal parameters (results
not shown). The haplotypes were identified by checking segments
between 20 and 2000 SNPs, and the maximum number of
haplotypes allowed was 5000. The rate of miscalled genotypes
allowed when matching haplotypes was 0.004. The haplotyping
process was conducted over four iterations. The values used were
based on preliminary runs and on the software-recommended
values. The following options were used in findhap.f90: iters = 4,
maxlen = 2000, minlen = 20, steps = 3, maxhap = 5000, and
errate = 0.004.

Additionally, a simple linear model that included the intercept
and the main haplotype effect was tested. This model differs from
Model 2 as it does not include the random additive genetic effect.
Moreover, in this model, the haplotype effect was tested as both a
covariate and a categorical effect. Finally, the results of this linear
model were summed to the PBLUP breeding values to mimic a
marker-assisted selection with a single marker.

2.7 Genome-wide association analysis

The current rainbow trout reference genome (Gao et al., 2021)
was used for the GWAS. The SNP effects were calculated based on
the ssGBLUP solutions using a back-solving process derived by

Wang et al. (2012), based on formulas provided by VanRaden (2008)
and Strandén and Garrick (2009):

û � λDM′G−1â,

where û is the vector of estimated SNP effects, λ is the ratio of SNP to
genetic variance,D is a matrix of weights, and â is a vector of GEBV.
Once SNP effects are calculated, this procedure can be iterated by
assigning weights to SNPs to calculate a weighted G matrix, which
can be obtained as

Gw � MDM
∑m

j�12pjqj
.

Then, Gw was used to recalculate GEBV until convergence was
achieved. The convergence criterion was met when the changes in
GEBVs from the current to the previous iteration were less than
10−4. The diagonal elements ofD were obtained by squaring û to û2

(Fragomeni et al., 2017). Finally, matrix D was normalized so that
tr(D) = tr(I). This weighting approach will be referred to as
quadratic weighting. Alternatively, weights were calculated
using the NonlinearA approach proposed by VanRaden (2008).
This approach considers a heavy-tailed distribution for SNP
variance in an iterative method and avoids extreme shrinkage
of SNP effects by limiting weights. The weights of SNP effects were
calculated as

di � CT
ûi

∣∣∣ ∣∣∣
sd û( )−2,

where |ûi| is the absolute estimated SNP effect for marker i and
sd(û) is the standard deviation of the vector of estimated SNP
effects. The values used as the constant were 1.125, 1.175, and 2. To
avoid extreme weights, the maximum values of |ûi |

sd(û) were limited
to 10 and 50.

GWAS was performed using Model 1 and Model 2. The
percentages of variance explained by windows of 10 adjacent SNPs
were used for the Manhattan plots. They were calculated by summing
the SNP individual variances and then dividing this value by the total
additive genetic variance using software POSTGSF90 (Aguilar et al.,
2014). Additionally, accuracy was calculated with alternative SNP
arrays based on GWAS results: 1) All SNPs that passed quality control
“Total SNP”; 2) removal of SNPs explaining more than 0.5% of the
additive genetic variance; this scenario is referred to as “Minus Major
SNP”; 3) removal of SNPs that explainedmore than 2% of the additive
genetic variance and were consistent in all K-means cross-validation
groups; this scenario is referred to as “Minus Common SNP”; 4)
removal of SNPs within major haplotypes; this scenario is referred to
as “Minus Haplotype.” The thresholds used for the SNP deletion were
determined based on visual inspection of Manhattan plots.
Normalized relationship matrices were obtained with average
diagonal coefficients set to 1 for scenarios with additional
exclusion of SNPs after quality control.

3 Results

3.1 BCWD survival phenotypes

Survival records were obtained from a total of 3,784 fish across
three replicate tanks with slightly fewer than 1,300 fish per tank.

TABLE 1 Numbers of fish per cross-validation group for two scenarios.
Group 6 is composed of the non-genotyped samples, which were included
in the training set in all cases.

