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Background: Previous analyses of bulk colon and rectal adenocarcinoma
(COAD/READ) RNA-sequence data comparing African ancestry (AA) and
European ancestry (EA) groups have reported differentially expressed genes
related to the immune response. However, these previous analyses of AA
versus EA tissues did not control for mismatch-repair enzyme (MMR)/
microsatellite instability (MSI) status, which is also associated with altered
expression of immune related genes, and is used to determine eligibility for
immune checkpoint inhibitor therapy.

Methods: TCGA-COAD-READ bulk RNA-sequence data were analyzed to
identify immune related genes that were significantly associated with AA and
MMR-deficient (MMR-d)/MSI-High (MSI-H) groups. Reverse transcriptase-
quantitative polymerase chain reaction (RT-gPCR) assays for selected immune
genes relative to two reference genes, (CIORF43 and RAB7A) were conducted on
an independent set of AA (n = 59) vs. EA (n = 59) formalin-fixed paraffin
embedded (FFPE) samples enriched for MMR-d/MSI-H samples. Multiple linear
regression models were employed to investigate ancestry and MMR/MSI status
while controlling other variables.

Results: Multivariable regression analysis of the TCGA-COAD-READ data
revealed that CXCL10 expression was lower in AA vs. EA groups and higher in
MMR-d/MSI-H vs. MMR-proficient (MMR-p)/MSI-Low (MSI-L)+microsatellite
stable (MSS) groups while controlling for COAD/READ location and stage.
Neither COAD/READ stage or location were significant while controlling for
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ancestry and MMR/MSI status. CXCL10 is an important chemokine that regulates
the tumor immune microenvironment. The number of AA MMR-d/MSI-H
samples in the TCGA-COAD-READ dataset was too low (n = 9) to detect a
significant effect of AA on CXCL10 expression across MMR/MSI status. CXCL10
MRNA levels measured by RT-gPCR in an independent set of COAD FFPE
samples enriched for AA MMR-d/MSI-H samples, confirmed that CXCL10
expression was higher in MMR-d/MSI-H samples compared to MMR-p/MSI-L
+MSS, however, differences in CXCL10 expression between AA vs. EA did not
reach significance.

Discussion: These results did not detect significant effects of AA on CXCL10
expression across MMR/MSI status.

colorectal neoplasm, DNA mismatch repair, African continental ancestry group,

European continental ancestry group, gene expression

1 Introduction

Colorectal adenocarcinoma (COAD/READ) is the second leading
cause of all cancer related deaths in the US (1). In the US, the African
continental ancestry population group has both a higher incidence and
poorer survival for COAD/READ compared with the European
ancestry (EA) group (1). Multiple factors including socioeconomic
factors that affect access to prevention and early diagnosis of COAD/
READ (2) contribute, but do not fully explain these disparities. Previous
studies of COAD/READ bulk RNA sequencing data generated from
fresh/frozen COAD/READ samples have reported African vs. European
ancestry (AA vs. EA) tissues exhibit numerous differentially expressed
genes (DEGs), including genes related to the tumor immune
microenvironment (3-10). A major limitation of these studies is the
small numbers of African ancestry (AA) samples included in these
studies. Most of the previous analyses used The Cancer Genome Atlas
(TCGA) RNA-sequencing dataset (11), which has the largest but still
limited number (n=64) of AA COAD/READ samples, in addition to
data generated from smaller sets of 6-15 AA COAD samples.

These previous analyses were conducted without considering
mismatch repair enzyme-deficiency/microsatellite-high (MMR-d/
MSI-H) status as a potential confounding variable. Universal
screening of COAD/READ biopsies and surgical resection
pathology specimens for MMR-d/MSI-H status is now routinely
conducted at US medical centers. This is because MMR-d/MSI-H

Abbreviations: COAD, colon adenocarcinoma; READ, rectal adenocarcinoma;
AA, African ancestry; EA, European ancestry; MMR, mismatch repair; MSI,
microsatellite instability; TCGA, The Cancer Genome Atlas, c-GAS/STING,
cyclic GMP-AMP synthase - stimulator of interferon genes; CXCL10, C-X-C
motif chemokine 10; FFPE, formalin fixed paraffin embedded; NYCH+H, New
York City Health+Hospitals; KCH, Kings County Hospital; MANTIS,
Microsatellite Analysis for Normal Tumor InStability; DEGs, differentially
expressed genes; RT-qPCR, reverse transcriptase-quantitative polymerase chain

reaction; CE, capillary electrophoresis; IHC, immunohistochemical.
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patients are more responsive to immune checkpoint inhibitors (12).
This may relate to higher expression of immune related genes, such
as C-X-C motif chemokine 10 (CXCLI10) gene (13, 14). MMR-d/
MSI-H status is associated with increased cytoplasmic damaged
DNA, which triggers the cyclic GMP-AMP synthase - stimulator of
interferon genes (c-GAS/STING) pathway. This leads to activation
of interferon gamma signaling pathways and activation of the
CXCL10-CXCR3 axis, which has been shown to regulate immune
cell homing and activation (14, 15).

