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Purpose: Myelodysplastic syndromes (MDS) are a group of hematological
disorders that remain relatively under-explored, which are characterized by
inconspicuous early symptoms and generally poor prognosis. Owing to the
complex and variable pathogenesis of MDS, there is a relative paucity of
available therapeutic options. Consequently, in-depth investigation into the
pathogenesis of MDS and the search for effective targeted therapies have
become urgent priorities.
Methods: In this study, we leveraged the Gene Expression Omnibus (GEO)
database to identify differentially expressed genes (DEGs) and conducted
functional enrichment analysis. Utilizing three machine learning
algorithms—Least Absolute Shrinkage and Selection Operator (LASSO),
Support Vector Machine Recursive Feature Elimination (SVM-RFE), and
Random Forest (RF)—we pinpointed hub genes. Furthermore, this study
explored the relationship between hub gene expression levels and immune
infiltration.
Results:Our analysis identified three hub genes: LDLRAD4, FAM43A, and KCNK5,
with LDLRAD4 showing a close association with TGF-β and MAPK signaling
pathways. Furthermore, this study revealed a positive correlation between
LDLRAD4 expression levels and immune infiltration, particularly with natural
killer (NK) cells, offering a novel immunological perspective on LDLRAD4.
Ultimately, we observed that the overexpression of LDLRAD4 can suppress
the proliferative capacity of MDS cells, induce cell cycle arrest, and
enhance apoptosis.
Conclusion: We conclude that LDLRAD4, FAM43A, and KCNK5 are potential
biomarkers for MDS. LDLRAD4’s overexpression in vitro inhibits MDS cell
proliferation and promotes apoptosis, suggesting significant potential for
immunotherapy research. These findings collectively identify LDLRAD4 as a
promising therapeutic target for MDS. However, its clinical applicability
warrants further investigation to validate its potential.
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Introduction

Myelodysplastic syndromes (MDS) comprise a group of
malignant clonal diseases originating from hematopoietic stem
cells (HSCs). They are characterized by ineffective hematopoiesis,
abnormal bone marrow proliferation, a reduction in peripheral
blood cell numbers, and an increased risk of transformation into
acute myeloid leukemia (AML) (Bazinet and Bravo,
2022),Currently, therapeutic strategies for MDS are evolving
with increasing differentiation. For patients in the lower-risk
group, there is an adoption of new strategies targeting
inflammatory immune pathways. For patients in the higher-risk
group, various approaches are employed merely to delay
progression. Allogeneic hematopoietic stem cell transplantation
represents the only curative method forMDS, yet its applicability is
limited by factors such as the patient’s physical condition, familial
economic status, and donor availability, precluding its universal
application.

The pathogenesis of this disease is multifaceted, involving a
myriad of factors. In function in MDS patients. Scholars believe that
the pathogenesis of this disease is intricately linked not only to cell
biology, epigenetics, and similar fields but also to abnormal immune
system function recent years, increased scholarly focus has been
placed on the abnormal immune (Trowbridge and Starczynowski,
2021; Wang et al., 2018; Kapoor et al., 2021). This study aims to
conduct a comprehensive investigation into the pathogenesis of the
disease from an immunological perspective and to develop more
effective immunotherapies. Furthermore, mounting evidence
suggests that MDS is linked to abnormal gene mutations (Ogawa,
2019),Therefore, identifying additional molecular biomarkers and
exploring their potential applications in immunotherapy are crucial
for the early diagnosis, treatment, and prognosis assessment of
MDS. These studies aim to enhance understanding of the
pathogenesis of MDS and to provide more precise treatment
solutions. This approach is anticipated to help slow down disease
progression, maintain and improve patients’ quality of life, and
increase their survival rate.

The use of machine learning (ML) in biomedical fields has
escalated with the rapid development of gene microarray and high-
throughput technologies. ML’s powerful data processing and pattern
recognition capabilities have facilitated significant progress in
analyzing large data sets and discovering valuable relationships
(Greener et al., 2022; Peiffer-Smadja et al., 2020; Eraslan et al.,
2019). This study integrates bioinformatics and machine learning to
enhance the accuracy and predictability of MDS diagnosis. Gene
expression matrices of MDS patients were obtained from the GEO
database, and differential expression and enrichment analyses were
performed.; Subsequently, LASSO regression, Random Forest, and
SVM-REF were utilized to screen for pivotal genes. MDS patients
were then grouped based on the expression of these pivotal genes,
and further differential expression and enrichment analyses were
conducted to gain insight into the different gene functions and
regulatory mechanisms at varying expression levels. Finally, the
CIBERSORT algorithm, based on gene expression profiling, was
utilized in this study to quantify the infiltration of immune cells,
evaluate the correlation between immune cells in MDS and normal
samples, and investigate the correlation between the immune
functions of key genes and immune cells.