Scenario 1 2 3 4 5 6

K-means 316 143 549 677 437 1,886

Random 425 425 424 424 424 1,886
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Mortality with clinical signs of bacterial cold-water disease was first
observed on day 5 of the challenge. The mortality kinetics were
nearly identical across the three tanks, with peak mortality days
between days 6 and 14 of the post-challenge survival trial. Mortality
rate plateaued from day 16, reaching a cumulative mortality rate of
~50%, and the last mortality was recorded on day 23 (Figure 1). Fish
that survived to day 24 of the post-challenge survival trial were
recorded as alive at the end of the trial. Average mortality rate per

replicate tank was ~55% with higher mortality observed in tank 3
(Figure 2). Survival days data were also recorded, with an average
value of 16.32 days and an SD of 7.68. Fish that were alive at the end
of the trial were assigned a survival days value of 24. The averages
(SD) per tank were 16.86 (7.59), 16.29 (7.75), and 15.84 (7.69). There
were no significant differences in survival days between tanks 1 and
2 (p > 0.05), and tank 3 was significantly different from the other two
tanks (p < 0.05).

3.2 Variance components

Estimates of heritability are presented in Table 2. The
heritability (SE) with PBLUP was 0.39 (0.05), and for ssGBLUP,
the values were 0.30 (0.03) and 0.15 (0.04), using Model 1 and
Model 2, respectively. The incorporation of haplotype copies as a
fixed effect and the elimination of a major haplotype from the SNP
panel caused the additive genetic variance of the trait to decline.
The variance of the haplotype was 3.38, which would result in a
heritability of 0.19 when that variance is incorporated into the
genetic variance.

FIGURE 1
Distribution of daily mortality post-challenge in the commercial rainbow trout line. The bars represent the standard deviation (SD) between tanks.

FIGURE 2
Total mortality post-challenge in the commercial rainbow trout
line. The bars represent standard error (SE) between tanks.

TABLE 2 Genetic parameter estimates for BCWD survival status in the
rainbow trout February spawning commercial line of Troutlodge from the
2020 year class. 2020 with different statistical approaches, including the
genetic additive variance component (σa), residual component (σe),
haplotype effect (Hap22pq), heritability (h2), and standard error (se).

Model σa (se) σe (se) Hap22pq h2 (se)

PBLUP 24.38 (3.72) 37.58 (2.23) - 0.39 (0.05)

ssGBLUP (Model 1) 17.89 (2.08) 41.59 (1.40) - 0.30 (0.03)

ssGBLUP (Model 2) 9.93 (2.19) 56.44 (2.23) 3.38 0.19 (0.03)
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3.3 SNPs and haplotypes associated with
BCWD resistance

Manhattan plots containing GWAS outcomes from scenarios
with complete data are reported in Figures 3–5. The quantitative
trait loci associated with BCWD resistance are reported as the SNP
window explaining more than 2% of the genetic variance
(Tables 3, 4).

The SNPs removed from the “Total SNP” dataset to create the
“Minus Common SNP” scenario were found in every chromosome

except Omya16 and Omya24. In contrast, the SNPs removed to
establish the “Minus Major SNP” scenario were specifically located
in the OmyA31_Omy25p QTL region.

One haplotype was detected in the genomic regions highly
associated with the trait. This haplotype had 19 SNPs, and its first
SNP (Affx-88926696) was at position 25217123 bp on OmyA31_
Omy25p chromosome, while the last SNP (Affx-88929795) was
located on the same chromosome at position 25741004. The
frequency of this “dominant haplotype” was 28.34%. Additionally,
this haplotype was incorporated as a fixed effect in Model 2.

FIGURE 3
Manhattan plot of genome-wide association studies for resistance to bacterial cold-water disease in the 2020 year class of the February spawning
commercial line of rainbow trout with ssGBLUP.

FIGURE 4
Manhattan plot of genome-wide association studies for resistance to bacterial cold-water disease in the 2020 year class of the February spawning
commercial line of rainbow trout with weighted ssGBLUP under the NonlinearA weighting approach with a constant value of 2 and a limit of 50 from
Iteration 10.
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FIGURE 5
Manhattan plot of genome-wide association studies for resistance to bacterial cold-water disease in the 2020 year class of the February spawning
commercial line of rainbow trout with weighted ssGBLUP under quadratic weights from Iteration 3. The model that generated this plot contained the
fixed effect of haplotype (Model 2).

