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This research addresses the challenge of monitoring railway driver drowsiness using a real-time, vision-based system powered by convolutional neural networks, specifically the YOLOv8 architecture including attention mechanisms. The core idea is to keep the eye on subtle facial features like eyelid closure durations as indicators of fatigue. The model is designed to be lightweight for fast processing, which is critical for real-time applications. To build the model, a custom dataset of 6,991 frames was compiled. It also boosted the dataset’s diversity using data augmentation, improving the model’s robustness against real-world variability. And it paid off: the system hit an overall accuracy of 96.8%, precision of 97.28%, and recall of 97.46%, which is impressive, especially under different lighting conditions. The system works best in low sunlight. When strong solar glare kicks in, detection dips, showcasing the impact environmental factors can have on vision-based systems. In short, this study highlights how deep learning can realistically enhance railway safety by alerting operators before drowsiness leads to incidents. For future work, the plan was to toughen up the system to handle tough lighting better and explore combining vision with other sensor types (e.g., electroencephalography) for a fuller fatigue picture. Discussion about particular cognitive brain computer interface and health issues as anemia for further studies.
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1 INTRODUCTION
The system’s built around Convolutional Neural Networks (CNNs) processing live video feeds from cameras aimed at the train operator’s face. It detects classic drowsiness signs like yawning, slow eyelid closure, and irregular blinking—key fatigue cues backed by research (Fakhri et al., 2024). Recent advances like the attention mechanism and transformer-based architectures, exemplified by attention-centric You Only Look Once v8 (YOLOv8) models, enable more efficient and precise focus on critical facial features in real time, enhancing fatigue detection performance without sacrificing speed (Nimma et al., 2025). The hardware is a neat integration of high-res cameras and image processors running these sophisticated algorithms continuously while the train’s in motion (Alstom, 2020; Albadawi et al., 2024). Also, other deep learning models have been developed for neck measurement for kinematic analysis (e.g., Garrosa et al., 2023), which may be impractical for a long time in professional railway settings.
Why is it important? Human error tied to fatigue is a serious risk in train operation. Drowsiness is also associated with a gradual reduction in responsiveness, decreased selective attention, and errors in short-term memory (Kamran et al., 2019). Going in line with technology trends (Mugruza-Vassallo and Miñano-Suarez, 2016), this tech not only boosts safety but also fits international trends toward AI-driven monitoring in transport, nudging us toward smarter, automated safety measures. Other studies have already shown AI’s promise in spotting driver fatigue across cars, trucks, and buses (Alstom, 2017). So adapting these ideas specifically for trains—and for places like the Lima Metro—is a logical and valuable move.
Fitzharris et al. (2017) reported that in a commercial truck fleet, the use of in-cabin alerts and company-wide real-time feedback reduced fatigue events by 66%–95%, with fatigue episodes occurring later and for shorter durations. The goal here is straightforward: create a reliable, scalable system that can help prevent the typically incorrect train parking at boarding platforms, that delays commercial service and accidents tied to operator tiredness, ultimately supporting safer urban transit worldwide.
The aim of this work was to successfully contribute to railway operations in different time periods (morning, afternoon and night) using a lightweight model (CNN with ∼2.7 million parameters) to achieve a high level of accuracy (>96%) in a dataset of train drivers.
The manuscript is organized as follows. Section 1 introduced and reviewed the indexes for cabin alerts in train systems. Section 2 outlines the methodology, including a description of the experimental test setup, data acquisition, data processing (training and validation) and deployment. Section 3 presented the results and meeting requirements and design issues for Dataset and Performance, Evaluation Metrics, Temporal Detection, Real-World Testing in the monitoring system. The discussion is presented in Section 4. Finally, the conclusion drawn from the results is presented in Section 5.
2 METHODS
The system’s workflow revolves around YOLOv8, a CNN model known for balancing solid accuracy with fast inference—which you need when time is of the essence (Figure 1 shows the setup inside a train).
