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This research addresses the challenge of monitoring railway driver drowsiness
using a real-time, vision-based system powered by convolutional neural
networks, specifically the YOLOv8 architecture including attention
mechanisms. The core idea is to keep the eye on subtle facial features like
eyelid closure durations as indicators of fatigue. The model is designed to be
lightweight for fast processing, which is critical for real-time applications. To build
the model, a custom dataset of 6,991 frames was compiled. It also boosted the
dataset’s diversity using data augmentation, improving the model’s robustness
against real-world variability. And it paid off: the system hit an overall accuracy of
96.8%, precision of 97.28%, and recall of 97.46%, which is impressive, especially
under different lighting conditions. The system works best in low sunlight. When
strong solar glare kicks in, detection dips, showcasing the impact environmental
factors can have on vision-based systems. In short, this study highlights how deep
learning can realistically enhance railway safety by alerting operators before
drowsiness leads to incidents. For future work, the plan was to toughen up
the system to handle tough lighting better and explore combining vision with
other sensor types (e.g., electroencephalography) for a fuller fatigue picture.
Discussion about particular cognitive brain computer interface and health issues
as anemia for further studies.
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1 Introduction

The system’s built around Convolutional Neural Networks (CNNs) processing live
video feeds from cameras aimed at the train operator’s face. It detects classic drowsiness
signs like yawning, slow eyelid closure, and irregular blinking—key fatigue cues backed by
research (Fakhri et al., 2024). Recent advances like the attention mechanism and
transformer-based architectures, exemplified by attention-centric You Only Look Once
v8 (YOLOv8) models, enable more efficient and precise focus on critical facial features in
real time, enhancing fatigue detection performance without sacrificing speed (Nimma et al.,
2025). The hardware is a neat integration of high-res cameras and image processors running
these sophisticated algorithms continuously while the train’s in motion (Alstom, 2020;
Albadawi et al., 2024). Also, other deep learning models have been developed for neck
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measurement for kinematic analysis (e.g., Garrosa et al., 2023),
which may be impractical for a long time in professional
railway settings.

Why is it important? Human error tied to fatigue is a serious risk
in train operation. Drowsiness is also associated with a gradual
reduction in responsiveness, decreased selective attention, and
errors in short-term memory (Kamran et al., 2019). Going in line
with technology trends (Mugruza-Vassallo and Miñano-Suarez,
2016), this tech not only boosts safety but also fits international
trends toward AI-driven monitoring in transport, nudging us
toward smarter, automated safety measures. Other studies have
already shown AI’s promise in spotting driver fatigue across cars,
trucks, and buses (Alstom, 2017). So adapting these ideas specifically
for trains—and for places like the Lima Metro—is a logical and
valuable move.

Fitzharris et al. (2017) reported that in a commercial truck fleet,
the use of in-cabin alerts and company-wide real-time feedback
reduced fatigue events by 66%–95%, with fatigue episodes occurring
later and for shorter durations. The goal here is straightforward:
create a reliable, scalable system that can help prevent the typically
incorrect train parking at boarding platforms, that delays
commercial service and accidents tied to operator tiredness,
ultimately supporting safer urban transit worldwide.

The aim of this work was to successfully contribute to railway
operations in different time periods (morning, afternoon and night)
using a lightweight model (CNN with ~2.7 million parameters) to
achieve a high level of accuracy (>96%) in a dataset of train drivers.

The manuscript is organized as follows. Section 1 introduced
and reviewed the indexes for cabin alerts in train systems. Section 2
outlines the methodology, including a description of the
experimental test setup, data acquisition, data processing
(training and validation) and deployment. Section 3 presented
the results and meeting requirements and design issues for

Dataset and Performance, Evaluation Metrics, Temporal
Detection, Real-World Testing in the monitoring system. The
discussion is presented in Section 4. Finally, the conclusion
drawn from the results is presented in Section 5.

2 Methods

The system’s workflow revolves around YOLOv8, a CNNmodel
known for balancing solid accuracy with fast inference—which you
need when time is of the essence (Figure 1 shows the setup inside
a train).