TABLE 3 Quantitative trait loci associated with bacterial cold-water disease resistance in the 2020 year class of the February spawning commercial line of
rainbow trout using the complete dataset with NonlinearA weighting (constant = 2, limit = 50) for the 10th iteration with Model 1.

Omy AGV(%)a method Physical map Window flanking SNP SNPs per window

Start End Start End

OmyA04_Omy04q 2.05 Quadratic 43108924 46591609 Affx-88939405 Affx-88928160 10

OmyA08 4.28 Quadratic 82319447 82998371 Affx-88910955 Affx-88905101 10

OmyA31_Omy25p 3.25 Quadratic 23461749 23930336 Affx-88927562 Affx-88947015 10

OmyA31_Omy25p 14.34 Quadratic 25586167 25824203 Affx-88908807 Affx-88944742 10

OmyA31_Omy25p 3.80 Quadratic 25883294 26866871 Affx-88936445 Affx-88904970 10

OmyA31_Omy25p 14.41 NonlinearA 22690927 23508140 Affx-88905671 Affx-88927676 10

OmyA31_Omy25p 58.36 NonlinearA 25585611 25741004 Affx-88925154 Affx-88929795 10

OmyA31_Omy25p 18.02 NonlinearA 25883294 26866871 Affx-88936445 Affx-88904970 10

aAGV (%)= percentage of total additive genetic variance explained by the window.

TABLE 4 Quantitative trait loci associated with bacterial cold-water disease resistance in the 2020 year class of the February spawning commercial line of
rainbow trout using the complete dataset with quadratic weighting for the third iteration with Model 2 (haplotype model).

Omy % Vara Physical map Window flanking SNP SNPs per window

Start End Start End

Omya08 10.67 82319447 82998371 Affx-88910955 Affx-88905101 10

OmyA31_Omy25p 2.26 11650678 12894284 Affx-88910335 Affx-88909023 10

OmyA31_Omy25p 16.56 21947534 22253737 Affx-88956678 Affx-88922824 10

OmyA31_Omy25p 42.76 22762507 23548257 Affx-88953068 Affx-88912866 10

OmyA31_Omy25p 4.47 23987971 30017598 Affx-88919974 Affx-88921090 10

a% Var = percentage of total additive genetic variance explained by the window.
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3.4 Accuracy and inflation for different
validation approaches

The PBLUP approach with random cross validation yielded a
prediction accuracy average (standard deviation) of 0.27 (0.03).
With the K-means cross validation, the average PBLUP
prediction accuracy was 0.26 (0.03). Prediction accuracy
increased by 0.04 (15%) from PBLUP to ssGBLUP with the
K-means validation and by 0.06 (22%) with random cross
validation (Figure 6). The SNP weighting approaches increased
accuracy gains up to a value of 0.36, which was 33%
improvement over PBLUP with random cross validation and
38% over PBLUP with K-means cross validation (Figures 6–9).

The outcomes from the cross-validation scenarios using the
quadratic weighting approach are illustrated in Figure 6, revealing a
consistent pattern of lower accuracy in K-means validation than
random cross validation. The accuracy increased from single-step
GBLUP (ssGBLUP) to weighted single-step GBLUP (WssGBLUP)
from 0.33 to 0.36 for the random cross validation with quadratic
weighting, while for the K-means cross validation with quadratic
weighting, accuracy improved from 0.30 to 0.33 (Figure 6). The
constant 2 under the NonlinearA scenario caused accuracies to
increase from 0.30 (ssGBLUP) to 0.35 (wssGBLUP) (Figure 8).
Removing the haplotype from the G in Model 2 led to a
substantial accuracy loss, which was partially recovered when
weighting G (Figure 7). In the scenario where the haplotype
effect was added to the GEBVs, the accuracy with ssGBLUP was
0.28, while the accuracy with wssGBLUP was 0.31.

