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Background: Mitochondria play an important role in tumors. Cellular energy
supply, signaling, metabolism, autophagy, aging, and tumorigenesis are
all associated with mitochondria. However, we lack a reliable prognostic
model using mitochondrial-related genes in clear cell renal cell
carcinoma (ccRCC).

Methods: A systematic analysis of available TCGA databases and related
studies was conducted using the R language and online analysis tools to
evaluate the prognostic value of mitochondrial-related genes and the tumor
microenvironment in ccRCC.

Results: We constructed a novel mitochondrial-related gene signature for
predicting survival and evaluating the tumor immune microenvironment in
ccRCC. The mitochondrial-related gene signature included MICALL2, FKBP10,
and ACADSB. According to the risk score of the risk model, ccRCC patients were
divided into high- or low-risk groups. The ccRCC high-risk group with a high-risk
score is related to poor prognosis and poor efficacy from immune checkpoint
inhibitors (ICls).

Conclusion: Our mitochondrial-related gene signature, as a risk model, could
be a reliable ccRCC prognostic biomarker and could predict the response to
immunotherapy. The risk score was correlated with the tumor microenvironment
and immune cell infiltration.

mitochondrial-related gene, survival, tumor immune microenvironment, clear cell renal
cell carcinoma, bioinformatics

1 Introduction

Mitochondria play an important role in tumors (Zong et al.,, 2016). Cellular energy
supply, signaling, metabolism, autophagy, aging, and tumorigenesis are all associated with
the mitochondria. The tumor microenvironment affects immune cell evasion or inhibition
and drug resistance in malignancies. There are interactions between the tumor
microenvironment and mitochondrial function in tumor cells (Yang et al, 2023).
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FIGURE 1

Mitochondrial-related gene selection and expression level. (A) Volcano plot. (B) Venn plot. (C) Lasso regression analysis. (D) RNA-level expression.
(E) Protein-level expression from CPTAC. (F) Protein-level expression in IHC from HPA.

Different pathological types of renal tumors have their own
characteristics of mitochondrial morphology (Nikolic et al,
2023). Clear cell renal cell carcinoma (ccRCC) exhibits a
substantial reduction in mitochondrial mass, paralleled by a
reduction in both mtDNA copy number and RNA transcription.
Some ccRCC samples display a significant elevation in acyl-
ccRCC-specific  disruption  of
mitochondrially localized beta-oxidation, in line with the
reduction in mitochondrial mass (DiNatale et al., 2020). The
hypoxic background promoted by tyrosine-kinase inhibitors

carnitines, pointing to a

(TKIs) might be altering the tumor microenvironment in a way
that facilitates tumor recognition by immune cells, ultimately
leading to improved response in renal cell carcinoma (DiNatale
et al,, 2020). Mitochondrially targeted anticancer drugs that disrupt
the energy-producing systems of cancer are emerging as new
potential therapeutics in renal cell carcinoma (Bielcikova et al.,
2023). However, we lack a reliable prognostic model in ¢ccRCC
that uses mitochondrial-related genes.

Abbreviations: ccRCC, clear cell renal cell carcinoma; Cl, confidence
intervals; DEGs, differentially expressed genes; GO, Gene Ontology; ICGs,
immune checkpoint genes; ICls, immune checkpoint inhibitors; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MRGs, mitochondrial-related genes;
MSI, microsatellite instability; OR, odds ratio; TIDE, tumor immune
dysfunction and exclusion; TIICs, tumor-infiltrating immune cells; TKiIs,
tyrosine-kinase inhibitors.
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2 Materials and methods
2.1 Flow chart and main steps

A flow chart of the work is shown in Supplementary Figure
S1. The main steps are to identify differentially expressed genes
(DEGs) between TCGA ccRCC normal and tumor samples and
then intersect the list of DEGs with mitochondrial-related genes
(MRGs) to identify common DEGs. A few genes were further
selected by Lasso regression analysis in the common DEGs. Then,
a prognostic
constructed and validated based on the selected genes. The
TCGA ccRCC samples were divided into low- and high-risk
groups based on the prognostic mitochondrial-related gene

mitochondrial-related gene signature was

signature. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analyses
conducted. Finally, the tumor microenvironment analysis and

were

immunotherapy responses of the low- and high-risk groups
were predicted.