A univariate analysis of two publicly accessible AA vs. EA bulk
RNA sequence datasets revealed that CXCLI0 expression was lower in
AA vs. EA groups (16). To test the hypothesis that ancestry could affect
CXCLI10 expression levels across MMR/MSI status, the AA vs. EA
TCGA-COAD-READ RNA-seq was reanalyzed with a focus on both
ancestry and MMR/MSI status. Because COAD samples annotated for
both ancestry and MMR/MSI status were not available in commercial
tissue banks, we assembled an independent set of 134 AA and EA
COAD formalin fixed paraffin embedded (FFPE) samples from three
medical centers. This independent cohort included roughly equal
numbers of AA MMR-d/MSI-H, AA MMR-p/MSI-L+MSS, EA
MMR-d/MSI-H, and EA MMR-p/MSI-L+MSS, because of our focus
on African ancestry and MMR-d/MSI-H COAD/READ. This cohort is
therefore enriched for self-identified African ancestry and MMR-d/
MSI-H because only ~12% of US COAD/READ cases has evidence of
African ancestry (17) and only ~15% have MMR-d/MSI-H status (18).

2 Methods

2.1 Data acquisition and identification of
DEGs

The Cancer Genome Atlas Colonic adenocarcinoma (TCGA-
COAD) RNA sequence data from AA (n = 64) and EA (n =284)
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groups was downloaded as unstranded STAR (raw) counts and
processed TPM by using TCGAbiolinks R/Bioconductor package
(19). The following clinical metadata variables were also
downloaded from TCGA: 1.) age at time of collection (years); 2.
sex (male/female); self-identified ancestry (African/European);
COAD/READ tumor location (right, left; COAD/READ stage (I,
ILIILIV); and MSI status. MSI status was available for 327 out of
348 samples (20). For 17 of 21 samples without MSI-status values,
the Microsatellite Analysis for Normal Tumor InStability
(MANTIS) scores in the TCGA-COAD-READ database were
used to categorize MSI status (21). Samples with MANTIS scores
< 0.4 were categorized as MMR-p/MSI-L+MSS and scores > 0.4
were categorized as MMR-d/MSI-H. The raw counts of 15 AA and
18 EA COAD samples from the SUNY Stonybrook/Downstate
medical centers were downloaded from Gene Expression
Omnibus (GEO) with the accession number GSE146009 (7). The
COAD data in GSE146009 was downloaded from 15 AA and 18 EA
samples, which were annotated with respect to ancestry but not for
MMR/MSI status. The raw counts were used as input for identifying
differentially expressed genes (DEGs) using edgeR (22). After using
edgeR to normalize the raw counts, the resulting “cpm” counts were
used as input into the wilcox.test function in R (v4.0.2) as previously
described (23). The threshold for identifying DEGs was the absolute
value | log, fold change | > 1 and adjusted p-value <0.05 The
consensus molecular subtypes (CMS) labels reported for the
TCGA-COAD-READ dataset based on CMS network and CMS
Random Forest (RF) were downloaded from
cms_labels_public_all.txt - syn4978511 - Files (24). The
abundance of tumor associated T-cells was estimated using
CIBERSORT analysis of the TCGA-COAD-READ RNA-sequence
data (25).

2.2 Assembly of COAD FFPE samples from
three US medical centers.

Assembly of 134 de-identified adult (age > 18) human COAD/
READ FFPE tissue samples archived between 2012 and 2024 from
three US medical institutions, Stony Brook University Hospital
(Stony Brook, NY), New York City Health + Hospitals (NYCH+H)/
Kings County Hospital (KCH, Brooklyn, NY), and Henry Ford
Health Center (Detroit, MI) was approved by the Stony Brook
Institutional Review Board (sIRB2024-0020) with reliance forms
reviewed by the Institutional Review Boards for Henry Ford Health
Center and Michigan State University. No reliance form was
required for NYCH+H/KCH since the research protocol included
an honest broker that oversaw HIPAA compliance, was conducted
with waiver of consent and was determined to be not human
research by its Institutional Review Board (IRB1949860). Only
initial surgical resections of treatment-naive sporadic COAD-
READ (excluding inflammatory bowel disease-associated and
hereditary COAD-READ syndromes) were selected for analysis.
The samples were linked to deidentified clinical metadata curated
from electronic medical records by physicians at each of the three
medical centers using a common data dictionary as previously
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described (26). The variables collected for the metadata included:
1.) age at the time of the sample collection (years), 2.) sex (male/
female); 3.) ancestry (AA vs. EA) based on self-identification, 4.)
ethnicity (all non-Hispanic); 5.) body mass index (BMI, kg/mz); 6.)
diabetes mellitus status (type 1 diabetes, type 2 diabetes (T2DM), no
diabetes); 7.) smoking (current, former, never); 8.) COAD tumor
location (right defined as cecum, ascending colon, hepatic flexure,
transverse colon; left defined as including splenic flexure,
descending colon, sigmoid, rectum); 9.) COAD stage (1-4); 10.)
MMR-d/MSI-H vs. MMR-p/MSI-L+MSS status classified primarily
by immunohistochemistry (IHC); 11.) insurance status
(Commercial/Medicare; Medicaid Mgd; Medicaid/Self-Pay).