The prediction accuracy of the haplotype effects alone was 0.23,
which approaches the accuracy achieved with PBLUP. In this
validation, one of the K-means groups presented a correlation of
0.83, due to a shift in haplotype frequency. This group was removed
from the calculations in this scenario. When adding the haplotype

effects to the PBLUP prediction, the accuracy increased to 0.3, which
is similar to the results obtained with the entire SNP chip. The effect
of carrying zero, one, or two copies of the haplotype
was −1.34, −3.81, and +3.1 survival days, respectively.
Surprisingly, the effect of this haplotype is not additive because
having one copy resulted in lower survival than having no copies.
This response may be due to the distribution of the other haplotypes
in the QTL region, which, despite their lower frequency, do have
varying effect levels on the survival phenotype.

Under PBLUP, the b1 for the random cross validation and
K-means was 0.79 with both approaches and a standard deviation of
0.08 and 0.05, respectively. Additional values of b1 for the distinct
approaches are reported in Figures 6–9. The GEBVs were inflated
(b1 less than 1) for PBLUP (b1 = 0.79, sd = 0.09), and ssGBLUP with
quadratic weighting further increased the inflation of GEBV
(Figure 8). Including the haplotype effect in Model 2 resulted in
less inflated GEBVs (b1 = 0.95) (Figure 7). NonlinearA with a
constant of 2 and a limit of 50 significantly reduced inflation,
converging on 0.97 when calculated with the K-means
approach (Figure 8).

3.5 Accuracy and bias when excluding SNPs

When excluding “Major SNP” explaining more than 0.5% of the
additive genetic variance from the genotypic file, the accuracy of
prediction achieved with ssGBLUP decreased by 0.05 compared to
when all markers are considered (Figure 7). In the same scenario,
SNP weighting caused accuracy to decrease when using the constant
and limit of 2 and 50, respectively. When more conservative
parameters were used, the decrease in accuracy was less
accentuated. To test whether the loss in accuracy was due to the
reduction in panel density, one additional scenario in which

FIGURE 6
Accuracy expressed as the correlation between the (g)EBVs and corrected phenotypes and the regression coefficient of the corrected phenotype on
the (g)EBVs (bias) for two 5-fold cross-validation scenarios (random and K-means) with Model 1 under weighted ssGBLUP performed for three iterations
when using genomic informationwith the quadratic weighting approach. The values were averaged across the five replicates, and the error bars represent
the standard deviations.
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251 SNPs were randomly excluded was tested, and no impact on
accuracy was observed (Results not shown).

After removing the “Common SNP,” there was a noticeable
decrease in accuracy under NonlinearA with a constant of 2 and a
limit of 50. The values from the last iteration ranged from 0.35 when
all SNPs were included (Figure 8) to 0.12 after the elimination of the
common SNPs (Figure 9) and to 0.21 after excluding major SNPs.
When the approach was NonlinearA with a constant of 1.125 and a
limit of 10, the initial decrease reported in Iteration 1 was
compensated for when convergence was achieved.

4 Discussion

Previously, we identified two significant QTL for BCWD
resistance on chromosomes Omy08 and Omy25p_OmyA31 in
the Troutlodge May spawning line (Vallejo R. L. et al., 2017;
2022), which have been shown to be effective in a marker-
assisted selection (MAS) breeding strategy in that line (Liu et al.,
2018; 2022). For simplicity, we will refer to Omy25p_OmyA31 as
OmyA31 for this discussion. In this study, we confirmed that the
QTL located in the same genome regions on OmyA31 and
Omy08 also exist in the genetically distinct February spawning

line of Troutlodge, Inc. The OmyA31 QTL was found to have a
larger effect on resistance to BCWD than the Omy08 QTL, and it has
a dominant haplotype with possible implications for use in MAS in
this commercially important rainbow trout line. Candidate genes
co-located in this QTL genomic region were previously identified
and implicated (Liu et al., 2022; Vallejo et al., 2022). Further analyses
combining data from the two aquaculture populations are currently
underway, aiming to further refine the QTL region in an attempt to
pinpoint the causative gene and causative DNA sequence variant
or variants.