2.1 Experimental setup and data acquisition

The Linea Uno train cabin was used as the setting for some train
drivers’ gestures after a few rounds of driving the train. Videos were
captured using a mobile device in MP4 format at 30 frames per
second (fps) with a resolution of 478 by 850 pixels. The device was
placed in front of the driver and focused primarily on his or her face
under different lighting conditions.

It collected facial videos under controlled conditions simulating
drowsiness indicators like eye closure and yawning, placing a high-
def camera device about 60–65 cm from the conductor’s face to
capture consistent images. The threshold of 833 ms for eye closure
aligned well with known fatigue markers (Dinges and Grace, 1998),
accurately flagging drowsiness episodes in the videos. They then
manually labeled key regions (eyes and mouth) to train the model
accurately. We ensured different lightning conditions using real
operating settings in themorning, afternoon and night. The protocol
was approved by the Institutional Review Board at UNTELS (VIII
PTM-TSP-FIG-2024).

FIGURE 1
Diagram for the drowsiness detection System inside a train.
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2.2 Data preprocessing

We preprocessed video frames extracted at 30 fps following
three stages:

Feature Extraction and Downsampling: In total 17,476 frames
were acquired. For feature extraction one-sixth (2,913 images) were
selected to reduce redundancy and facilitate computation.

Facial Landmark Detection: Twelve key facial landmarks were
detected using OpenCV and MediaPipe in cvzone library (CVzone,
n.d.) identifying four points for each eye andmouth. To calculate eye
closure a ratio threshold <18 and yawning threshold >35 following
fatigue detection literature (Khabarlak and Koriashkina, 2021).

Image normalization, Resizing and Data Augmentation: All the
images were normalized, resized to 640 × 640 píxels, and went
through augmentations—rotations, brightness tweaks, slight
shifts—to reach rotation between −15° and +15°, brightness
between −20% and +20% to mimic real environmental changes
and avoid overfitting. Roboflow was used for data augmentation.
The process begins with loading the original 2,913 images, which are
classified into two categories: Awake and Drowsy, as shown in
Figure 1, top right.

2.3 Dataset creation

In this study, data augmentation allowed expansion to
6,991 images and the final dataset was divided for training
(87%), validation (6.5%) and testing (6.5%). For training images
were resized to 224 × 224 × 3 pixels using YOLOv8.

2.4 Model training

In Python 3.8 and PyTorch, following the approach of Simonyan
and Zisserman (2014) with an 80/20 train-validation split, they fine-
tuned hyperparameters (see Table 1) like learning rate and epochs
until the model converged nicely. It also used regularization
methods to keep performance solid on unseen data.

2.5 Validation and evaluation

Testing was done on separate video sequences reflecting real-
world conditions. Then, performance metrics measuring accuracy,
precision, recall, and false positive rates (Metz, 1979) as well as
confusion matrix and loss function (Hicks et al., 2022). These are
done also by current CNN deep learning works (in optical
recognition by Zayed, et al., 2024; X-ray to seek COVID-19 in
chest by Mohsen et al., 2024; ECG compression by Hassan and

Mohsen, 2025; brain tumor detection by Mohsen et al., 2023;
electroencephalography - EEG emotion recognition by Mohsen
and Alharbi, 2021) to truly gauge reliability, defined in
Equations 1–4:

Accuracy � TP + TN( )/ TP + FP + TN + FN( ) (1)
Precision � TP/ TP + FP( ) (2)
Recall � TP/ TP + FN( ) (3)

F1-score � 2 × Precision × Recall/ Precision + Recall( ) (4)

2.6 System deployment

The model was embedded into hardware (NVIDIA A100 40GB
GPU accessed remotely via SSH) capable of rapid processing, with
an alert system that triggers visual or sound warnings when
drowsiness signs are detected—all designed for minimal latency
to alert operators promptly. We also extracted model complexity
(layers, parameters, GFLOPs) from each as Qian and Liu (2024)
plotted for attention mechanisms for lightweight image
classification. Here, five additional videos were tested in real
system settings, with manually annotation in collaboration with
two experienced train drivers operating at Linea Uno.

