

OPEN ACCESS

EDITED BY Raquel Sabino, Universidade de Lisboa, Portugal

REVIEWED BY
Nandini Sethuraman,
Apollo Hospitals, India
Nuri Kiraz,
Istanbul University-Cerrahpasa, Türkiye

*CORRESPONDENCE
Huiyi Wu

Muiyi0214@yeah.net

[†]These authors have contributed equally to this work and share first authorship

RECEIVED 29 May 2025
ACCEPTED 26 August 2025
PUBLISHED 16 September 2025

CITATION

Peng Q, Wu W, Deng L, Tong H and Wu H (2025) Peritoneal dialysis-related peritonitis caused by *Fusarium*: a case report and literature review.

Front. Fungal Biol. 6:1637498.

doi: 10.3389/ffunb.2025.1637498

COPYRIGHT

© 2025 Peng, Wu, Deng, Tong and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Peritoneal dialysis-related peritonitis caused by *Fusarium*: a case report and literature review

Qin Peng^{1,2†}, Wenfeng Wu^{1†}, Lirong Deng¹, Huanyue Tong¹ and Huiyi Wu^{1*}

¹Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, China, ²Department of Clinical Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, China

Fungal peritonitis represents a significant complication of peritoneal dialysis (PD) and can result in severe consequences. However, fungal peritonitis caused by *Fusarium* is relatively rare, and there is no standard treatment plan for reference. Consequently, clinical pharmacists participated in a drug therapy for a rare case of fungal peritonitis in PD caused by *Fusarium* through literature review and therapeutic drug monitoring. Finally, this case received oral voriconazole, and the plasma concentration was maintained above 2 μ g/ml. Moreover, the patient achieved favorable outcomes.

KEYWORDS

Fusarium, peritonitis, peritoneal dialysis, voriconazole, therapeutic drug monitoring

Introduction

Peritonitis represents a significant complication of peritoneal dialysis (PD) and can result in severe consequences, including hospitalization, PD catheter extraction, and the necessity for permanent hemodialysis (Htay et al., 2018). The common pathogens of PD-associated peritonitis are predominantly Gram-positive and Gram-negative bacteria (Kim et al., 2004; Whitty et al., 2017). Conversely, fungal infections, particularly those caused by *Fusarium* spp., are infrequent (Hu et al., 2019; Kanjanabuch et al., 2022). In this study, we report on a case of the use of oral voriconazole for the treatment of PD-associated *Fusarium* peritonitis.

Case report

A 61-year-old woman weighing 38.1 kg, who works as a farmer and had been undergoing continuous ambulatory peritoneal dialysis (CAPD) for over 8 years, presented with a 5-day history of abdominal pain, diarrhea, and vomiting, and then gradually developed cloudy PD effluent. Laboratory findings revealed a white blood cell (WBC) count of 12.6×10^9 /L, a neutrophil (NEU) count of 11.07×10^9 /L, and NEU% of 87.5%. Her C-reactive protein (CRP) level was 102.5 mg/L. Analysis of the PD effluent

demonstrated turbidity with a WBC count of 4,044/ μ l (90% NEU). The admission diagnosis was PD-related peritonitis and chronic kidney disease (CKD 5).

Upon admission, empirical treatment with intraperitoneal (IP) cefazolin 0.5 g and amikacin 0.025 g four times daily was initiated. After 3 days, her laboratory tests showed a WBC count of 16.5×10^9 /L, NEU% of 94.5%, CRP level of 75.6 mg/L, and procalcitonin (PCT) level of 1.4 ng/ml. Analysis of the PD effluent showed turbidity with a WBC count of 4,210/µl (92% NEU). Due to inadequate response, the anti-infection regimen was adjusted to teicoplanin 0.02 g and meropenem 0.25 g (IP).

On day 7, the patient reported no improvement. Laboratory tests indicated a WBC count of $28.3 \times 10^9 / L$ and NEU% of 93.8%. Her CRP was 131 mg/L and PCT was 2.1 ng/ml. Examination of the PD effluent revealed turbidity with a WBC count of $3,260/\mu l$ (91% NEU). Both the blood and PD effluent cultures yielded negative results. In light of the unresponsive nature of the treatment, the abdominal dialysis catheter was removed and changed to hemodialysis. Intravenous administration of meropenem and teicoplanin was initiated.

On day 13, with persistent elevation of the infection markers (i.e., CRP and PCT) and suspicion of fungal peritonitis, oral fluconazole 200 mg once daily was initiated and meropenem was discontinued. On day 23, the patient's WBC count was $13.1 \times 10^9/L$, NEU% was 84.1%, CRP was 103 mg/L, and PCT was 1.5 ng/ml. Culture of the PD effluent confirmed the presence of *Fusarium* spp. by microscopic examination. As a control, the culture of the PD fluid was negative. Teicoplanin and fluconazole were discontinued, and oral voriconazole was commenced with a loading dose of 200 mg on the first day, followed by a maintenance dose of 100 mg every 12 h. After 3 days, given a plasma concentration of voriconazole at 1.38 μ g/ml by high-performance liquid chromatography, the maintenance dose was increased to 150 mg in the morning.