Materials and methods

Microarray chip data information

GEO (http://www.ncbi.nlm.nih.gov/geo), a public genomics
data repository, is created and maintained by the National Center
for Biotechnology Information (NCBI) and includes high-
throughput gene expression data, chips, and microarrays. The
gene expression profiles of MDS, namely, GSE4619, GSE19429,
and GSE58831, were sourced and downloaded from GEO. The
aforementioned validation set dataset comprises 397 MDS
patients and 35 normal healthy controls. GSE2779, utilized as a
validation set, includes 159 MDS patients and 17 normal
healthy controls.

Data preprocessing

Initially, the GEOquery package was used to convert the
probe matrix to the gene matrix, incorporating the probe
annotation file in the process. In instances where multiple
probes corresponded to the same gene, the expression value of
the gene was determined by calculating the average value of the
probes. To mitigate the batch effects arising from different
platforms, the sva package was employed, given that the
datasets originated from various sources.

Identification of differentially
expressed genes

Analysis of DEGs between MDS patients and normal controls
was conducted using the limma package. The selection criteria for
DEGs included a p-value <0.05 and an absolute fold
change (FC) > 1.

Gene set enrichment analysis assessment

The enrichment of Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways was
analyzed using the R package ‘clusterProfiler’. Gene Set
Enrichment Analysis (GSEA) and Gene Set Variation Analysis
(GSVA) were utilized to investigate differences in biological
functions among various expression groups of hub genes, thereby
revealing their underlying mechanisms.

Hub gene LASSO regression screening

LASSO regression, a machine learning algorithm, is commonly
used for fitting generalized linear models. This algorithm is
distinguished by its ability to perform variable selection and
complexity regularization simultaneously (Cheung-Lee and Link,
2019). The parameter λ adjusts the complexity level, whereby higher
values impose a greater penalty on linear models with many
variables. This approach yields a smaller number of selected
genes, producing a more concise and representative set of key
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genes. The glmnet package in R was utilized in this study for LASSO
regression analysis of candidate hub genes. The optimal value of λ
was determined via 10-fold cross-validation, by selecting the value
that produced the smallest criterion.

Hub gene random forest model screening

The random forest model, a machine learning technique,
employs multiple independent decision trees for predicting
classification or regression (Rigatti, 2017). In this study, the R
package ‘randomforest’ was utilized to construct the random forest
model. The optimal number of variables was determined by
calculating the average error rate of candidate hub genes.
Subsequently, the error rate was evaluated for tree numbers
ranging from 1 to 500, selecting the number with the lowest
error rate. Following the determination of the parameters, the
random forest tree model was constructed. The feature importance
score for each candidate hub gene was then determined, selecting
genes with an importance value greater than 1.

Hub gene SVM-RFE screening

SVM-RFE is a widely utilized supervised machine learning
protocol for classification and regression (Frost and Amos, 2017).
The “e1071” package in R was used, applying the support vector
machine recursive feature elimination (SVM-RFE) algorithm
based on nonlinear support vector machines to identify
hub genes.

Diagnostic value of hub genes in MDS

To assess the accuracy of the hub genes identified by machine
learning, ROC curves were generated for MDS patients and normal
controls in the training group. A larger area under the curve (AUC)
indicates higher accuracy of the gene as a hub gene in MDS. This
method’s effectiveness was further validated in the
validation group.

Identification of immune cell infiltration

The CIBERSORT algorithm was employed to calculate the
differential abundance of 22 types of immune infiltrating cells.
Heatmaps and violin plots displaying the correlation of immune
cells were prepared using the R packages “corrplot” and “ggplot2”.
This study utilized the CIBERSORT algorithm to determine the
relative proportion of different immune cells in MDS and normal
control groups.

Correlation analysis between hub genes and
infiltrating immune cells

Analysis of the correlation between hub genes and immune cells
was conducted using the Spearman correlation coefficient.

Cell culture

The human MDS cell lines, SKM-1, were acquired from Yuchi
Biotechnology Ltd. (Shanghai, China) and cultured in Dulbecco’s
modified Eagle medium supplemented with 10% fetal bovine serum.
These cells were maintained at 37 °C in a cell culture incubator
with 5% CO2.

RNA extraction and quantitative real time
polymerase chain reaction (qRT-PCR)

Total RNAwas extracted using TRIzol reagent and processed for
cDNA synthesize, adhering strictly to the manufacturer’s protocol
(Cat: 11119ES60, YEASEN Biotechnology Ltd., Shanghai, China).
The resulting cDNA was then subjected to RT-PCR using
QuantStudio 6 Pro (Thermo Fisher Scientific, Waltham, MA,
United States) in conjunction with SYBR Green PCR Master
Mix. Fold changes in mean values were determined using the
double delta CT method. Each experiment yielded three
independent datasets. The primer sequences were as follows:
LDLRAD4: 5′- GTTGCACTTAGGCTGGGTCT -3′ (F); 5′- AGG
TGAGGGGCAGAGAGAAA-3′ (R). GADPH:5′-
GGAGCGAGATCCCTCCAAAAT-3′(F); 5′-GGCTGTTGTCAT
ACTTCTCATGG-3′ (R).