3 Results

The system performed remarkably well:

• Dataset and Performance: After augmentations, the dataset
grew from 2,913 to 6,991 frames, with about 87% reserved
for training. Training stabilized by epoch 145 with a low loss of
0.06787. Figure 2 was obtained as a result of the three training
sessions, showing the relationship between the loss function and
the epoch for each variant of the YOLOv8 model. These scatter
plots illustrate how the network adjusts its weights during each
training epoch to optimize predictions (see Figures 2a–c),
achieving high accuracy and minimizing loss (see Figures 2d–f).

The results show that the network reached optimal performance
at different epochs for each variant. Figure 2a shows that the
network achieved its best performance in epoch 145, with a
training loss value of 0.06787 as well as validation loss curves in
each model. No significant improvements were subsequently
observed, indicating that the network had reached its limit.
Figure 2b shows optimal performance in epoch 100 with a loss
value of 0.04662. Figure 2c shows optimal performance in epoch
64 with a loss value of 0.05495.

TABLE 1 Training hyperparameters across YOLOv8 variants.

Model Epochs Batch size Learning rate Image size Optimizer

YOLOv8n-cls 500 1,024 0.01 224 × 224 AdamW

YOLOv8s-cls 100 256 0.01 224 × 224 AdamW

YOLOv8m-cls 500 1,024 0.01 224 × 224 AdamW
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• Evaluation Metrics: The accuracy hovered around 97% during
mornings and nights but dipped slightly to about 95.4% in the
afternoon—likely due to sunlight affecting image quality
(details on Table 2). Similarly, precision and recall stayed in
the high 90s, indicating very reliable drowsiness detection with
few false alarms.

• Temporal Detection: The system successfully tracked
transitions from alert to drowsy states based largely on an
eye closure threshold set at 833 ms (a proven standard in
literature, e.g., Dinges and Grace, 1998). Figure 3 lays out
these changes visually.

• Real-World Testing: We recorded and tested five participants in
real train environments, making videos across shifts—morning,
afternoon, night—with data showing high accuracy and
precision despite environmental challenges (Table 2 outlines
detailed results).

Figure 4 illustrates the average metrics per shift in real setting.
Confirming the system’s high efficacy in diverse lighting and
environmental conditions, with a noted decrease during the
afternoon due to solar glare affecting facial feature detection.

• System Reliability and Limitations: The biggest hiccup was
about a 6% false alarm rate in afternoon tests, attributed to
solar reflections on the dashboard messing with facial
recognition. The trained model integrated for the system
showed a lightweight inference pipeline capable of
processing video in real time for the YOLOv8 nano model
(see Figure 5). This highlights a clear avenue for future
improvement.

In short, with average accuracy near 96.8%, this system looks
well-suited for the tough demands of real-time fatigue detection in
rail settings.

4 Discussion

The results indicate that YOLOv8 achieves a balanced accuracy
of 96.8% in detecting drowsiness among train drivers, as evaluated
by expert-validated in real settings. This outcome aligns with
findings reviewed by Disha and Upadhyaya (2025), who
emphasize in driver fatigue monitoring. Therefore, it is

FIGURE 2
Training loss and validation loss curves for the YOLOv8 classification models and confusion matrices for the drowsiness detection System inside a
train. (a) YOLOv8n-cls training. (b) YOLOv8s-cls training. (c) YOLOv8m-cls training. (d) YOLOv8n-cls training. (e) YOLOv8s-cls training. (f) YOLOv8m-
cls training.
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noteworthy that the present results of performance evaluation
employed manually annotated videos labeled with the assistance
of an experienced train operation team. Similarly, Wang et al. (2021)
also support this method by applying CNNs for eye classification
accuracy, building upon the foundational CNN architecture

proposed by Simonyan and Zisserman (2014) testing small
matrices and several layers.

Performance varied across different lighting conditions as
expected, with night shifts achieving nearly 98% accuracy, and
afternoon shifts the lowest at about 95%, largely due to sunlight

FIGURE 3
Drowsiness detection system inside a train. . (a) Frame 1. (b) Frame 1. (c) Frame 1. (d) Frame 1. (e) Frame 1. (f) Frame 1. (g) Frame 1. (h) Frame 1. (i) Frame 1.