2.2 Data collection

RNA-seq data and clinical information about the ccRCC TCGA
training cohort were downloaded from the GDC data portal
(https://portal.gdc.cancer.gov/), and 521 c¢cRCC tumor samples
with enough clinical information were used in the survival-
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FIGURE 2
Forest plot.

TABLE 1 The information on three prognosis-related genes.

Full name Location

Function of the encoded protein

MICALL2 79,778 MICAL Like 2 Cytosol, endosome, nucleus, Enables filamin binding activity. Involved in the positive regulation
cytoskeleton, and plasma membrane = of protein targeting mitochondria. Predicted to be located in several
cellular components, including the bicellular tight junctions,
neuron projections, and recycling endosomes. Predicted to
colocalize with stress fiber.
FKBP10 60,681 FKBP prolyl isomerase 10 Endoplasmic reticulum and Belongs to the FKBP-type peptidyl-prolyl cis/trans isomerase
mitochondria (PPIase) family. This protein localizes to the endoplasmic reticulum
and acts as a molecular chaperone. Alternatively spliced variants
encoding different isoforms have been reported.
ACADSB 36 Acyl-CoA dehydrogenase Mitochondria Short/branched-chain acyl-CoA dehydrogenase (ACADSB) is a

short/branched-chain

member of the acyl-CoA dehydrogenase family of enzymes that
catalyze the dehydrogenation of acyl-CoA derivatives in the
metabolism of fatty acids or branched-chain amino acids. Substrate
specificity is the primary characteristic used to define members of
this gene family. The ACADSB gene product has the greatest
activity towards the short branched-chain acyl-CoA derivative, (S)-
2-methylbutyryl-CoA, but also reacts significantly with other 2-
methyl branched-chain substrates and with short straight-chain
acyl-CoAs. The cDNA encodes a mitochondrial precursor protein
that is cleaved upon mitochondrial import and predicted to yield a
mature peptide of approximately 43.7 KDa.

related analysis and the tumor immune microenvironment-related
analysis. The RNA array assay data and clinical information of the
101 ccRCC tumor samples in the E-MTAB-1980 validation cohort
were downloaded from the ArrayExpress database (https://www.
of EMBL-EBI

ebi.ac.uk/biostudies/arrayexpress/) (European
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Bioinformatics Institute of the European Molecular Biology
Laboratory). The list of 2030 MRGs was identified in a
published study (Chang et al., 2023), and the data were collected
from the MitoCarta 3.0 database and the Gene Set Enrichment
Analyses (GSEA). Protein level expression data, including figures
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FIGURE 3

Assessing the performance of the prognostic risk model in the training and validation cohort. (A) K-M curve and ROC curve in the TCGA 521 ccRCC
cohort. (B) Distribution of risk score, survival status, and expression of three genes in the TCGA 521 ccRCC cohort. (C) K-M curve and ROC curve in the
E-MTAB-1980 101 ccRCC cohort. (D) Distribution of risk score, survival status, and expression of three genes in the E-MTAB-1980 101 ccRCC cohort.

and immunohistochemical (IHC) images, were obtained from
CPTAC through UALCAN (https://ualcan.path.uab.edu/) and
HPA (https://www.proteinatlas.org/).

2.3 ldentification of differentially
expressed genes

We used the “DESeq2” package of R to identify DEGs between
normal and tumor samples, or between high- and low-risk tumor

Frontiers in Genetics 04

groups from the TCGA training cohort. Only genes that were
expressed >0 in all samples were retained. The criteria for
defining DEGs were |Log, fold change|>1 and adjusted P < 0.05.
For visualizing the DEGs, we used the “ggplot2” package of R to
create the volcano plot, which used |Log, fold change|>1 and
adjusted P < 0.05 as boundaries. The list of 2,955 DEGs was also
obtained from GEPIA2 (http://gepia2.cancer-pku.cn/) (Tang et al.,
2017) by using the ANOVA method with |Log, fold change|>1 and
q-value<0.01 for further screening of DEGs. A Venn plot was
created using the EVenn online tool (Chen et al, 2021) to
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TABLE 2 Clinical characteristics between low- and high-risk groups.