Western blotting

Cells were harvested and incubated with RIPA lysis buffer on
ice for 30 min to extract total protein. Following centrifugation at
12,000 rpm for 15 min at a temperature of 4 °C, the protein-rich
supernatant was gathered. The samples were then applied to a gel
for sodium dodecyl-sulfate polyacrylamide gel electrophoresis and
subsequently transferred onto a 0.22-μm polyvinylidene difluoride
membrane. To block the membrane, 5% skimmed milk was used at
a temperature range of 24 °C–30 °C for 30 min, followed by
incubation with primary antibody at 4 °C. After three washes
with PBS-Tween 20 (PBST), the membrane was incubated with a
secondary antibody (Cat: SSA004, 1:3000, Sino Biological Inc.,
China) for 1 h at 24 °C–30 °C. After additional washes with PBST,
the protein bands were detected using a Tanon-5200 image
analyzer (Thermo Fisher Scientific, Waltham, MA,
United States). ImageJ software was employed to analyze the
film strips, normalizing the protein intensities to the
corresponding β-actin bands. The antibodies used and their
dilution ratios were as follows: anti-LDLRAD4 (Cat:PA5-70568,
1.0 μg/mL, Thermo Fisher Scientific, Waltham, MA,
United States), anti-β-Tubulin (Cat: E021040-01, 1:5000,
EarthOx, United States).

Cell counting Kit-8 (CCK-8) assay

Transfected cells were distributed into 96-well plates at a density
of 1,000 cells per well, containing 100 μL of medium in each.
Following incubation periods of 24, 48, and 72 h, 10 μL of CCK-
8 solution was introduced to each well, and the plates were incubated
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FIGURE 1
(A) Principal component analysis (PCA) showing the distribution of samples in each dataset. (B) PCA after de-batch processing showing the
distribution of samples in each dataset. (C) Volcano plot visualizing DEGs between MDS and normal control groups. (D) Heatmap visualizing DEGs
between MDS and normal control groups. (E) Enriched KEGG analysis in MDS compared with normal control groups. (F) Enriched GO analysis in MDS
compared with normal control groups.
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FIGURE 2
(A) LASSO coefficient pathway plot of hub genes related to myelodysplastic syndrome in the training group. (B) LASSO regression cross-validation
curve. The optimal λ value was determined using 10-fold cross-validation in the training group. (C) Identification of 23 gene features through SVM-RFE
analysis, with an error of 0.0136. (D) Identification of 23 gene features through SVM-RFE analysis, with an accuracy of 0.986. (E) Error rate confidence
interval of the random forest model in the training group. (F) Lollipop chart showing the relative importance of genes in the random forest model in

(Continued )
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in the dark at 37 °C for 2 h. Subsequently, the absorbance at 450 nm
was measured to assess cell viability.

Cell cycle assay

Trypsin-treated cells were harvested, rinsed with PBS,
suspended in pre-cooled 70% ethanol, and fixed at 4 °C for 2 h.
Subsequently, the supernatant was aspirated, and the cells were
washed again with PBS. Propidium iodide staining solution was
then added, and the cells were incubated in the dark at 37 °C
for 30 min.

Flow cytometric analysis of cell apoptosis

Cells were digested and resuspended in 100 μL 1× binding
buffer. Stained with 5 μL Annexin V and 10 μL PI (Cat:
40302ES20,YEASEN, Shanghai, China) for 15 min at room
temperature (37 °C) in the dark, and finally 400 μL 1× binding
buffer was added. The number of apoptotic cells was analyzed by
using FACS Aria flow cytometer with CellQuest software and the
data were analyzed with FlowJo software.

Cell transfection

SKM-1 were plated into 6-well plates and allowed to proliferate
to a 50%–60% confluence prior to transfection. Cells were divided
into negative control (pcDNA3.1-NC) and transfection (pcDNA3.1-
LDLRAD4) groups. Transfection was performed following the
instructions for Lipo8000 protocol (Beyotime Biotechnology Ltd.,
Shanghai, China). Eight hours later, the serum-free Opti-MEM was
substituted with complete medium containing 10% serum. Cells
were further incubated for 48 h at 37 °C with 5% CO2) after
transfection.