Statistical and computational methods were applied to
investigate the genetic basis of resistance to BCWD in this U.S.
aquaculture line of rainbow trout. This study identified QTLs
associated with BCWD survival while assessing outcomes from
distinct models and approaches. Identifying QTL for BCWD
resistance is expected to be more precise when SNP weighting
approaches are used, due to the oligogenic nature of the trait in
rainbow trout (Vallejo et al., 2018; 2022). The loss in accuracy when
deleting major SNPs and dominant haplotype further validates the
link between such markers and BCWD resistance. SNP weighting
promoted greater accuracy estimates when all SNP markers were
accounted for. Lastly, the results confirm that using different GWAS
approaches might optimize QTL discovery and in silico validation.

FIGURE 7
Accuracy expressed as the correlation between the (g)EBVs and corrected phenotypes and regression coefficient of the corrected phenotype on the
(g)EBVs (bias) for two 5-fold cross-validation scenarios with K-means clustering under Model 2 under weighted ssGBLUP performed for three iterations
when using genomic information with the quadratic weighting approach. The haplotype effect is added to (g)EBVs without the haplotype effect (A) and
with the haplotype effect (B). The values were averaged across the five replicates, and the error bars represent the standard deviations.
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4.1 Major genomic regions detected
in GWAS

SNPs and QTL associated with BCWD resistance vary between
populations (Vallejo R. L. et al., 2017). However, major QTL found
in different analyses were validated for MAS (Liu et al., 2018). The
implementation adopted in the current research computed the
percentage of the additive genetic variance explained by windows
of SNPs. However, the amount of variance to determine association
varies across studies (Tiezzi and Maltecca, 2015; Han and
Peñagaricano, 2016). In the GWAS with complete data in this
study, we identified QTL as windows of 51 SNPs that explained
more than 0.5% of the additive genetic variance. This approach
aimed to identify windows harboring genomic regions associated
with the trait (Marigorta and Navarro, 2013; Zhang et al., 2016). The
two largest QTL peaks we detected in Omy25p (OmyA31) and in
Omy08 agreed with previous reporting of QTL for resistance to
BCWD in rainbow trout (Palti et al., 2015b; 2015a; Liu et al., 2018;
Vallejo R. L. et al., 2017; 2022; Mathiessen et al., 2023).

An additional method to target genomic regions of importance
for BCWD resistance was proposed in the current work. In this
approach, subgroups were created using K-means clustering, and
major SNPs present in all subgroups were identified. SNPs that

explained more than 2% of the additive genetic variance and were
consistent across subgroups were selected. Major SNPs were
identified in all chromosomes with the exception of Omy16 and
Omy24. QTL associated with resistance to BCWD were reported in
previous studies on several chromosomes (Johnson et al., 2008;
Wiens et al., 2013b; Campbell et al., 2014; Quillet et al., 2014; Vallejo
et al., 2014; Vallejo R. L. et al., 2017; Liu et al., 2015; Palti et al., 2015b;
Fraslin et al., 2019). Genes located in detected associated regions
may provide insight into the biological mechanisms involved in
BCWD resistance. A discussion of the potential candidate genes
located near the large-effect QTL on chromosomes Omy8 and
Omy25 can be found in previous publications (Liu et al., 2022;
Vallejo et al., 2022). The approach used in this research used the
percentage of variance explained to identify associations instead of
p-values. A hypothesis testing using frequentist p-values in
ssGBLUP was implemented by Aguilar et al. (2019). However,
the use of p-values may not identify differences between regions
regarding their effect. On the other hand, calculating the percentage
of variance explained may underestimate some regions, especially
when major QTLs exist and weighted approaches for the genomic
relation matrix are used.