High risk, N = 2612

Characteristic

10.3389/fgene.2025.1543593

Low risk, N = 2602

Age 0.69
Mean (SD) 60 (12) 61 (12)
Median (IQR) 60 (53, 69) 61 (51, 71)
Range 26, 88 29, 88

Gender 0.009¢
Female 75 (29%) 103 (40%)
Male 186 (71%) 157 (60%)

Race 0.96
Asian 4 (1.5%) 4 (1.5%)
Black or African American 21 (8.0%) 19 (7.3%)
White 233 (89%) 233 (90%)
Missing 3 (1.1%) 4 (1.5%)

Ethnicity 0.41
Hispanic or Latino 10 (3.8%) 13 (5.0%)
Not Hispanic or Latino 182 (70%) 166 (64%)
Missing 69 (26%) 81 (31%)

T Stage <0.001
TI1+T2 135 (52%) 199 (77%)
T3+T4 126 (48%) 61 (23%)

N Stage 0.15
NO 122 (47%) 117 (45%)
N1 11 (4.2%) 4 (1.5%)
NX 128 (49%) 139 (53%)

M Stage <0.001
Mo 190 (73%) 237 (91%)
M1 58 (22%) 20 (7.7%)
MX 13 (5.0%) 3 (1.2%)

Tumor stage <0.001
Stage I + II 122 (47%) 194 (75%)
Stage III + IV 139 (53%) 66 (25%)

Survival status <0.001
Alive 140 (54%) 209 (80%)
Dead 121 (46%) 51 (20%)

“n (%).

"Wilcoxon rank sum test; Pearson’s chi-squared test; Fisher’s exact test.
‘Bold indicates P-value <0.05 was considered statistically significant.

display the DEGs and mitochondrial-related genes (MRGs)
common to both DEG groups.

2.4 Construction and validation of
prognostic mitochondrial-related
gene signature

The common DEGs were further screened by Lasso regression
analysis using the “glmnet” and “survival” packages of R and
multivariable Cox regression analysis (the coxph function in the
“survival” package of R). The coefficient index was achieved by
using the cph function in the “rms” package of R. The specific
multivariable Cox regression cph statement is as follows: “cph

Frontiers in Genetics

(Surv (OS.time, OS)~gene 1+gene 2+. . .+gene n, data name).” Risk
score = ygene n x Pn. The “gene” represents the log, (TPM+1)
value or other normalized data value of genes selected into the
mitochondrial-related risk score signature. The “B” represents the
coefficient index value. The “n” represents the serial number. The
samples were divided into low- and high-risk groups based on the
risk score (median cut-off value). To analyze the survival condition
for the prognosis signature, a Kaplan-Meier (K-M) survival curve
was constructed by using the “survival” and “survminer” packages
of R. The predictive performance was presented by the ROC curve.
The prognostic mitochondrial-related risk score signature was
further validated in the E-MTAB-1980 cohort, and the data of
this cohort were normalized through the robust multi-array
average (RMA) algorithm.

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2025.1543593

Qin et al.

TABLE 3 Multivariate Cox regression of various prognostic parameters.

Characteristic HR? 95% CI? P-value
Age 1.02 (1.00-1.04) 0.016°
Gender

Female 1

Male 0.86 (0.58-1.28) 0.5
Race

Asian 1

Black or African American 0.79 (0.09-6.79) 0.8

White 0.75 (0.10-5.54) 0.8
Ethnicity

Hispanic or Latino 1

Not Hispanic or Latino 5.18 (1.24-21.7) 0.024
T stage

T1 1

T2 0.92 (0.21-3.99) >0.9

T3 1.06 (0.31-3.68) >0.9

T4 1.04 (0.28-3.90) >0.9
N stage

NO 1

N1 1.89 (0.74-4.83) 0.2

NX 0.84 (0.57-1.23) 0.4
M stage

MO 1

M1 0.46 (0.09-2.39) 0.4

MX 0.49 (0.08-2.85) 0.4
Tumor stage

Stage I 1

Stage II 1.26 (0.24-6.65) 0.8

Stage 111 2.09 (0.56-7.86) 0.3

Stage IV 10.4 (1.53-70.8) 0.017
Risk group

High risk 1

Low risk 0.5 (0.32-0.76) 0.001

“HR, Hazard ratio; CI, Confidence interval.
"Bold indicates P-value <0.05 was considered statistically significant.