Frontiers in Future Transportation frontiersin.org05

Lozano-Reyes and Mugruza-Vassallo 10.3389/ffutr.2025.1677442

https://www.frontiersin.org/journals/future-transportation
https://www.frontiersin.org
https://doi.org/10.3389/ffutr.2025.1677442


reflections complicating facial feature extraction, as Zhao et al.
(2024) observed. Such lighting issues are common challenges in
computer vision systems, even those utilizing infrared cameras using
SVM classifiers (Travieso-Gonzalez et al., 2021), emphasizing the
importance of lighting-robust models.

The lightweight YOLOv8n-cls models, comprising ~2.7 million
parameter model, allowed real-time processing without sacrificing
accuracy, a characteristic by Kausar and Aishwarya (2016) and
Howard et al. (2017) in earlier models (VGG, Inception V2 and
Mobilenet) using small CNN architectures and efficient and precise
focus recently reported (Nimma et al., 2025).

The 833 ms eye closure threshold corresponds well with
established fatigue indicators identified by Dinges and Grace
(1998) and subsequently employed by Zhang et al. (2017),
effectively detecting drowsiness episodes.

False positives under conditions of intense glare remain a
limitation. Future developments could include infrared imaging,
advanced image preprocessing for virtual reality and 3D face
reconstruction (Wen et al., 2021; Yang et al., 2024), and
integration of additional data such as EEG signals (using wavelet
transform by Tuncer et al., 2021) or vehicle telemetry to further
reduce false alarms.

Overall, these findings support the practical application of
vision-based fatigue detection systems for train drivers,
contributing to improved accident prevention and railway safety,
consistent with previous studies utilizing eye blink analysis (Fakhri
et al., 2024), Bi-LSTM-SVM adaptive algorithms (Chen and Zheng,
2023), and LSTM and CNN approaches to EMG and cognitive state
analysis (Yu et al., 2024).

Railway conductors face a physically demanding job that
requires strength, agility, and stamina—from lifting heavy
items to climbing between train cars—while also staying
mentally sharp throughout long, often irregular shifts. They
work in all kinds of weather and must be constantly alert to
ensure safety, quickly responding to any issues or emergencies.
This combination of physical effort and sustained focus can lead
to fatigue and strain, making it essential for conductors to
maintain good fitness, rest well, and manage health factors
that might worsen tiredness, like anemia (Arnold & Itkin
LLP., n.d; also in other sector Chowdhury and Nuruzzaman,
2023). Next work is pointing to cognitive computing in drivers, in
a recent work in postpartum women, anemia was shown to be
impair cognitive processing in 3D video scenes (Cajas-Shao et al.,
in press).

TABLE 2 Results of testing in real train at Linea Uno - Lima . . . No testing . . . Validation in real train.

Video Shift Number of photograms Drowsiness Awake Accuracy Precision Recall

TP FN TN FP

V1 Morning 1,890 1,110 12 743 25 98.04% 97.79% 98.93%

V2 Morning 2,250 1,230 55 935 30 96.22% 97.62% 95.72%

V3 Afternoon 1,740 1,050 45 600 45 94.83% 95.89% 95.89%

V4 Afternoon 1,620 1,020 37 535 28 95.99% 97.33% 96.50%

V5 Night 2,250 1,290 15 900 45 97.87% 97.51% 98.85%

FIGURE 4
Accuracy, precision and recall averages in each turn.
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Railway conductors face a physically demanding job that
requires strength, agility, and stamina, from lifting heavy
items to climbing between train cars, while also staying
mentally sharp throughout long, often irregular shifts. They
work in all kinds of weather and must be constantly alert to
ensure safety, quickly responding to any issues or emergencies,
pointing to a basic brain computer interface (BCI) to help drivers.
This combination of physical effort and sustained focus can lead

to fatigue and strain, making it essential for conductors to
maintain good fitness, rest well, and manage health factors
that might worsen tiredness, like anemia (Arnold & Itkin
LLP., n.d; also in other sector Chowdhury and Nuruzzaman,
2023). Next work is pointing to cognitive computing in drivers, in
a recent work in postpartum women, anemia was shown to be
impair cognitive processing in 3D video scenes (Cajas-Shao et al.,
in press).