The sample selection used in this study might have biased the
GWAS results and the estimates of the prediction accuracy of

FIGURE 8
Accuracy expressed as the correlation between the (g)EBVs and corrected phenotypes and regression coefficient of the corrected phenotype on the
(g)EBVs (bias) for two 5-fold cross-validation scenarios with K-means clustering under ssGBLUP under the nonlinear approach adopted with a constant
value of 1.125, 1.15, and 2, with limits of 50 (A) and 10 (B) for ten iterations. The valueswere averaged across the five replicates, and the error bars represent
the standard deviations.
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GBLUP models. Most of the samples used for GWAS and GBLUP
estimates came from a single tank, where we used unbiased sampling
of all the families from the population, but the samples that were
genotyped from the other two tanks were pre-selected specifically
from families with higher breeding values for other aquaculture
production traits. The degree of potential bias due to pre-selected
data is currently unknown but likely depends on the correlation of
the other traits with resistance to BCWD and the intensity of
selective breeding practiced.

Changes in the effects of SNPs and GWAS-associated regions
may be a consequence of genetic diversity among populations,
sample size variations, environmental influences on trait
expression, the complexity of studied traits, different
genotyping methods, population structures, statistical
approaches, linkage disequilibrium variations, or inconsistencies
in phenotype definitions (Uffelmann et al., 2021). Additionally,
changes may also be a consequence of the small effective
population size and subsequent small number of independent
chromosome segments promoting collinearity and a high
variance inflation factor for the estimators (Fragomeni et al.,
2014; Dodd et al., 2022). Therefore, the gene associations
discovered in single studies might not definitively represent the

biology of the trait. Thus, there is a need for additional methods to
validate SNP associations to strengthen the overall reliability and
generalization of GWAS findings.

4.2 Variance components and genetic
parameters

Differences were detected between the variance components
obtained with the pedigree-based model (PBLUP) and genomic-
enabled models (ssGBLUP). Lower heritability estimates were
found with ssGBLUP. A similar pattern of reduced additive
genetic variance and heritability with GBLUP models was
noticed in previous studies (Vallejo R. et al., 2017; 2021). The
ssGBLUP model considers additional information about the
genetic structure of the population, which might allow for
better estimating true genetic relationships, compensate for
incomplete and inaccurate pedigree, and reduce bias (Aguilar
et al., 2010; Cesarani et al., 2019; Misztal et al., 2020). The lower
standard error in our heritability estimates generated with
ssGBLUP may reflect a more stable and precise approach.
Additionally, PBLUP assumes that the founder population is

FIGURE 9
Accuracy expressed as the correlation between the (g)EBVs and corrected phenotypes and regression coefficient of the corrected phenotype on the
(g)EBVs (bias) with two 5-fold cross-validation scenarios using K-means clustering under ssGBLUPwith theNonlinearA approach adoptedwith a constant
value of 1.125 and a limit of 10 (A) and a constant value of 2 and a limit of 50 (B). All SNPs for the genotypic file included all markers after quality control.
“Minus Major SNP” identifies that major SNPs were removed (−251 SNPs), and Minus Common SNP identifies that common SNPs were removed
(−397 SNPs). The values were averaged across the five replicates, and the error bars represent the standard deviations.
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the base population and that the founders are unrelated
(Falconer, 1960), while with marker-based models, the base
population is the training population (Van Eenennaam et al.,
2014). Nonetheless, PBLUP may pose issues for more closely
related genotypes because the breeding value, which contributes
to the phenotype, is more likely to be confounded with the
Mendelian sampling term (Daetwyler et al., 2007). That
occurs because gene copies inherited can still vary due to the
randomness in genetic inheritance, and this artifact is expected
to be less problematic when using genomic information for better
estimating genetic relationships (Vallejo et al., 2021). Model 2,
with the exclusion of the dominant haplotype from the genotype
file under ssGBLUP, led to additional loss in the genetic variance
component. This loss is an additional indicator of the large effect
that this haplotype has on the BCWD resistance phenotypes.