2.5 GO and KEGG pathway analyses

DEGs between the high- and low-risk groups were input into the
DAVID website (https://david.ncifcrf.gov/) for Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses. Results were visualized by using the “ggplot2” and
“GOplot” packages of R.

2.6 Tumor microenvironment analysis and
immunotherapy response prediction

The stromal score, immune score, and ESTIMATE score were
calculated by using the “estimate” package of R. Tumor purity = cos
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(0.6049872018 + 0.0001467884xESTIMATE score) (Yoshihara
et al, 2013). A box plot was created by using the “ggpubr”
package of R. A correlation scatter plot was achieved by using
the “ggpubr” and “ggExtra” packages of R.

The abundance of 22 tumor-infiltrating immune cells (TTICs)
was calculated by using the CIBERSORT algorithm (Newman et al.,
2015) in R (https://cibersortx.stanford.edu/), and the results were
visualized as a box plot by using the “ggpubr” package of R. The
Wilcoxon test was used for assessing between-group differences.

The list of 79 immune checkpoint genes (ICGs) was obtained
from a published study (Hu et al., 2021). The statistically significant
results of 39 genes were visualized as a box plot by using the
“ggpubr” package of R. A t-test was used to determine
statistically significant correlations between groups.

The immunotherapy response prediction was analyzed by the
tumor immune dysfunction and exclusion (TIDE) score (http://tide.
dfci.harvard.edu/login/). A violin plot for TIDE was achieved by
using the “ggpubr” package of R. A bar chart to visualize the
immunotherapy response prediction results was created by using

the “ggplot2,” “ggthemes,” and “ggprism” packages of R.

2.7 Statistics analyses

R (version 4.3.2) software was used for all statistical analyses.
Some test methods are annotated in the figures and tables. The t-test
was used to analyze the expression and distribution of TIDE score,
exclusion score, dysfunction score, and microsatellite instability
(MSI) score in different groups. Pearson’s chi-squared test was
used to evaluate the immunotherapy response difference in TIDE
prediction. The correlation was evaluated using the Spearman
method. P < 0.05 was defined as statistically significant. A count
value was used in the “DESeq2” package analysis. The TPM value
was used in the CIBERSORT algorithm. Data were normalized
according to the requirements in the TIDE algorithm. In other
analyses, the log, (TPM+1) value was used.

3 Results

3.1 Identification of DEGs related to
mitochondria

By using the “DESeq2” package of R in the TCGA training cohort,
3,111 DEGs (986 down; 2,125 up) were obtained from 14,449 genes
expressed in the normal and tumor groups. The DEGs are visualized by a
volcano plot (Figure 1A). A total of 1,658 common DEGs between the
3,111 DEGs from the “DESeq2” package analysis and the 2,955 DEGs
from the ANOVA method analysis in GEPIA2 are shown in the Venn
plot. We found 164 common DEGs between the 1,658 DEGs and the
2030 MRGs (Figure 1B). In the 164 common DEGs, we ultimately
selected 41 genes with |Log, fold change|>2 for Lasso regression analysis
and multivariable Cox regression analysis. Through Lasso regression
analysis (Figure 1C), four genes were filtered out: MICALL2, FKBP10,
ACADSB, and ALDH6AIL. Through multivariable Cox regression
analysis (coxph function in the “survival” packages of R, Figure 2),
three mitochondrial-related DEGs, including MICALL2, FKBP10, and
ACADSB, were finally selected to build a ccRCC prognostic model. The
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FIGURE 4

Enrichment analysis in the high- vs. low-risk group in the TCGA 521 ccRCC cohort. (A) GO and KEGG enrichment. (B) GO-biological process circle.