[image: Flowchart of a vision-based drowsiness detection system. The process begins with video data acquisition, followed by data preprocessing through frame extraction, facial landmark detection, and data augmentation. Steps include CNN model training, dataset processing, network model training with YOLOv8, and model evaluation. Finally, the tested YOLOv8 model is validated to complete the system workflow.]FIGURE 1 | Diagram for the drowsiness detection System inside a train.2.1 Experimental setup and data acquisition
The Linea Uno train cabin was used as the setting for some train drivers’ gestures after a few rounds of driving the train. Videos were captured using a mobile device in MP4 format at 30 frames per second (fps) with a resolution of 478 by 850 pixels. The device was placed in front of the driver and focused primarily on his or her face under different lighting conditions.
It collected facial videos under controlled conditions simulating drowsiness indicators like eye closure and yawning, placing a high-def camera device about 60–65 cm from the conductor’s face to capture consistent images. The threshold of 833 ms for eye closure aligned well with known fatigue markers (Dinges and Grace, 1998), accurately flagging drowsiness episodes in the videos. They then manually labeled key regions (eyes and mouth) to train the model accurately. We ensured different lightning conditions using real operating settings in the morning, afternoon and night. The protocol was approved by the Institutional Review Board at UNTELS (VIII PTM-TSP-FIG-2024).
2.2 Data preprocessing
We preprocessed video frames extracted at 30 fps following three stages:
Feature Extraction and Downsampling: In total 17,476 frames were acquired. For feature extraction one-sixth (2,913 images) were selected to reduce redundancy and facilitate computation.
Facial Landmark Detection: Twelve key facial landmarks were detected using OpenCV and MediaPipe in cvzone library (CVzone, n.d.) identifying four points for each eye and mouth. To calculate eye closure a ratio threshold <18 and yawning threshold >35 following fatigue detection literature (Khabarlak and Koriashkina, 2021).
Image normalization, Resizing and Data Augmentation: All the images were normalized, resized to 640 × 640 píxels, and went through augmentations—rotations, brightness tweaks, slight shifts—to reach rotation between −15° and +15°, brightness between −20% and +20% to mimic real environmental changes and avoid overfitting. Roboflow was used for data augmentation. The process begins with loading the original 2,913 images, which are classified into two categories: Awake and Drowsy, as shown in Figure 1, top right.
2.3 Dataset creation
In this study, data augmentation allowed expansion to 6,991 images and the final dataset was divided for training (87%), validation (6.5%) and testing (6.5%). For training images were resized to 224 × 224 × 3 pixels using YOLOv8.
2.4 Model training
In Python 3.8 and PyTorch, following the approach of Simonyan and Zisserman (2014) with an 80/20 train-validation split, they fine-tuned hyperparameters (see Table 1) like learning rate and epochs until the model converged nicely. It also used regularization methods to keep performance solid on unseen data.
TABLE 1 | Training hyperparameters across YOLOv8 variants.	Model	Epochs	Batch size	Learning rate	Image size	Optimizer
	YOLOv8n-cls	500	1,024	0.01	224 × 224	AdamW
	YOLOv8s-cls	100	256	0.01	224 × 224	AdamW
	YOLOv8m-cls	500	1,024	0.01	224 × 224	AdamW


2.5 Validation and evaluation
Testing was done on separate video sequences reflecting real-world conditions. Then, performance metrics measuring accuracy, precision, recall, and false positive rates (Metz, 1979) as well as confusion matrix and loss function (Hicks et al., 2022). These are done also by current CNN deep learning works (in optical recognition by Zayed, et al., 2024; X-ray to seek COVID-19 in chest by Mohsen et al., 2024; ECG compression by Hassan and Mohsen, 2025; brain tumor detection by Mohsen et al., 2023; electroencephalography - EEG emotion recognition by Mohsen and Alharbi, 2021) to truly gauge reliability, defined in Equations 1–4:
Accuracy=TP+TN/TP+FP+TN+FN(1)
Precision=TP/TP+FP(2)
Recall=TP/TP+FN(3)
F1-score=2×Precision×Recall/Precision+Recall(4)
2.6 System deployment
The model was embedded into hardware (NVIDIA A100 40GB GPU accessed remotely via SSH) capable of rapid processing, with an alert system that triggers visual or sound warnings when drowsiness signs are detected—all designed for minimal latency to alert operators promptly. We also extracted model complexity (layers, parameters, GFLOPs) from each as Qian and Liu (2024) plotted for attention mechanisms for lightweight image classification. Here, five additional videos were tested in real system settings, with manually annotation in collaboration with two experienced train drivers operating at Linea Uno.