Statistical analysis

Statistical analysis of the data in this study was conducted using
R (version 4.3.2). For continuous variables assumed to follow a
normal distribution between the two groups, t-tests were applied.
The exploration of the correlation between gene expression and
immune cell components was conducted using the Spearman rank
correlation test. The experimental data were plotted and analyzed
using GraphPad Prism 8.0, employing the Student’s t-test for
statistical significance. The threshold for statistical significance
was established at a p-value <0.05.

Result

Identification of DEGs between MDS and
normal control groups

The datasets GSE4619, GSE19429, and GSE58831 were selected
from the GEO database to constitute the training group, including
397 MDS patients and 35 normal controls. Principal component
analysis (PCA) was performed on these datasets to facilitate
subsequent differential gene analysis, ensuring accuracy and
comparability post de-batch processing, as demonstrated in the
figures below (Figures 1A,B).

Analysis of the merged and normalized datasets revealed
108 significantly differentiated genes in MDS. Volcano plots
visualized the expression changes of these genes (Figure 1C),
featuring 14 upregulated genes such as IFITM1, KCNK5,
TRBV27, PABPC4L, MAMDC2, and 94 significantly
downregulated genes including GPR176, OR7A5, ARPP21,
LDLRAD4, IGHV5-78 (Figure 1D).

Subsequent KEGG analysis compared the MDS group with the
normal control group, highlighting three strongly relevant signaling
pathways: the primary immunodeficiency-related pathway, the
hematopoietic cell regulatory signaling pathway, and the B-cell
receptor signaling pathway (Figure 1E). Additionally, GO analysis
identified biological processes closely associated with immune
responses in terms of BP, including lymphocyte differentiation,
monocyte differentiation, and regulation of cell-cell adhesion
(Figure 1F). Notably, MDS represents a group of clonal diseases
originating from the malignant transformation of hematopoietic
stem cells (HSCs). A distinguishing feature of MDS is its ineffective
hematopoiesis (Bazinet and Bravo, 2022). Furthermore, research
into the bone marrow microenvironment and immune
abnormalities forms a significant area in the study of MDS
pathogenesis (Lee et al., 2021). The results of this study align
closely with the current state of research, reinforcing the validity
and credibility of our findings.

Identification and validation of hub genes
in MDS

Three machine learning methods were employed to identify hub
genes closely related to MDS: LASSO regression analysis, SVM-RFE,
and the random forest model. These methods were utilized to screen
key candidates among differentially expressed genes. Initially,
LASSO regression analysis was used to screen for differentially
expressed genes, and the stability and reliability of the results
were ensured through a 10-fold cross-validation method.
Ultimately, 23 key genes were identified (Figures 2A,B).
Subsequently, the SVM-RFE method was employed to identify

FIGURE 2 (Continued)

the training group. (G) Intersection plot of LASSO, SVM-RFE machine learning, and random forest feature genes. (H) Comparison of the expression
levels of the three hub genes in MDS and normal control groups in the training group. (I) ROC analysis of the three hub genes in the training group. (J)
Comparison of the expression level of LDLRAD4 and ROC analysis in the validation group and the normal control group in the training group.
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FIGURE 3
(A) Heatmap showing differential genes after grouping LDLRAD4 by high and low expression. (B) Correlation analysis between LDLRAD4 and
differential genes: red (positive correlation), blue (negative correlation). (C) GSVA of GO items between high and low expression groups of LDLRAD4 in
MDS. (D) GSVA of KEGG items between high and low expression groups of LDLRAD4 in MDS.
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23 key genes, with an error rate of 0.0136 and an accuracy rate of
0.986 (Figures 2C,D). Ultimately, a random forest model was used to
rank the importance of all genes, focusing on those with importance
scores greater than 1 (Figures 2E,F). To further enhance the
reliability of the results, an intersection analysis was performed
on the key genes identified by each method, ultimately pinpointing
three pivotal genes closely associated with MDS: LDLRAD4,
KCNK5, and FAM43A (Figure 2G).

An in-depth analysis was conducted to validate the reliability of
the three hub genes, focusing on their expression levels in the
training group. It was found that the expression levels of
LDLRAD4 and FAM43A were significantly downregulated in the
MDS group compared to the normal control group, while
KCNK5 showed a significant uptrend (Figure 2H). Subsequently,
the area under the receiver operating characteristic curve (AUC-
ROC) was calculated for these three genes. The AUC values were:
0.943 for LDLRAD4 (95% CI: 0.915-0.966), 0.854 for KCNK5 (95%
CI: 0.812-0.892), and 0.845 for FAM43A (95% CI: 0.786-0.901)
(Figure 2I). Given that the AUC values of these genes were all above
0.8, this indicates their high diagnostic efficiency in predicting MDS.