(C) KEGG circle.

RNA level expression (Figure 1D) and protein level expression (Figures
1EF) of three DEGs between normal samples and tumor samples are
shown in Figure 1. In renal cell carcinoma (unknown pathological
subtype) IHC images from HPA (Figure 1F), eight with
MICALL2 medium staining and four with MICALL2 low staining;
six with FKBP10 medium staining and six without FKBP10 staining;
nine without ACADSB staining, one with ACADSB low staining, one
with ACADSB medium staining, and one with ACADSB high staining.
The information about the three genes is shown in Table 1.

The effects of age, ethnicity, gender, race, stage, ALDH6AIL,
FKBP10, MICALL2, and ACADSB were all involved in the forest
plot (Figure 2), and we obtained a list of more variable coefficient
index values from this analysis. Age, ethnicity, stage, and
MICALL2 showed statistically significant differences. The
P-values of FKBP10 and ACADSB were less than 0.1. Meanwhile,
we also obtained a list of multivariable coefficient index values by
using the cph function in the “rms” package of R, and only the effects
of MICALL2, FKBP10, and ACADSB were involved in this analysis.
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3.2 Construction and validation of
prognostic mitochondrial-related
gene signature

The more variable coefficient index value and the
multivariable coefficient index value were validated separately
through a Kaplan-Meier (K-M) survival curve and the ROC
curve. Risk score (more variable coefficient index value,

Supplementary  Figure S2) = 0.379045xMICALL2 +
0.127374xFKBP10 - 0.249544x ACADSB. Risk  score
(multivariable coefficient index value, Figures 3A,B) =

0.3089xMICALL2 + 0.1995xFKBP10 — 0.4429xACADSB. The
samples were divided into low- and high-risk groups based on
the risk score (median cut-off value). In Supplementary Figure
S2, we show the intersection between the K-M survival curve
and the lower AUC values of the ROC curve. Finally, a
multivariable coefficient index value was selected. Then, the
risk score for each ccRCC patient in both the training and
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Different immune profiles between the low- and high-risk groups in the TCGA 521 ccRCC cohort. (A) ESTIMATE analysis for evaluating the
infiltration of immune cells and stromal cells. (B) CIBERSORT analysis of 22 TIICs. (C) Of 79 ICGs, 39 showed a statistically significant difference. (D) TIDE
predicted the proportion of patients with a response to immunotherapy. (E) TIDE analysis results. (F) Tumor purity.

the wvalidation cohorts was computed based on the
following formula:

Risk score = 0.3089 x MICALL2
+0.1995 x FKBP10 - 0.4429 x ACADSB.

The stability of the prognostic risk model was further validated
in the E-MTAB-1980 cohort, and similar results are shown in the
K-M survival curve and the ROC curve (Figures 3C,D).
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Clinical characteristics of the low- and high-risk groups in the
TCGA 521 ccRCC cohort are shown in Table 2, which was created
using the “gtsummary” package of R with univariate Cox regression
analysis. The high-risk group had a higher proportion of men,
T3+T4 stage, M1 stage, stage III + IV, and dead status.

Multivariate Cox regressions of various prognostic parameters
in the TCGA 521 ccRCC cohort are shown in Table 3. Through
multivariable Cox regression analysis (coxph function in “survival”
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packages of R) and the “gtsummary” package of R, the effects of age,
gender, race, ethnicity, detailed stage subgroups, and risk group were
examined. Stage IV and high-risk groups are related to an
unfavorable prognosis. Non-Hispanic or non-Latino ethnicity and
high age might be related to unfavorable prognosis; however, the left
95% confidence interval (CI) of age is near 1, and the P-value of race
is not statistically significant.