2.3 RT-gPCR analysis of COAD-READ FFPE
samples.

Total RNA was extracted from 5 um COAD FFPE curls using
the RecoverAll"™ Total Nucleic Acid Isolation Kit (Thermo Fisher
Scientific Inc, Waltham, MA) according to the manufacturer’s
recommendation, except paraffin was removed by xylene washes,
the protease digestion was extended to 3 hours at 50°C. 200-500 ng
of total bulk RNA was reverse transcribed using Superscript ™
VILO™ cDNA kit (Thermo Fisher Scientific Inc, Waltham, MA)
according to the manufacturer’s recommendation qPCR was
performed using the Applied Biosystems QuantStudio 3 Real
Time PCR System (Thermo Fisher Scientific Inc., Waltham, MA).
The 20 ul dual probe (target immune gene/reference gene) PCR
reactions included 1-2 pl cDNA (corresponding to 25 ng of RNA),
1 ul I1x TagMan Universal PCR master mix, 1 pl for each primers/
pre mix (for target and reference gene) The reactions, run in
triplicate, were incubated in a 96-well optical plate at 95°C for
10 min, followed by 40 cycles of 95 °C for 15s and 60°for 10 min.
The threshold cycle (Ct) was defined as the fractional cycle number
at which the fluorescence passes the fixed threshold. The Ct data
were determined using default threshold settings. Taqman® primer
probe set IDs for the target genes were: CXCL10 (HS00171042),
CD45 (HS04189704) and CD3D (HS00174158). The Taqman®
primer probe set IDs for the reference genes were: RAB7A
(HS01115139) and CIORF43 (HS00367486). A previous study
reported that RAB7a and CIORF43 were best suited for
normalizing RT-qPCR assays of COAD/READ samples (27),
particularly because of the low covariance exhibited by these two
reference genes. These commercial probe/primer sets have been
used extensively in previous publications including the study
evaluating the two COAD reference genes (27). The ACt were
calculated as reference gene Ct - target gene Ct to estimate the log
transformation of the ratio of target gene/reference gene templates
in the reactions.

2.4 Statistical analysis

TCGA CXCLI0 outcomes were expressed as CXCL10 log, TPM.
The RT-qPCR CXCLI10 values were expressed as CIORF43 Ct -
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CXCL10 Ct and RAB7A Ct - CXCLIO Ct. CD45 values were
expressed as CIORF43 Ct - CD45 Ct and RAB7A Ct - CD45 Ct,
and CD3D values were expressed as CIORF43 Ct - CD3D Ct and
RAB7A Ct - CD3D Ct. Spearman’s correlation was used to examine
the linear correlation between CXCLI0 and continuous variables
such as age, CD45 and CD3D values. The Wilcoxon rank sum test
(for variables with 2 levels) or Kruskal-Wallis test (for variables with
> 3 levels) was utilized to examine the marginal difference in
outcomes among categorical variables. For the Kruskal Wallis
test, a Dunn’s post-hoc test was used to compare individual
groups with each other. Multiple linear regression models were
then utilized to examine whether there was a difference in the
ancestry level or MMR status after adjusting for COAD/READ
location and COAD/READ stage. 134 independent human COAD/
READ FFPE tissue samples are expected to have 90% power to
detect an increase in R” being 6.5% while the R* of model using
covariates alone being 11.5% based on a multiple regression full-
versus-reduced-model F-test with a Type I error rate of 0.05 (28).
Both R’ in the sample size justification are estimated from TCGA
data. Statistical analysis was performed using GraphPad Prism 10
(for some univariate analyses), by using the cor.test () function in R
version 4.44 to calculate correlation coefficients and SAS 9.4 (SAS
Institute Inc., Cary, NC). Significance level was set at 0.05.

3 Results

3.1 CXCL10 transcript expression is lower
in AA vs. EA in two independent COAD-
READ tumor bulk RNA-sequence datasets

As shown in Figure 1, CXCLIO was identified as AA vs. EA
differentially expressed genes (DEGs), which were expressed at a
lower level in AA vs. EA COAD/READ samples in both the TCGA-
COAD-READ (64 AA vs. 284 EA) and a smaller SUNY Downstate/
Stony Brook (15 AA vs. 18 EA) bulk RNA sequence datasets, using
edgeR (22, see Supplementary Table SI).