Based on the aforementioned analyses, LDLRAD4 was selected
as the core hub gene for this study. To verify the stability and
reliability of LDLRAD4, the GSE2779 dataset from the GEO
database was employed as the validation set. The validation set
included 17 normal controls and 159 MDS cases. Re-analysis of
LDLRAD4’s expression levels and AUC-ROC values in the
validation set revealed high consistency with the training set
results. Specifically, LDLRAD4’s expression levels were
significantly downregulated in MDS patients, with an AUC value
of 0.984 (95% CI: 0.929-1.000) (Figure 2J). This result not only
confirms LDLRAD4’s reliability as a hub gene but also suggests its
potential applications in the diagnosis and prediction of MDS.

Hub gene GSVA and co-expression
analysis (LDLRAD4)

Having identified LDLRAD4 as the focal point of this study, its
function and mechanism were explored in depth. LDLRAD4’s
mRNA expression level in MDS was categorized based on the
median value, dividing it into low and high expression groups.
Subsequent differential analysis of these groups led to the
identification of 26 differential genes, including MAMDC2,
RPS4Y1, MME1, and EBF1 (Figure 3A). Co-expression analysis
was conducted on the obtained differential bases, sorting them by
correlation strength. Results indicated a positive correlation of
LDLRAD4 with genes including MME, EBF1, VPREB1,
KIAA0226L, and PAX5, and a negative correlation with
MAMDC2 and RPS4 (Figure 3B).

To further elucidate LDLRAD4’s role in MDS, GSVA analysis of
GO and KEGG pathways was performed for its high and low
expression groups. In terms of GO, the high-expression group
showed enrichment in: GOBP: Positive Regulation of Response to
Extracellular Stimulus, GOBP: Negative Regulation of Histone
H3 K9 Methylation, and GOMF: Cardiolipin Binding, among
others. The low-expression group showed enrichment in: GOBP:
Neuromuscular Junction Development, GOBP: Bone Trabecula
Morphogenesis, and GOBP: Regulation of Membrane

Repolarization During Cardiac Muscle Cell Action Potential,
among others (Figure 3C). KEGG enrichment analysis revealed
for the high-expression group: Vasopressin Regulated Water
Reabsorption, Focal Adhesion, Arrhythmogenic Right Ventricular
Cardiomyopathy (ARVC), GnRH Signaling Pathway, Other Glycan
Degradation, and others; for the low-expression group: Primary
Immunodeficiency, Cell Cycle, Non-Homologous End Joining, and
others (Figure 3D).

Given the GO analysis results, an in-depth exploration of the
regulation of Smad protein complex assembly, a critical biological
process, is warranted. Additionally, enrichment in the primary
immunodeficiency-related pathway and B-cell receptor signaling
pathway in KEGG analysis aligns with previous analyses of MDS
samples. These pathways are particularly intriguing. A substantial
proportion of genes correlating with LDLRAD4 have yielded
significant research outcomes in immunity. This suggests the
promise of focusing on immunity in this direction for future
research endeavors.

GSEA analysis of hub genes

To conduct a more comprehensive analysis of LDLRAD4’s
function and mechanism, GSEA was again employed to analyze
the high and low expression groups of LDLRAD4 in terms of GO
and KEGG. Regarding GO, the high-expression group was enriched
in GOBP DNA Templated and DNA Replication, GOBP Mitotic
Sister Chromatid Segregation, and others; the low-expression group
showed enrichment in GOBP Hemostasis, GOBP Regulation of
Body Fluid Levels, and others (Figure 4A). In KEGG analysis, the
high-expression group was enriched in Cell Cycle, DNA Replication,
Oocyte Meiosis, and others; while the low-expression group showed
enrichment in DrugMetabolism Cytochrome P450, Focal Adhesion,
MAPK Signaling Pathway, and others (Figure 4B).

Many GO analysis results, including DNA replication,
chromosome segregation, and mitosis, were found to be
associated with cell proliferation processes. Results from KEGG
analysis suggest that LDLRAD4 may influence cell cycle-related
pathways, corroborated by the GO analysis. Thus, it is hypothesized
that LDLRAD4 could regulate the cell cycle through its impact on
DNA templating and replication processes. Additionally, pathways
aligning with the GEVA analysis results were identified, including
those related to primary immunodeficiency disease and cell cycle.
This finding further underscores the significance of
LDLRAD4 within these pathways.

Analysis of immune infiltration in MDS and
correlation between hub genes and
infiltrating immune cells

Given the close association of MDS with immunity in terms of
LDLRAD4’s function and pathway enrichment, the CIBERSORT
algorithm was employed to investigate the infiltration abundance of
22 immune cell types in the training set samples. Comparisons
between the MDS and normal groups revealed significant
differences in the abundance of T cells CD4 memory resting and
Macrophages M1 (P < 0.05) (Figure 5A). To elucidate the complex
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interactions among immune cells, correlations between various
immune cell types were investigated. Findings indicated a strong
positive correlation between M1 and M2 macrophages, and a
significant negative correlation with resting dendritic cells.
Additionally, the strongest positive correlation was found
between T cells CD4 memory resting and activated NK cells, and
the most significant negative correlation with resting mast
cells (Figure 5B).