3.3 GO and KEGG pathway analyses

A total of 484 DEGs between the high- and low-risk groups were
selected in the TCGA 521 ccRCC cohort and were input into the
DAVID website. GO and KEGG pathway analyses results are shown in
Figure 4. ECM-receptor interaction and focal adhesion pathway, which
are involved in tumor invasion and tumor microenvironment, were
enriched in KEGG analysis. JAK-STAT, PI3K-Akt, NF-kappa B, and
HIF-1 signaling pathways were also enriched in KEGG analysis. Some
extracellular-related functions, some immune-related functions, and
cytokine-mediated signaling pathways were enriched in the GO analysis.

3.4 Tumor microenvironment analysis and
immunotherapy response prediction

In the high-risk group, we found higher stromal scores, immune
scores, and ESTIMATE scores and lower tumor purity. The risk
score and stromal score, immune score, and ESTIMATE score were
positively correlated (Figures 5A,F). This means the infiltration of
immune cells and stromal cells was higher in the high-risk group.

In 22 TIICs, the contents of regulatory T cells (Treg),
MO macrophages, and CD8" T cells were remarkably higher in the
high-risk group. The numbers of M1 macrophages, M2 macrophages,
and monocytes were higher in the low-risk group (Figure 5B).
M2 macrophages might be correlated with pro-tumor activity,
whereas M1 macrophages might be correlated with antitumor activity.
CD8" T cells are the major antitumor cells. Treg cells can inhibit the anti-
tumor immune effect (Dou and Fang, 2021; Pefia-Romero and Orenes-
Pifero, 2022). In summary, the difference between high- and low-risk
groups in the tumor immune microenvironment was complex.

A total of 39 of 79 ICGs showed a statistically significant
difference (Figure 5C). PDL1 and PDL2 were lower in the high-
risk group, which indicates poor immunotherapy response.

In TIDE immunotherapy response prediction, the TIDE score
and dysfunction score were higher in the high-risk group. The MSI
(microsatellite instability) score was lower in the high-risk group
(Figure 5E), and the response percentage was lower in the high-risk
group (Figure 5D), which indicates poor immunotherapy response.

4 Discussion

MICALL?2 is considered a typical cell mobility-promoting factor.
Overexpression of MICALL2 could promote the proliferation,
migration, and invasion of ccRCC cell lines (Zeng et al., 2023).
FKBP10 knockdown could cause cell cycle arrest at the GO/
G1 phase and reduce cell proliferation, invasion, and migration in
786-0 and A-704 cell lines (Ge et al., 2017). FKBP10 might participate
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in the process of type I collagen synthesis in ccRCC via regulating
(Zhang et al, 2021).
FKBP10 might promote ccRCC progression and regulate sensitivity
to HIF2a blockade by facilitating LDHA phosphorylation (Liu et al.,
2024). ACADSB is involved in the metabolism of fatty acids and
branched-chain amino acids and plays an important role in glioma,

crosslinking of pro-collagen chains

colorectal cancer, and hepatocellular carcinoma (Liu et al., 2022).

The mitochondrial-related gene signature based on MICALL2,
FKBP10, and ACADSB could provide prognostic predictive value in
ccRCC. The ccRCC patients in the high-risk group had an unfavorable
prognosis. DEGs between the high- and low-risk groups were involved
in pathways about extracellular-related function, immune-related
function, or cytokine-mediated signaling pathways. Those pathways
were associated with tumor invasion, tumor microenvironment, tumor
immunotherapy response, or tumor metabolism. ESTIMATE analysis
showed that the infiltration of immune cells and stromal cells was
higher in the high-risk group. More Treg cells, fewer M1 macrophages,
lower PDLI expression levels, and lower PDL2 expression levels in the
high-risk group might be associated with the poorer immunotherapy
response. In addition, more elaborate analyses, such as single-cell data
analyses, might be more informative. New methods of single-cell data
analysis are showing potential (Yuan et al., 2024a; Yuan et al., 2024b;
Yuan et al., 2025).

5 Conclusion

Our results suggested that our mitochondrial-related gene
signature based on MICALL2, FKBP10, and ACADSB, as a risk
model, could be a reliable ccRCC prognostic biomarker and could
predict the response to immunotherapy. The risk score was
correlated with the tumor microenvironment and immune cell
infiltration.
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