4.3 Cross-validation scenarios

The K-fold validation process is largely adopted for assessment
of genomic prediction approaches (Brøndum et al., 2011;
Daetwyler et al., 2013; Schrauf et al., 2021). In this method, the
genotyped individuals are divided into K random subsets, wherein
each set is used for the training population of the other groups, and
the omitted group is used for validation of the results. The
K-means clustering method has been proposed to minimize the
relationship between members of the training and validation sets
that causes inflated accuracy (Saatchi et al., 2011). The advantage
of using such an approach is that it would restrain the additional
covariance that exists between variables due to kinship because
K-means tends to cluster more homogeneous groups (Silva et al.,
2016). Boddhireddy et al. (2014) observed that with K-means,
cross-validation accuracies were consistently smaller than those of
other approaches, similar to the findings of this study. Ventura
et al. (2016) identified that clustering individuals based on
genotypes could help find genotype errors and better reference
populations. They also found that the number of animals in each
cluster can impact the predictions and that groups with smaller
sizes tend to have accuracy estimates with larger sampling
variance. Additionally, the relationships between the training
and the validation datasets can impact realized genomic
selection accuracy (Saatchi et al., 2012). The random group
cross validation increases the prediction accuracy by increasing
the average relationship between the training and validation
populations (Pszczola et al., 2012). Such values may result in
overestimation of accuracy due to overfitting and consequently
poor model selection.

4.4 Accuracy of weighted and unweighted
ssGBLUP for different scenarios

Gains in prediction accuracy of BCWD resistance have been
detected in SNP weighting and variable selection approaches with
greater accuracy than unweighted models (Vallejo R. et al., 2017).
Such differences may be attributed mainly to the oligogenic genetic
architecture of the trait in study. The same pattern is observed in the
results of this work. Santana et al. (2023) observed a decline in

accuracy for traits controlled by 1000 QTL and 2000 QTL when
using quadratic weights, while a trait controlled by 100 QTL
experienced accuracy gains with the same method. The adequate
weighting strategy varies based on trait genetic architecture (Lopes
et al., 2017; Lourenco et al., 2017). NonlinearA weights have been
shown to be more stable than quadratic weights (Zhang et al., 2016;
Fragomeni et al., 2019). However, NonlinearA weighting depends
on predetermined equation parameters (VanRaden, 2008). Incorrect
parameters lead to low accuracy and biased predictions (Santana
et al., 2023).

The strategy to remove major SNPs in this study was adopted to
enhance the understanding of the association of such SNPs with
BCWD resistance. How accuracy was affected with the different SNP
arrays was compared, and the cases where major SNPs and the
dominant haplotype were removed caused accuracy to decrease.
Weighting SNPs in the “Minus Major SNP” scenario further
decreased accuracy, indicating that the markers removed are
likely of higher influence, especially when weighting approaches
allowed a large departure from normality. When removing major
SNPs, the response due to weighting is expected to be close to the
response of a polygenic trait. For this reason, quadratic weights and
extreme values in the NonlinearA equation resulted in low accuracy.
In a similar approach, Vallejo et al. (2018) detected a sharp decline in
the accuracy of the BayesB predictions between using the higher
density panel without Omy8 and Omy25 and using a 500 SNP panel
without Omy8 and Omy25. In our study, the random removal of a
few hundred SNPs from the array with 36,000 did not impact the
prediction accuracy (results not shown), demonstrating that the loss
in accuracy is not due to reduced density of the panel. Similarly,
Kriaridou et al. (2020) observed that, at levels above 2,000 SNPs,
changes in panel densities did not significantly affect the accuracy of
predictions across various aquaculture species. The research found
consistent prediction accuracies across a range of panel densities,
spanning from 2,000 to 7,000, with increments of 100 SNPs
per panel.