Furthermore, ssGSEA was utilized to analyze the degree of
immune cell activation and function in the high and low
expression groups of LDLRAD4. Results revealed significant
elevations in B cells, pDCs, Th1 helper cells, TIL, and
inflammation-promoting in the high-expression group of the
MDS group. Conversely, APC_co_inhibition and T helper cells
showed significantly higher expression in the low-expression
group (Figure 5C).

The relationship between infiltrating immune cells and
LDLRAD4 was evaluated, revealing positive correlations with

activated NK cells, T cells CD4 memory resting, and memory
B cells, and negative correlations with Plasma cells, CD8 T cells,
Eosinophils, resting NK cells, and Tregs (Figure 5D). These findings
complement the conclusions from GO, KEGG, and co-expression
analyses of LDLRAD4, enhancing the understanding of its
association with immunity. Additionally, they offer crucial
insights into the mechanisms of immune dysfunction and disease
progression in MDS patients.

Overexpression of LDLRAD4 inhibits the
proliferation of SKM-1 cells and
promotes apoptosis

The analysis indicates that LDLRAD4 is significantly
downregulated in MDS patients. To further investigate the
impact of LDLRAD4 on the biological functions of MDS cell
lines, we selected SKM-1 as our in vitro cellular model. We

FIGURE 4
(A)GESA analysis of GO items for high and low expression groups of LDLRAD4 in MDS. (B)GSEA analysis of KEGG items for high and low expression
groups of LDLRAD4 in MDS.
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FIGURE 5
(A) Box plot of immune cell infiltration between MDS and normal control groups. (B) Correlation analysis between different immune cells: red
(positive correlation), blue (negative correlation). (C) Box plot showing the difference in immune cell-related functions between high and low expression
groups of LDLRAD4. (D) Lollipop chart showing the correlation between LDLRAD4 and different immune cells.
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FIGURE 6
(A) qRT-PCR was used to detect the mRNA level of pcDNA3.1-LDLRAD4 compared to the control. (B) Western blotting was employed to detect
LDLRAD4 protein levels following transfection with pcDNA3.1-LDLRAD4, compared with the control. (C) The CCK-8 assay showed that
LDLRAD4 overexpression decreased SKM-1 proliferation compared to the control. (D) LDLRAD4 overexpression resulted in cell cycle arrest at the S
phase. (E) Overexpression of LDLRAD4 results in an increased rate of apoptosis in SKM-1 cells.
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established a control group (pcDNA3.1-NC) and an overexpression
group (pcDNA3.1-LDLRAD4). Western blotting and qRT-PCR
revealed that the LDLRAD4 levels in the overexpression group
were significantly higher compared to the control group (Figures
6A,B). Initially, we employed the CCK8 assay to evaluate the impact
of LDLRAD4 on the viability of SKM-1 cells. The results indicated
that overexpression of LDLRAD4 in SKM-1 cells significantly
inhibited their proliferative capacity compared to the control
group (Figure 6C). Subsequently, using flow cytometry, we found
that compared to the control group, the overexpression group had
cells arrested in the S phase, with a reduction in G2/M phase cells,
indicating inhibited cell proliferation (Figure 6D). Finally, flow
cytometry was used to assess apoptosis, and the overexpression
group showed a significantly higher rate of cell apoptosis compared
to the control group (Figure 6E). These findings suggest that
LDLRAD4 may be a gene that inhibits the proliferation of MDS
cells and promotes apoptosis.

Discussion

Myelodysplastic syndromes (MDS) are often referred to as a
‘gray disease’ in the field of blood diseases due to their low public
awareness and unclear pathogenesis. The insidious onset and lack of
specific symptoms in the early stages can cause many patients to
miss the best treatment opportunities. MDS also has the potential to
transform into acute myeloid leukemia (AML), which can have
serious health consequences (Bazinet and Bravo, 2022). Early
identification and intervention for MDS are crucial for improving
patients’ quality of life. Elucidating its pathogenesis is also urgent. In
recent years, the connection between clinical and bioinformatics has
become increasingly close, enabling us to more accurately identify
biologically meaningful biomarkers.

Comprehensive bioinformatics and machine learning
techniques were utilized to identify hub genes, resulting in the
identification of 108 differentially expressed genes (DEGs) with
significant differences. Functional and pathway enrichment
analyses demonstrated a robust association with the immune
response. Exploration of the DEGs through LASSO regression
analysis, SVM-RFE, and the random forest model led to the
identification of three pivotal genes: LDLRAD4, KCNK5, and
FAM43A. ROC curve analysis determined the diagnostic value of
these genes, confirming their significance.