3.2 Categorization of MMR/MSI status
between AA and EA TCGA-COAD-READ
samples

MMR/MSI-status of the TCGA-COAD samples was obtained
by downloading the TCGA-COAD-READ metadata and the MSI
status reported previously for 327/348 samples (20). Of the 21
samples lacking MSI status values, 17 were categorized by using the
MANTIS score (21). No information on the MMR/MSI status was
provided for the smaller SUNY Downstate/Stony Brook RNA-seq
dataset (7). The distribution of consensus molecular subtype
(CMS1, CMS2, CMS3, CMS4, No Label) previously assigned to
the TCGA-COAD-READ samples (24) for:1.) AA MMR-p/MSI-L
+MSS; 2.) AA MMR-d/MSI-H; 3.) AA MMR undetermined; 4.) EA
MMR-p/MSI-L+MSS; 5.) EA MMR-d/MSI-H vs. MMR-p/MSIL
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+MSS are shown in Figure 2. CMS1 has been associated with high
expression of immune-related genes and MMR-d/MSI-H (22).
CMS2 has been associated with a differentiated epithelial cell
phenotype. CMS3 has been termed the metabolic subtype because
of dysregulated metabolic genes. CMS4 is associated with a high
stromal content. Some of the COAD samples could not be readily
assigned to a single CMS and have been termed No Label. Thirty-
seven (13%) of the 284 EA samples were labeled as CMS1. Thirty-
one (84%) of the 37 EA CMS1 samples were also MMR-d/MSI-H.
Only two (3%) of 64 AA samples were labeled as CMS1. Only one
(50%) of two AA CMSI samples was also MMR-d/MSI-H.

Overlap between TCGA-COAD-READ AA
vs. EA DEGs and MMR-d/MSI-H vs. MMR-
p/MSI-L+MSS DEGs

To reduce the number of false positive DEGs, the Wilcoxon
rank sum test was used to determine the overlap between the AA vs.
EA DEGs and the MMR-d/MSI-H vs. MMR-p/MSI-L+MSS DEGs
(23). The number of AA vs. EA DEGs was reduced to 39 from 420,
and the number of MMR-d/MSI-H vs. MMR-p/MSI-L+MSS DEGs
was reduced to 738 from 2177 (see Supplementary Table S1). The
overlap between the 39 AA vs. EA DEGs and the 738 MMR-d/MSI-
H vs. MMR-p/MSI-L+MSS DEG lists consists of 7 genes (CXCL10,
ALOX15B, IDOI, HCAR2, MARCO, OR2I1P and MTND4P24. Six
of seven DEGs were decreased in the AA group and increased in the
MMR-d/MSI-H group (CXCLI0, ALOX15B, IDOI1, HCAR2,
MARCO and OR2I1P). The first five DEGs have been linked to
macrophage function and in some instances with COAD/READ
(29-34). OR2IIP is a pseudogene with unknown function.
MTND4P24, which is increased in AA vs. EA and decreased in
the MMR-d/MSI-H vs. MMR-p/MSI-L+MSS groups, is a
pseudogene with unknown function.

Analysis of variables affecting CXCL10
MRNA expression in the TCGA-COAD
dataset

Further analysis of the effects of AA and MMR-d/MSI-H status
focused on CXCLIO log,TPM as the outcome because this gene
plays a key role in regulating COAD/READ tumor
microenvironment in MMR-d/MSI-H samples (14, 15).
Differences in CXCLIO0 values were significantly associated with
ancestry, MMR/MSI status, COAD/READ location, COAD/READ
stage, but not sex (see Table 1). Age was not significantly correlated
with CXCLI0 levels. Multiple linear regression models were used to
examine associations to CXCLIO expression while adjusting for
COAD/READ stage, and with and without COAD/READ location,
because of the number of missing location values. As shown in
Table 1, CXCL10 values were lower in AA vs. EA (p -value < 0.0001)
and higher in MMR-d/MSI-H vs. MMR-p/MSI-L+MSS (p-value <
0.0001), while controlling for COAD/READ stage and location.
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FIGURE 1

Volcano plots of DEGs for African vs. European ancestry and MMR-d/MSI-H using edgeR. (A) African vs. European ancestry DEGs in TCGA COAD
dataset; (B) MMR-d/MSI-H vs. MMR-p/MSI-L+MSS DEGs in TCGA COAD dataset; (C) African vs. European ancestry DEGs in SUNY Downstate/Stony

Brook dataset.

Neither COAD/READ stage nor location were significant, while
controlling for ancestry and MMR/MSI status. Although MMR-d/
MSI-H status has been previously correlated with right colon
location (35), no significant multicollinearity was detected
between the co-variables (results not shown). Estimated
differences in CXCL10 due to ancestry across MMR/MSI status
were not significant (see Table 2). Consistent with CXCL10’s role as
a T-cell attractant was the significant correlation (Spearman’s
correlation coefficient r= 0.44, p-value <0.0001) detected between
CXCLI10 log,TPM values and T-cell abundance estimated by
CIBERSORT (see Supplementary Figure S1).
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Exploratory analysis comparing CXCLI0 log,TPM values to
CMS labels within each ancestry group (see Supplementary Figure
S2), detected no significant difference between CMS labels within
the AA group. In contrast, significant differences were detected
between CMS labels in the EA group (p-value <0.0001). Dunns
post-hoc test detected significantly increased CXCLI0 expression in
the EA CMS1 group compared with both CMS2 (p-value <0.0001)
and CMS3 groups (p-value<0.0001), but not CMS4 or No Label
groups. Also, CXCL10 log, TPM values were significantly higher in
EA CMS4 compared with both CMS2 (p-value<0.0001) and CMS3
(p-value=0.0002) groups, but not CMS1 or No Label groups.