3 RESULTS
The system performed remarkably well:
	Dataset and Performance: After augmentations, the dataset grew from 2,913 to 6,991 frames, with about 87% reserved for training. Training stabilized by epoch 145 with a low loss of 0.06787. Figure 2 was obtained as a result of the three training sessions, showing the relationship between the loss function and the epoch for each variant of the YOLOv8 model. These scatter plots illustrate how the network adjusts its weights during each training epoch to optimize predictions (see Figures 2a–c), achieving high accuracy and minimizing loss (see Figures 2d–f).

[image: Graphs (a), (b), and (c) display training and validation loss plots over epochs for different YOLOv8 models, showing a similar decreasing trend. Confusion matrices (d), (e), and (f) below each graph illustrate classification performance, with a strong diagonal indicating high accuracy, for the models referenced in the above graphs.]FIGURE 2 | Training loss and validation loss curves for the YOLOv8 classification models and confusion matrices for the drowsiness detection System inside a train. (a) YOLOv8n-cls training. (b) YOLOv8s-cls training. (c) YOLOv8m-cls training. (d) YOLOv8n-cls training. (e) YOLOv8s-cls training. (f) YOLOv8m-cls training.The results show that the network reached optimal performance at different epochs for each variant. Figure 2a shows that the network achieved its best performance in epoch 145, with a training loss value of 0.06787 as well as validation loss curves in each model. No significant improvements were subsequently observed, indicating that the network had reached its limit. Figure 2b shows optimal performance in epoch 100 with a loss value of 0.04662. Figure 2c shows optimal performance in epoch 64 with a loss value of 0.05495.
	Evaluation Metrics: The accuracy hovered around 97% during mornings and nights but dipped slightly to about 95.4% in the afternoon—likely due to sunlight affecting image quality (details on Table 2). Similarly, precision and recall stayed in the high 90s, indicating very reliable drowsiness detection with few false alarms.
	Temporal Detection: The system successfully tracked transitions from alert to drowsy states based largely on an eye closure threshold set at 833 ms (a proven standard in literature, e.g., Dinges and Grace, 1998). Figure 3 lays out these changes visually.
	Real-World Testing: We recorded and tested five participants in real train environments, making videos across shifts—morning, afternoon, night—with data showing high accuracy and precision despite environmental challenges (Table 2 outlines detailed results).

TABLE 2 | Results of testing in real train at Linea Uno - Lima … No testing … Validation in real train.	Video	Shift	Number of photograms	Drowsiness	Awake	Accuracy	Precision	Recall
	TP	FN	TN	FP
	V1	Morning	1,890	1,110	12	743	25	98.04%	97.79%	98.93%
	V2	Morning	2,250	1,230	55	935	30	96.22%	97.62%	95.72%
	V3	Afternoon	1,740	1,050	45	600	45	94.83%	95.89%	95.89%
	V4	Afternoon	1,620	1,020	37	535	28	95.99%	97.33%	96.50%
	V5	Night	2,250	1,290	15	900	45	97.87%	97.51%	98.85%


[image: Nine-panel image showing a driver monitored for alertness. Panels (a), (b), (c), (g), (h), and (i) display the driver awake with alarms off. Panels (d), (e), and (f) show a drowsy state with alarms activated, indicated by closed eyes and highlighted in red. Each panel includes states, times, and FPS data.]FIGURE 3 | Drowsiness detection system inside a train. . (a) Frame 1. (b) Frame 1. (c) Frame 1. (d) Frame 1. (e) Frame 1. (f) Frame 1. (g) Frame 1. (h) Frame 1. (i) Frame 1.Figure 4 illustrates the average metrics per shift in real setting. Confirming the system’s high efficacy in diverse lighting and environmental conditions, with a noted decrease during the afternoon due to solar glare affecting facial feature detection.
[image: Bar graph showing accuracy, precision, and recall percentages for morning (mañana), afternoon (tarde), and night (noche). Morning has values around 98% for all metrics, afternoon shows accuracy and precision just below 96% with recall above 97%, while night maintains similar accuracy and precision with recall peaking slightly above 99%.]FIGURE 4 | Accuracy, precision and recall averages in each turn.	System Reliability and Limitations: The biggest hiccup was about a 6% false alarm rate in afternoon tests, attributed to solar reflections on the dashboard messing with facial recognition. The trained model integrated for the system showed a lightweight inference pipeline capable of processing video in real time for the YOLOv8 nano model (see Figure 5). This highlights a clear avenue for future improvement.