Immunotherapy has recently emerged as a promising
approach in the treatment of MDS. Our analysis integrated
autoimmune abnormalities in MDS patients with the
enrichment of primary immunodeficiency-associated pathways,
utilizing DEGs to examine immune infiltration in the MDS group
relative to the normal group. Significant differences were
observed in a broad spectrum of immune cells between the
two groups. The focus was placed on the vital role of
macrophages within the bone marrow microenvironment,
among other immune cells. Studies have indicated that MDS
induces abnormal alterations in the bone marrow
microenvironment, resulting in varied macrophage
polarization (Murray and Wynn, 2011). This analysis aligns
with current research, underscoring the need for further
exploration into macrophages’ role and mechanisms in MDS.

The KCNK5 gene encodes TASK-2, a critical potassium channel
involved in renal function, and has potential roles in preventing
ischemic neurodegeneration and in breast cancer treatment (Warth
et al., 2004; Heitzmann et al., 2008; Alvarez-Baron et al., 2011; Gob
et al., 2015). Recent investigations into this gene have contributed
significantly to immunological research. Notably, the upregulation
of KCNK5 is linked to T cell proliferation (Kirkegaard et al., 2016),
and bidirectional potassium channels, potentially involving KCNK5,
may be integral in NK cell activation and effector functions (Schulte-
Mecklenbeck et al., 2015). Yet, this area remains largely unexplored
in blood disorder studies. Our study is unique in analyzing the
significant upregulation of KCNK5 in MDS, suggesting it as a
potential emerging risk factor. In conclusion, TASK-2, encoded
by KCNK5, plays a significant role across various biological
domains. This discovery opens new avenues for the treatment
and diagnosis of related diseases.

Currently, limited research has been conducted on FAM43A,
which is primarily based on bioinformatics analysis. FAM43A is
hypothesized to potentially serve as a new prognostic biomarker and
therapeutic target for diseases such as sepsis or triple-negative breast
cancer (Shen et al., 2024; Chen et al., 2011). In this study, the
FAM43A gene was identified through various machine learning
analyses. The study found that the expression level of FAM43A was
significantly downregulated inMDS patients. This finding suggests a
new research direction for future studies on targeted drugs for the
treatment of MDS.

This paper focuses on LDLRAD4, which has been shown to
possess superior diagnostic value compared to KCNK5 and
FAM43A, as evidenced by the ROC curve. Prior studies have
associated this gene with psychiatric disorders (Kikuchi et al.,
2003b; Kikuchi et al., 2003a),and indicate that it shares a similar
function with TMEPAI as a negative regulator of TGF-β signaling
(Nakano et al., 2014). In the realm of tumor research,
LDLRAD4 presents unique research potential. Zhenxing Liu et al.
reported that LDLRAD4 interaction with Nedd4, an E3 ubiquitin
ligase, promotes the proliferation and migration of hepatocellular
carcinoma cells (Liu et al., 2017); Yuko Ito et al. showed that non-
genotoxic hepatocellular carcinogens cause the downregulation of
oncogenic LDLRAD4 in rat livers, which leads to the disruptive
activation of TGF-β signaling (Ito et al., 2020). Additionally, it has
been suggested that the mRNA expression level of LDLRAD4 could
be an independent prognostic factor for GIST, a hypothesis
requiring further confirmation (Xie et al., 2020). In summary,
LDLRAD4 exhibits a novel role in tumorigenesis and could
potentially be targeted for the treatment of hepatocellular
carcinoma. However, a direct association with blood disorders
remains unestablished.