frontiersin.org


https://doi.org/10.3389/fgstr.2025.1638438
https://www.frontiersin.org/journals/gastroenterology
https://www.frontiersin.org

Joseph et al. 10.3389/fgstr.2025.1638438

100 African Ancestry European Ancestry
80
[/
2
3
E 60
(/2]
Y
o
I
2 40
€
3
=
) ] l
CMS1 CMS2 CMS3 CMS4 NA No Label CMS1 CMS2 CMS3 CMS4 NA No Label
CMS Classification
MMR Status ] MMR-amsi-H [T MMR-pMsI-L+Mss
FIGURE 2
Distribution of CMS labels in TCGA-COAD samples by ancestry and by MMR/MSI status.

TABLE 1 Univariate analysis of CXCL10 log,TPM values from the TCGA-COAD-READ dataset with co-variables.

Variable N missing Level CXCL10 log, TPM median IQR P-value
African 64 4.34 2.52

Ancestry 0 0.0003
European 284 5.27 2.72
MMR-d/MSI-H 55 6.23 2.33

MMR/MSI Status 4 <.0001
MMR-p/MSI-L+MSS 289 4.77 292
African MMR-d/MSI-H 9 5.38 2.27
African MMR-p/MSI-L+MSS 52 3.81 2.71

Ancestry by MMR/MSI Status 4 <.0001
European MMR-d/MSI-H 51 6.75 1.97
European MMR-p/MSI-L+MSS = 228 491 2.82
Female 168 5.05 2.40

Sex 0 0.4065
Male 180 5.16 3.04
Left 167 4.78 3.01

COAD/READ Location 22 0.0108
Right 159 533 3.30
1 53 5.13 2.18
2 119 5.45 3.00

COAD/READ Stage 12 0.0278
3 113 4.90 3.05
4 51 4.62 2.74

Bold values indicate significant p-values < 0.05.
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TABLE 2 Multiple linear regression models of estimated differences in TCGA-COAD CXCL10 log,TPM values with 95% confidence interval (CI).

Effect Level Estimated differences in CXCL10 log,TPM (95% CI) = P-value*

With adjustment for COAD/READ location

Ancestry African vs European -1.06 (-1.60, -0.58) 0.0001

MMR/MSI Status MMR-d/MSI-H vs MMR-p/MSL-L+MSS = 1.36 (0.70, 2.02) <.0001

COAD/READ Location Left vs Right -0.35 (-0.81, 0.09) 0.1289
2vs 1 0.06 (-0.58, 0.69)

COAD/READ Stage 3vs 1 -0.16 (-0.81, 0.49) 0.3516
4vs 1l -0.54 (-1.31, 0.23)

Without adjustment for COAD/READ location

Ancestry African vs European -0.93 (-1.44, -0.41) 0.0004

MMR/MSI Status MMR-d/MSI-H vs MMR-p/MSI-L+MSS | 1.55 (0.98, 2.11) <.0001
2vs 1 0.02 (-0.59, 0.62)

COAD/READ Stage 3vs 1l -0.12 (-0.73, 0.50) 0.2914
4vs1 -0.58 (-1.31, 0.15)

*P-values were calculated based on type 3 tests from a multiple linear regression model.
Bold values indicate significant p-values < 0.05.

RT-gPCR results from an independent set
of COAD/READ FFPE samples enriched for
AA MMR-d/MSI-H COAD samples