[image: Balancing model accuracy and computational efficiency. The line graphs show the training and validation loss per model across all epochs for YOLOv8 models. The scatter plot displays model complexity in GFLOPs versus final validation accuracy for three models: YOLOv8n, YOLOv8s, and YOLOv8m. Each model is represented by a different color.]FIGURE 5 | Training loss and validation loss curves comparison for the YOLOv8 classification models and Model Complexity vs. Validation Accuracy on YOLOv8 models. Notably, compared to the other YOLOv8s and YOLOv8m models, YOLOv8n has good accuracy and fewer parameters obtained during training.In short, with average accuracy near 96.8%, this system looks well-suited for the tough demands of real-time fatigue detection in rail settings.
4 DISCUSSION
The results indicate that YOLOv8 achieves a balanced accuracy of 96.8% in detecting drowsiness among train drivers, as evaluated by expert-validated in real settings. This outcome aligns with findings reviewed by Disha and Upadhyaya (2025), who emphasize in driver fatigue monitoring. Therefore, it is noteworthy that the present results of performance evaluation employed manually annotated videos labeled with the assistance of an experienced train operation team. Similarly, Wang et al. (2021) also support this method by applying CNNs for eye classification accuracy, building upon the foundational CNN architecture proposed by Simonyan and Zisserman (2014) testing small matrices and several layers.
Performance varied across different lighting conditions as expected, with night shifts achieving nearly 98% accuracy, and afternoon shifts the lowest at about 95%, largely due to sunlight reflections complicating facial feature extraction, as Zhao et al. (2024) observed. Such lighting issues are common challenges in computer vision systems, even those utilizing infrared cameras using SVM classifiers (Travieso-Gonzalez et al., 2021), emphasizing the importance of lighting-robust models.
The lightweight YOLOv8n-cls models, comprising ∼2.7 million parameter model, allowed real-time processing without sacrificing accuracy, a characteristic by Kausar and Aishwarya (2016) and Howard et al. (2017) in earlier models (VGG, Inception V2 and Mobilenet) using small CNN architectures and efficient and precise focus recently reported (Nimma et al., 2025).
The 833 ms eye closure threshold corresponds well with established fatigue indicators identified by Dinges and Grace (1998) and subsequently employed by Zhang et al. (2017), effectively detecting drowsiness episodes.
False positives under conditions of intense glare remain a limitation. Future developments could include infrared imaging, advanced image preprocessing for virtual reality and 3D face reconstruction (Wen et al., 2021; Yang et al., 2024), and integration of additional data such as EEG signals (using wavelet transform by Tuncer et al., 2021) or vehicle telemetry to further reduce false alarms.
Overall, these findings support the practical application of vision-based fatigue detection systems for train drivers, contributing to improved accident prevention and railway safety, consistent with previous studies utilizing eye blink analysis (Fakhri et al., 2024), Bi-LSTM-SVM adaptive algorithms (Chen and Zheng, 2023), and LSTM and CNN approaches to EMG and cognitive state analysis (Yu et al., 2024).
Railway conductors face a physically demanding job that requires strength, agility, and stamina—from lifting heavy items to climbing between train cars—while also staying mentally sharp throughout long, often irregular shifts. They work in all kinds of weather and must be constantly alert to ensure safety, quickly responding to any issues or emergencies. This combination of physical effort and sustained focus can lead to fatigue and strain, making it essential for conductors to maintain good fitness, rest well, and manage health factors that might worsen tiredness, like anemia (Arnold & Itkin LLP., n.d; also in other sector Chowdhury and Nuruzzaman, 2023). Next work is pointing to cognitive computing in drivers, in a recent work in postpartum women, anemia was shown to be impair cognitive processing in 3D video scenes (Cajas-Shao et al., in press).