FIGURE 5
Training loss and validation loss curves comparison for the YOLOv8 classification models and Model Complexity vs. Validation Accuracy on
YOLOv8 models. Notably, compared to the other YOLOv8s and YOLOv8m models, YOLOv8n has good accuracy and fewer parameters obtained
during training.
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5 Conclusion

Towrapup, this study successfully designed and tested a vision-based
drowsiness detection tool tailored for railway drivers, leveraging the
YOLOv8 CNN. With a rich training set of nearly 7,000 frames and
effective data augmentation, the system achieved strong accuracy (96.8%),
precision (97.28%), and recall (97.46%) in real-world environments.

It reliably differentiated alert versus fatigued states across
different shifts, though performance dipped slightly with
afternoon solar lighting. Setting appropriate detection thresholds
allowed timely and accurate alerts, bolstering safety.

So, this technology appears very promising for real-time fatigue
monitoring in the rail industry, which could significantly reduce risks
related to driver tiredness. Next steps focus on improving lighting
resilience and exploring multi-sensor fusion for even better accuracy.

5.1 Future works

System Deployment: First, to improve the vision-based system,
different methods to enhance difficult lightning conditions must be
studied, either incorporating infrared cameras or other image
preprocessing algorithms (Yang et al., 2024). Second, to evolve a
multimodal fusion approach, such as EEG to have a comprehensive
and reliable fatigue assessment (Cao et al., 2025; Yu et al., 2024).
Therefore two directions are on minimally intrusive EEG systems
(reviewed by Balam, 2024) and optimizing drowsiness index
(although with 14 parietal electrodes by Di Flumeri et al., 2024).
Other methods may use visual and auditory linear models
(Mugruza-Vassallo, 2016) and BCI may send a warning signal to
train drivers as some automobile systems have been launched.

Health factors like anemia can impair cognitive processing and
reaction times (Cajas-Shao et al., in press). Bearing in mind the high
percentage of anemia children in Peru during the last 40 years, probably
around 40% of drivers got anemia. Suggest longer reaction times to
visual stimuli. Therefore, EEG testing in drivers who got drowsiness
alarms and those who did not plus some anemia medical records would
be the basis to better understand individual susceptibility to fatigue and
drowsiness. The model was embedded into the idea of being
incorporated on hardware capable of rapid processing, with an alert
system that triggers visual or soundwarnings when drowsiness signs are
detected and then studied in a dataset.

The rapid development of YOLO architectures, now reaching
YOLOv12, is well recognized. Our decision to use YOLOv8 was
guided by a comprehensive view of the model’s evolution alongside
the specific needs of our project. Our laboratory’s work on vision-based
drowsiness detection dates back to early investigations of driver
distraction in 2013 (Arriaga and Mugruza-Vassallo, 2013, internal
report) and has since progressed through the evaluation of various
CNN architectures such as Xception, VGG16, and Inception V3
(Mamani-Diaz et al., 2019). Previous trials with YOLOv4 and
YOLOv5 in 2021 did not deliver satisfactory outcomes for our
application, despite positive reports with YOLOv3 in other studies
(Xiao et al., 2022). At the outset of this research in early 2024,
YOLOv8 presented a notable advancement, building on YOLOv7’s
architectural enhancements, including transformer-like components
(Gomaa and Abdalrazik, 2024) and offering a stable, extensively
documented framework with dedicated classification models (e.g.,

YOLOv8n-cls) essential for our real-time deployment objectives (Alif
and Hussain, 2024). Although YOLOv9 was released in February 2024,
it initially did not include a nano-version, which was critical for our
lightweight system design. Consequently, we adopted YOLOv8 to
establish a reliable baseline. The later introduction of nano-versions
in YOLOv10 and subsequent releases (Sapkota et al., 2025) supports our
approach and confirms that our methodology is readily adaptable to
these newer, more efficient models. Thus, our findings for drowsiness
serve not as a fixed conclusion but as a vital proof-of-concept that lays
the groundwork for immediate future research leveraging the latest
YOLO architectures to enhance brain-computer interface and railway
safety technologies.
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