Because only 9 of the AA TCGA COAD/READ samples were
MMR-d/MSI-H, an independent set of 134 COAD FFPE samples
was assembled from three medical centers that was composed of
roughly equal numbers of AA MMR-d/MSI-H, AA MMR-p/MSI-L
+MSS, EA MMR-d/MSI-H, EA MMR-p/MSI-L+MSS. Amplifiable
RNA by RT-qPCR was recovered from 118 (88%) of the samples.
CXCL10 expression was normalized relative to two reference genes
as CIORF43 Ct - CXCL10 Ct and RAB7A Ct - CXCLI0 Ct (see
Figure 3). Loss of 12% of the original 134 samples resulted in the
expected power being reduced from 90% to 87%. Univariate
analyses of both values confirmed that CXCLIO values were
significantly higher in MMR-d/MSI-H vs. MMR-p/MSI-L+MSS
(see Tables 2, 3). In contrast to the TCGA-COAD CXCLI0 log,
TPM values, the RT-qPCR CXCL10 values relative to both reference
genes trended slightly higher in AA vs. EA but these differences did
not reach significance. Differences in CIORF43 Ct - CXCLI0 Ct
values were associated with COAD/READ location but not with
COAD/READ stage, and differences in RAB7A Ct - CXCLI0 Ct
values were associated with COAD/READ stage but not with
COAD/READ location. Neither RT-qPCR CXCLI10 values were
significantly associated with age or sex. When the same
multivariable model used to analyze the TCGA CXCLIO log,
TPM results was applied to the RT-qPCR results (Tables 3-6),
AA CIORF43 Ct - CXCLI10 Ct (p = 0.0438) and RAB7A Ct -
CXCLI10 Ct (p-value = 0.0497) values were higher than EA values,
MMR-d/MSI-H CIORF43 Ct — CXCLI0 Ct (p-value = 0.019) and
RAB7A Ct - CXCL10 Ct (p-value = 0.093) values were higher or
trended higher than MMR-p/MSI-L+MSS values, while controlling
for COAD/READ stage and location.
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Parallel RT-qPCR assays were conducted for CD45, a myeloid/
general white cell marker, and CD3D, a T-cell marker in the
independent set of COAD/READ FFPE samples (see Figure 3). In
single cell RNA-sequence datasets, CXCLI0 has been shown to be
highly expressed in myeloid cell types (29). CXCL10 has been
shown to be a T-cell attractant (36). Consistent with these reports
are the strong positive correlations (see Figure 4) observed between
CIORF43 Ct - CXCL10 Ct and CIORF43 Ct - CD45 Ct (Spearman
correlation coefficient = 0.54, p-value < 0.0001), between RAB7A Ct
- CXCLIO Ct and RAB7A Ct - CD45 Ct (Spearman correlation
coefficient r =0.44, p-value < 0.0001), between CIORF43 Ct-
CXCLI0 Ct and CIORF43 Ct - CD3D Ct (Spearman correlation
coefficient r = 0.51, p-value < 0.0001), and between RAB7A Ct -
CXCLIO Ct and RAB7A Ct - CD3D Ct (Spearman correlation
coefficient r = 0.34, p value < 0.0001).

5 Discussion

Previous analyses of the AA vs. EA TCGA-COAD dataset have
highlighted AA vs. EA DEGs, particularly lower expression of
immune related genes in the African vs. European ancestry
groups. The current study differs from the previous studies by
using multivariable analysis to examine potentially confounding
variables such as MMR/MSI status, rather than attempting to
control for these factors by propensity matching. Differences in
the DEGs identified in the current study from previous studies may
relate to the use of unprocessed counts as opposed to processed
counts as input, and use of different DEG platforms (edgeR and
Wilcoxon rank sum test). The current study identified five AA vs.
EA immune related genes, including CXCLI0 that were expressed at
lower levels in the AA, but expressed at higher level in MMR-d/
MSI-H group. CXCLI0 is part of the CXCL9, 10, 11-CXCR3 axis,
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FIGURE 3

Box and whisker plots of RT-gPCR analysis of CXCL10, CD45 and CD3D expression in an independent set enriched for African ancestry (AA) MMR-d/
MSI-H COAD FFPE samples. (A) CIORF43 Ct - CXCL10 Ct; (B) RAB7A Ct — CXCL10 Ct; (C) CIORF43 Ct — CD45 Ct; (D) RAB7A Ct — CD45 Ct, (E)

C10ORF43 Ct — CD3D Ct, (F) RAB7A Ct — CD3D Ct.

which plays an important role in tumor immune microenvironment
remodeling (36). CXCL10 has been positively correlated with
COAD/READ survival (37, 38).

The percentages of MMR-d/MSI-H in the TCGA-COAD-
READ AA vs. EA samples were 14.1% vs. 16.0%, consistent with
previous reports that the prevalence of MSI-d/MSI-H is lower in the
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AA vs. EA cohort (18). This small difference in prevalence does not
explain the greater than 2-fold difference in CXCLI10 expression
between the two groups. Multivariable models confirmed that
TCGA-COAD-READ CXCLI0 expression values were lower in
AA vs. EA, and higher in MMR-d/MSI-H vs. MMR-p/MSI-Low,
while controlling for COAD/READ location and COAD/READ
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FIGURE 4

Spearman correlation of RT-gPCR CXCL10 and Immune Cell Type Markers (CD45 and CD3d). Scatter plots show correlations between ACt values of
CXCL10 (normalized to reference genes CLIORF43 or RAB7A). (A) CXCL10 vs CD45 (C1ORF43 reference). (B) CXCL10 vs CD45 (RAB7A reference). (C)
CXCL10 vs CD3D (C1ORF43 reference). (D) CXCL10 vs CD3D (RAB7A reference).

stage. Neither COAD/READ location nor stage were significantly
associated with TCGA CXCLI0 levels, when controlling for
ancestry and MMR/MSI status. The total number of AA MMR-d/
MSI-H samples was only 9 of 348 total samples, which clearly
restricted the ability to detect statistically significant differences in
CXCL10 expression across groups stratified by both ancestry and
MMR/MSI-status.
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The consensus molecular subtype (CMS) classification is the
most widely accepted gene expression based categorization of
transcriptional profiles. It was based on applying machine
learning (random forest) to five publicly accessible COAD/READ
bulk RNA sequencing datasets, including the TCGA dataset (24).
Our results demonstrate that the distribution of CMS1 labels in the
AA cohort is very different from that of the EA cohort. Only in the
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TABLE 3 Univariate analysis of RT-qPCR C1ORF43 Ct — CXCL10 Ct results from an independent set enriched for MMR-d/MSI-H COAD/READ FFPE
samples.