Railway conductors face a physically demanding job that requires strength, agility, and stamina, from lifting heavy items to climbing between train cars, while also staying mentally sharp throughout long, often irregular shifts. They work in all kinds of weather and must be constantly alert to ensure safety, quickly responding to any issues or emergencies, pointing to a basic brain computer interface (BCI) to help drivers. This combination of physical effort and sustained focus can lead to fatigue and strain, making it essential for conductors to maintain good fitness, rest well, and manage health factors that might worsen tiredness, like anemia (Arnold & Itkin LLP., n.d; also in other sector Chowdhury and Nuruzzaman, 2023). Next work is pointing to cognitive computing in drivers, in a recent work in postpartum women, anemia was shown to be impair cognitive processing in 3D video scenes (Cajas-Shao et al., in press).
5 CONCLUSION
To wrap up, this study successfully designed and tested a vision-based drowsiness detection tool tailored for railway drivers, leveraging the YOLOv8 CNN. With a rich training set of nearly 7,000 frames and effective data augmentation, the system achieved strong accuracy (96.8%), precision (97.28%), and recall (97.46%) in real-world environments.
It reliably differentiated alert versus fatigued states across different shifts, though performance dipped slightly with afternoon solar lighting. Setting appropriate detection thresholds allowed timely and accurate alerts, bolstering safety.
So, this technology appears very promising for real-time fatigue monitoring in the rail industry, which could significantly reduce risks related to driver tiredness. Next steps focus on improving lighting resilience and exploring multi-sensor fusion for even better accuracy.
5.1 Future works
System Deployment: First, to improve the vision-based system, different methods to enhance difficult lightning conditions must be studied, either incorporating infrared cameras or other image preprocessing algorithms (Yang et al., 2024). Second, to evolve a multimodal fusion approach, such as EEG to have a comprehensive and reliable fatigue assessment (Cao et al., 2025; Yu et al., 2024). Therefore two directions are on minimally intrusive EEG systems (reviewed by Balam, 2024) and optimizing drowsiness index (although with 14 parietal electrodes by Di Flumeri et al., 2024). Other methods may use visual and auditory linear models (Mugruza-Vassallo, 2016) and BCI may send a warning signal to train drivers as some automobile systems have been launched.
Health factors like anemia can impair cognitive processing and reaction times (Cajas-Shao et al., in press). Bearing in mind the high percentage of anemia children in Peru during the last 40 years, probably around 40% of drivers got anemia. Suggest longer reaction times to visual stimuli. Therefore, EEG testing in drivers who got drowsiness alarms and those who did not plus some anemia medical records would be the basis to better understand individual susceptibility to fatigue and drowsiness. The model was embedded into the idea of being incorporated on hardware capable of rapid processing, with an alert system that triggers visual or sound warnings when drowsiness signs are detected and then studied in a dataset.
The rapid development of YOLO architectures, now reaching YOLOv12, is well recognized. Our decision to use YOLOv8 was guided by a comprehensive view of the model’s evolution alongside the specific needs of our project. Our laboratory’s work on vision-based drowsiness detection dates back to early investigations of driver distraction in 2013 (Arriaga and Mugruza-Vassallo, 2013, internal report) and has since progressed through the evaluation of various CNN architectures such as Xception, VGG16, and Inception V3 (Mamani-Diaz et al., 2019). Previous trials with YOLOv4 and YOLOv5 in 2021 did not deliver satisfactory outcomes for our application, despite positive reports with YOLOv3 in other studies (Xiao et al., 2022). At the outset of this research in early 2024, YOLOv8 presented a notable advancement, building on YOLOv7’s architectural enhancements, including transformer-like components (Gomaa and Abdalrazik, 2024) and offering a stable, extensively documented framework with dedicated classification models (e.g., YOLOv8n-cls) essential for our real-time deployment objectives (Alif and Hussain, 2024). Although YOLOv9 was released in February 2024, it initially did not include a nano-version, which was critical for our lightweight system design. Consequently, we adopted YOLOv8 to establish a reliable baseline. The later introduction of nano-versions in YOLOv10 and subsequent releases (Sapkota et al., 2025) supports our approach and confirms that our methodology is readily adaptable to these newer, more efficient models. Thus, our findings for drowsiness serve not as a fixed conclusion but as a vital proof-of-concept that lays the groundwork for immediate future research leveraging the latest YOLO architectures to enhance brain-computer interface and railway safety technologies.
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