Because of the complexity of traits’ genetic architecture, many
variable selection approaches have been implemented and
demonstrated relevant findings even for polygenic traits.
MacLeod et al. (2016) investigated the use of BayesR and Bayes
RC while exploiting biological priors and inclusion of putative
variants with distinct distributions for the SNP effects assumed.
BayesR employs a Markov chain Monte Carlo methodology to
estimate variant effects using prior biological knowledge. These
effects are modeled as a mixture distribution comprising four
normal distributions, with one of these representing a null
distribution. BayesRC shared a similar approach with BayesR
except that a priori independent biological information was
used to allocate each variant to a specific class. BayesRC
improved the accuracy of QTL discovery and genomic
prediction and was shown to be useful while accounting for
biological knowledge regarding functional regions of the
genome. Such approaches could be beneficial for traits with a
polygenic architecture but with a few major regions, such as
BCWD resistance.

The gains in accuracy in PBLUP obtained by adding the
haplotype effect were higher than those described by Lopes et al.
(2017). Such differences are likely due to the magnitude of the QTL
identified in this study. However, the population structure may also
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have an influence on those findings, and more research on the
causality of the QTL should be performed before commercial
implementation of a marker-assisted selection program. The
current results encourage the inclusion of the single marker in a
pedigree-based breeding program. However, a selection program
based on a single genomic region may lead to a quick fixation of the
allele and haplotype within populations, so constant genetic
screening is very important if the MAS approach is being
considered.

Removing major SNPs caused subsequent losses in accuracy and
gave additional insight into the association between genetic markers
and the studied trait. The strategy of selecting consistent major SNPs
across more homogeneous groups served to bolster confidence in
the significance of specific genetic markers. Identifying similar
associations across diverse genetic groups such as breeds, lines,
and families serves to further enhance the credibility of variant
causality (van den Berg et al., 2016). Hence, clustering genotypes and
identifying more homogeneous groups for cross validation may help
in the process of establishing associations. Removing a major QTL
and including it as a fixed effect caused the accuracy of prediction to
decrease more than in the other scenarios, indicating an important
association between the dominant haplotype and BCWD resistance.
However, that accuracy can be recovered when the haplotype effect
is included in the breeding value. Therefore, incorporating QTL
information into genomic selection methods is a promising
application. Previously, the QTL in chromosome Omy25 was
shown to be potentially useful for marker-assisted selection in
other commercial rainbow trout lines, resulting in accuracies
higher than family-based selection (Liu et al., 2018; 2022; Vallejo
et al., 2022; Mathiessen et al., 2023). MAS stands out as a viable and
cost-effective alternative for selective breeding to improve resistance
to BCWD in rainbow trout because of the cost savings in genotyping
and because it does not require recurring phenotyping for model
retraining in each generation.

5 Conclusion

In this study, a successful implementation of GWAS and
genomic prediction for resistance to BCWD was achieved in an
important commercial rainbow trout line that has not been
previously investigated for this trait, resulting in higher
prediction accuracy through genomic selection. Comparative
analysis of different cross-validation methods suggested that
K-means reduced overfitting. The incorporation of SNP
weighting further substantiated the underlying oligogenic
architecture of the trait under investigation. Bias was minimal
in ssGBLUP when the major effect haplotype on Omy25/
OmyA31 was included as a fixed effect and in weighted
ssGBLUP with optimized equation parameters. Additionally, a
decrease in accuracy upon the exclusion of major SNPs was
observed and serves as supplementary evidence of their effect
on phenotypes. Alternative validation methodology unveiled a
new set of major-effect SNPs. Removing a major haplotype
from the SNP panel resulted in a substantial reduction in the
prediction accuracy and modification of the genetic architecture.
Conversely, the inclusion of the major haplotype effect as a fixed
effect illustrated its potential utility in marker-assisted selection as

previously reported for two other commercial lines of
rainbow trout.
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fish pathogen testing included minimization of handling and
maintenance of optimal water temperature and oxygen
saturation. Additionally, the fish were fed a standard fish meal
diet to satiation daily. Fish near death from severe symptoms of
infection during the observation period were removed and
terminated (by immersion in a lethal dose of MS-222) before the
collection of fin tissue to minimize suffering. After the 24-day
observation period, surviving fish were terminated by immersion
in a lethal dose of MS-222 before sampling and disposal. The studies
were conducted in accordance with the local legislation and
institutional requirements. Written informed consent was
obtained from the owners for the participation of their animals
in this study.
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