Variable C10ORF43 Ct-CXCL10 Ct median IQR
African 59 -1.59 271

Ancestry 0.0812
European 59 -2.14 291
MMR-d/MSI-H 48 -1.13 237

MMR/MSI Status 0.0008
MMR-p/MSI-L+MSS 70 -2.33 2.28
African MMR-d/MSI-H 23 -0.92 3.11
African MMR-p/MSI-L+MSS 36 -1.68 2.02

Ancestry by MMR/MSI Status 0.0009
European MMR-d/MSI-H 25 -1.21 1.53
European MMR-p/MSI-L+MSS | 34 -2.99 2.88
Female 63 -1.64 2.90

Sex 0.5601
Male 55 -2.00 2.49
Left 35 -2.33 2.67

COAD/READ Location 0.0256
Right 83 -1.59 2.59
1 31 -2.36 2.13
2 39 -1.59 2.31

COAD/READ Stage 0.1551
3 39 -1.54 2.87
4 9 -2.28 4.52

Bold values indicate significant p-values < 0.05.

TABLE 4 Univariate analysis of RT-qPCR RAB7A Ct - CXCL10 Ct results from an independent set of COAD/READ FFPE samples.

Variable Level \ RAB7A Ct— CXCL10 Ct median IQR P-value
African 59 -2.05 2.50

Ancestry 0.0812
European 59 -2.27 2.44
MMR-d/MSI-H 48 -1.69 2.16

MMR/MSI Status 0.0088
MMR-p/MSI-L+MSS 70 -2.58 2.62
African MMR-d/MSI-H 23 -1.60 3.09
African MMR-p/MSI-L+MSS 36 -2.08 225

Ancestry by MMR/MSTI Status 0.0093
European MMR-d/MSI-H 25 -2.09 1.28
European MMR-p/MSI-L+MSS | 34 -3.21 2.86
Female 63 -2.05 2.73

Sex 0.2353
Male 55 -2.54 1.98
Left 35 -2.77 2.62

COAD/READ Location 0.0678
Right 83 -2.10 2.48
1 31 -2.82 2.45
2 39 -2.05 2.29

COAD/READ Stage 0.0476
3 39 -2.08 2.71
4 9 -2.75 3.85

Bold values indicate significant p-values < 0.05.
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TABLE 5 Multivariable regression model of estimated differences in CIORF43 Ct — CXCL10 Ct results with 95% CI from an independent set enriched

for MMR-d/MSI-H COAD/READ FFPE samples.

Effect Level Estimated differences (95% CI)  P-value*
Ancestry African vs European 0.70 (0.02, 1.38) 0.0438
MMR/MSI Status MMR-d/MSI-H vs. MMR-p/MSI-L+MSS 0.97 (0.22, 1.72) 0.0119
COAD/READ Location Left vs Right -0.45 (-1.26, 0.36) 0.2711
2vs 1 0.43 (-0.46, 1.31)
COAD/READ Stage 3vs1l 0.68 (-0.22, 1.57) 0.5232
4vs1 0.36 (-1.02, 1.75)

*P-values were calculated based on type 3 tests from a multiple linear regression model.
Bold values indicate significant p-values < 0.05.

TABLE 6 Multivariable regression model of estimated differences in RAB7A Ct — CXCL10 Ct results with 95% CI from an independent set enriched for

MMR-d/MSI-H COAD/READ FFPE samples.

Effect Level Estimated differences (95% CI)  P-value*
Ancestry African vs European 0.67 (0.00, 1.35) 0.0497
MMR/MSI Status MMR-d/MSI vs MMR-p/MSI-L+MSS 0.64 (-0.11, 1.38) 0.0923
COAD/READ Location Left vs Right -0.53 (-1.33, 0.27) 0.1951

2vs 1 0.64 (-0.23, 1.51)
COAD/READ Stage 3vs1l 0.87 (-0.02, 1.76) 0.1725

4vs 1 -0.11 (-1.48, 1.26)

*P-values were calculated based on type 3 tests from a multiple linear regression model.
Bold values indicate significant p-values < 0.05.

EA cohort is the high association between CMSI classification and
MMR-d/MSI status observed. Furthermore, the significantly
increased CXCLIO expression values in the CMS1 group
compared to CMS2 and CMS3 groups is observed only in the EA
cohort and not in the AA cohort. If the public datasets used to
develop the CMS classifications had poor representation of self-
identified African ancestry COAD/READ samples, this could
explain the different distributions of CMS labels between the two
ancestry groups. Associations of the CMS3 classification and
African ancestry and obesity has recently been reported (39, 40).
Because obesity has been reported to be most prevalent in US self-
identified African ancestry AA group (41), it may be important to
control for obesity as a potentially confounding variable.
Unfortunately, many of the TCGA-COAD-READ samples are
missing body mass index (BMI) values.