This study entailed conducting GO and KEGG analyses on the
LDLRAD4 high and low expression groups using GSVA. The GO
analysis results indicated a close association between LDLRAD4 and
the regulation of Smad protein complex assembly. Prior research has
demonstrated that LDLRAD4 has a negative regulatory effect on the
TGF-β signaling pathway (Nakano et al., 2014). The TGF-β
signaling pathway entails the activation and phosphorylation of
the TGF-β receptor, initiating a regulatory cycle of activating and
inhibiting Smad proteins. This regulatory loop amplifies the
response of the TGF-β signaling pathway through a negative
feedback mechanism or constitutive activation. This process is
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directly associated with myelosuppression and null erythropoiesis in
MDS (Blank and Karlsson, 2015; Larsson and Karlsson, 2005; Blank
and Karlsson, 2011). Based on these findings, it is hypothesized that
LDLRAD4 could be involved in regulating the pathogenesis of MDS
by influencing the TGF-β signaling pathway. This hypothesis further
posits LDLRAD4 as a potential therapeutic target, warranting
exploration in subsequent studies. Additionally, it was discovered
that the genes EBF1 and PAX5, correlated with LDLRAD4, play
crucial roles in B cell development and function (Yang et al., 2016;
Inagaki et al., 2016). This finding offers a theoretical basis for
predicting the potential impact of LDLRAD4 on MDS in terms
of immunity. This can also guide subsequent studies. Interestingly,
upon re-analyzing the GO and KEGG aspects of LDLRAD4 using
GSEA, similar results were obtained. Furthermore, the study
identified the MAPK pathway, a classical signaling pathway
responsible for myeloid proliferation under physiological
conditions and aberrantly activated in myeloproliferative diseases
(Rocca et al., 2018). Mutations in NRAS, JAK2, and CSF3R, key
signaling components, have been shown to aberrantly activate the
MAPK pathway. Consequently, inhibitors targeting these signaling
components have found clinical application. These inhibitors
demonstrate potential, particularly in treating patients with
atypical chronic granulomatous leukemia (aCML), a rare MDS/
myeloproliferative neoplasm (MPN). Based on this investigation,
LDLRAD4 emerges as a promising target for treating MDS. Its
potential applications extend beyond merely treating aCML (Rocca
et al., 2018).

Extensive biochemical analysis of LDLRAD4 has unveiled its
research value in immunity. Consequently, we analyzed its
immune function and correlation with immune cells. According to
the results of correlation analysis among different immune cells,
LDLRAD4 has the strongest correlation with NK cells. NK cells
constitute a key component of the immune system and function as
the first line of defense for the organism. They have multiple
functions, including anti-tumor and anti-virus activities, regulation
of immune balance, participation in tissue repair, and the ability to
rapidly kill virus-infected and tumor cells, even in the absence of prior
immune activation (Sivori et al., 2021). Research has shown that in
patients with MDS, NK cells in the bone marrow exhibit a decreased
killing capacity (Fischer et al., 2007; Schonberg et al., 2011).
Additionally, there exists a reduced number of NK cells, an
imbalance of subtypes, and a decrease in activating receptors.
These factors might contribute to the inability of NK cells to
effectively clear MDS malignant clonal cells, thus promoting
disease progression. In contrast, our observations revealed that
LDLRAD4 was significantly under-expressed and strongly
positively correlated with NK cells in MDS patients. Consequently,
we hypothesized that LDLRAD4 might influence the course of MDS
disease by regulating the function of NK cells. We also explored the
possibility that MDS might alter the number and efficacy of NK cells
by regulating the expression of LDLRAD4. These uncharted territories
offer new perspectives for future research and inspire the potential to
develop immunotherapeutic strategies based on NK cells. This study
aims to probe the interactions between LDLRAD4 and immune cell
subsets, and their potential roles in immunomodulation in the context
of MDS. Future studies ought to delve into the mechanisms of these
interactions and their synergistic effects on the pathologic process of
MDS. This could provide new strategies and approaches for the

clinical treatment of MDS. Subsequently, utilizing the SKM-1 cell
line as an in vitromodel for MDS, we found that the overexpression of
LDLRAD4 led to inhibited proliferation, cell cycle arrest at the S
phase, and increased apoptosis in SKM-1 cells. The experimental
findings suggest that LDLRAD4 has an inhibitory effect on the
proliferative activity of MDS cells; however, the precise molecular
mechanisms underlying this regulation require further investigation.

In summary, this study analyzed the key genes associated with
MDS, namely, LDLRAD4, FAM43A, and KCNK5, using
bioinformatics and machine learning methods. The study focused
on unveiling the central role of LDLRAD4 in the pathological process
of MDS, with special attention to its regulatory role in the TGF-β
signaling pathway and its association with B-cell development and the
MAPK signaling pathway. The study offers new targets and
therapeutic strategies for the treatment of MDS. Additionally, the
study highlights the significant role of NK cells in MDS. It suggests
that LDLRAD4 may regulate the disease process by affecting NK cell
function, thus offering a new avenue for immunomodulation-based
therapeutic strategies. Although this study provides a comprehensive
bioinformatic analysis of LDLRAD4, covering its functional, pathway,
and immunological roles, it is important to acknowledge its
limitations. For instance, the feature selection techniques we
employed, such as LASSO, SVM-RFE, and RF, can be sensitive to
the specific composition of the dataset. Furthermore, the pronounced
heterogeneity of MDS, with its numerous subtypes characterized by
distinct classifications, blast counts, and genetic profiles, presents a
challenge for a unified analysis. Our current dataset does not permit a
detailed investigation into each subtype. Crucially, our findings still
require validation with clinical samples and further exploration of the
specific mechanistic role of LDLRAD4 in MDS using in vitromodels.
Future investigations will address these limitations to enable a deeper
understanding.
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