The limited number of AA MMR-d/MSI-H samples in TCGA-
COAD combined with the lack of AA samples annotated for MMR/
MSI status from commercial vendors underscores the need for
ancestrally diverse cohorts with robust clinical annotations. To
further investigate the effect of African ancestry across MMR/MSI
status, an independent set of COAD/READ FFPE samples was
assembled from three medical centers that was enriched for AA and
MMR-d/MSI-H samples. Approximately 2% of MMR-d/MSI
COAD/READ have germline mutations or Lynch syndrome, but
COAD/READ samples with germline MMR mutations were
excluded from this independent set of samples. The relative
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proportion of the AA group was increased to match the number
of EA group, and the percentage of MMR-d/MSI-H samples
increased to 39% in the AA group and 42% in the EA group of
the independent set of COAD FFPE samples. Normalized CXCLI0
mRNA expression (see Tables 1, 3, 4) was significantly higher in the
MMR-d/MSI-H group vs. the MMR-p/MSI-L+MSS groups for both
the TCGA-COAD-READ RNA-sequence data set (p-value=0.0003)
and the independent FFPE RT-qPCR datasets (p-value =0.0003 for
CIORF43 as reference gene, p-value = 0.0008 for Rab7a as the
reference gene). However, there were differences between the
TCGA-COAD-READ RNA-sequence dataset and the
independent FFPE RT-qPCR results, when normalized CXCLI10
expression values were compared between African vs. European
ancestry groups. While normalized CXCLI0 mRNA expression was
significantly lower in the AA vs. EA TCGA-COAD-READ RNA-
sequence data set, no significant difference was observed between
the AA vs. EA independent set RT-qPCR datasets using either of the
two reference genes (see Tables 1, 3, 4). In fact, the normalized RT-
qPCR CXCLO mRNA values trended somewhat higher in the AA vs.
EA group for both reference genes. The discordant AA vs. EA
CXCLI10 results between the TCGA-COAD-READ and the
independent FFPE datasets could potentially relate to 1.)
differences in the proportion of AA MMR-d/MSI-H, AA MMR-
p/MSI-L+MSS, EA MMR-d/MSI-H, EA MMR-p/MSI-L+MSS
samples; 2.) MSI PCR-capillary electrophoresis (CE) based
classification of MMR-d/MSI-H for the TCGA-COAD-READ vs.
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MMR-immunohistochemical (IHC) based classification of MMR-d;
3.) difference in the quality of the RNA extracted from frozen vs.
FFPE tissues, 4.) differences in normalization for RNA-sequence vs.
RT-qPCR measurements of mRNA expression, 5.) differences in
correlations between self-identification of African ancestry and
genomic estimates of African/European ancestry admixture. In
the US the average genomic based estimate of African ancestry
admixture is 73% in the self-identified African ancestry population
(42), however the variation in African ancestry admixture
compared to a reference Nigerian population can range from 30%
to close to 100% (43). The sizes of the four ancestry MMR/MSI
status groups were very unbalanced in the TCGA-COAD-READ
group compared to the independent set of FFPE samples. With only
9 AA MMR-d/MSI-H samples in the TCGA-COAD-READ group,
sampling bias particularly with respect to genomic estimates of
African/European ancestry admixture could be the basis for
discordant results between the TCGA-COAD-READ and the
independent set of FFPE samples assembled from three medical
centers. Because concordance between MMR-IHC and MSI PCR-
CE has been reported to be 98% (44), it is unlikely that using two
separate methods for classifying MMR-d/MSI-H explains the
discordant results between the TCGA-COAD-READ and the
independent FFPE set of tissues. The quality of the RNA
recovered from FFPE samples is poor (RIN ~2) compared to
frozen tissue (RIN >6) and typically exhibits higher Ct values in
RT-qPCR assays compared to parallel frozen samples (45). It has
been shown that while RT-qPCR and RNA-sequence results
correlate, the correlation is surprisingly modest with r ~0.6 (45).
For RNA-sequence data normalization is conducted using multiple
genes. In contrast, RT-qPCR results are normalized against a single
reference gene. For this reason, we selected Taqman primer probe
sets for two reference genes that had been previously vetted for RT-
qPCR analysis of COAD/READ RNA (27). To compare RNA-
sequencing with RT-qPCR and to identify additional AA vs. EA
DEGs, we are submitting this independent FFPE RNA sample set
for parallel RNA-sequencing enriched by exome capture (46) and
plan to continue to increase the size of the independent FFPE set
of samples.

In summary, this study did not detect a significant ancestry
effect on CXCL10 expression across MMR status but confirmed that
CXCLI0O mRNA expression is higher in MMR-d/MSI-H than
MMR-p/MSI-L+MSS COAD/READ. Disentangling the effect of
African ancestry from other co-variables such as MMR/MSI
status requires increasing representation of minority samples
across MMR/MSI status, genomic based estimation of ancestry
admixture and rigorous collection of potential confounding
metadata variables for all samples.
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