On day 37, the patient experienced resolution of abdominal pain. Laboratory analysis revealed a WBC count of 7.79×10^9 /L, NEU% of 80.7%, CRP of 64 mg/L, and PCT of 1.7 ng/ml. The plasma concentration of voriconazole measured 2.02 µg/ml. Upon discharge, the patient was prescribed voriconazole at doses of 150 mg in the morning and 100 mg in the evening. At the 2-month


C-reactive protein; PCT, procalcitonin.

post-discharge evaluation, the patient remained afebrile and asymptomatic, with complete normalization of the inflammatory indices, indicating full clinical remission. The alterations in the medication and the key indicators throughout the hospital stay are depicted in Figure 1.

Discussion

Fusarium spp. are filamentous fungi that produce mitospores and are ubiquitously present in the environment, inhabiting the air, water, and soil. They are recognized as significant plant pathogens. In humans, they act as opportunistic pathogens, causing localized or disseminated infection after trauma or weakened immunity. The common clinical pathogenic Fusarium species include Fusarium solani, Fusarium verticillioides, Fusarium oxysporum, and Fusarium proliferatum. Among these, F. solani stands out as the most prevalent and virulent species, accounting for approximately 40%-60% of infections. Management of Fusarium infections poses a challenge due to their multidrug resistance and their ability to cause a range of clinical presentations, such as pneumonia, fungemia, cellulitis, and lymphangitis, following skin trauma (Ledoux et al., 2024; Nucci and Anaissie, 2023). Despite these complexities, PD-related Fusarium peritonitis is a rare occurrence, and the available literature on this topic is limited. The Fusarium spp. infection in this case was likely related to her occupation as a farmer and her living environment. Moreover, as a patient with CKD 5 undergoing PD, she is not only repeatedly exposed to this environment during dialysis but is also immunocompromised, further increasing the risk of infection. Regrettably, neither the infecting subspecies nor the antimicrobial susceptibility profile could be determined.

In a multicenter study involving 88 patients with *Fusarium* infection, an analysis was conducted on the correlation between the minimum inhibitory concentration (MIC) of antifungal agents and the treatment outcomes. The mean MIC₅₀ values of voriconazole against *F. solani* and *F. oxysporum* were determined to be 8 and 4 μ g/ml, respectively, while those of amphotericin B were 2 and 1 μ g/ml, respectively. In a comparative analysis, it was observed that

there was no statistically significant variance in the mortality rates between voriconazole and amphotericin B liposomes. Conversely, amphotericin B deoxycholate exhibited a notably elevated mortality rate of 60% (Nucci et al., 2021). In addition, a retrospective multicenter investigation that included 233 instances of invasive *Fusarium* infection revealed similar 90-day survival rates for voriconazole and amphotericin B liposomes, while amphotericin B deoxycholate demonstrated a distinctly inferior outcome (Nucci et al., 2014). The 2021 Global Guidelines robustly advocate intravenous voriconazole or amphotericin B liposomes, either as monotherapy or in combination, as the primary therapeutic approach. Isavuconazonium or posaconazole is recommended as a second-line treatment. Notably, amphotericin B deoxycholate is not recommended in this context (Hoenigl et al., 2021).

At present, there exists a lack of consensus regarding the optimal management of peritonitis related to *Fusarium* spp. in patients with PD. Table 1 displays a compilation and summary of the reported cases of *Fusarium* peritonitis from the references (Bibashi et al., 2002; da Silva-Rocha et al., 2015; Flynn et al., 1996; Garbino et al., 2005; García-Tapia et al., 1999; Gaur et al., 2010; Kerr et al., 1983; Liu and Sun, 2023; Rippon et al., 1988; Shah et al., 2014; Unal et al., 2011; Zhao et al., 2022). For drug selection, liposomal amphotericin B was unavailable, and amphotericin B deoxycholate was excluded due to its pronounced toxicity and poor prognosis. Intravenous voriconazole was withheld to avoid sulfobutyl-ether- β -cyclodextrin accumulation in CKD. Oral voriconazole, with equivalent bioavailability, was used instead and attained effective concentrations. Clinical pharmacists

TABLE 1 Cases of Fusarium peritonitis associated with peritoneal dialysis (PD).

Case	Pathogen	MIC (µg/ml)	Treatment	Serum concentration	Dialysis catheter	Prognosis
Case 13 (this article)	Fusarium spp.	None	VCZ: 150 mg (morning) and 100 mg PO (night)	VCZ: 2.02	Removed	Recovery
Case 1 (Kerr et al., 1983)	Fusarium spp.	None	AMB: 20 mg IV	None	Removed	Recovery
Case 2 (Rippon et al., 1988)	Fusarium verticillioides	None	AMB: 30 mg/day IV, three times 30 mg IV, 2/weekly Total dose: 1.5 g	None	Removed	Recovery
Case 3 (Flynn et al., 1996)	Fusarium spp.	None	AMB: 0.5 mg kg ⁻¹ day ⁻¹ IV (23 days; total dose, 79.4 mg) 5.0 mg/L IP (2 days)	None	Removed	Recovery
Case 4 (García-Tapia et al., 1999)	Fusarium oxysporum	AMB = 1 KCZ = 0.125 FCZ = 0.5 ITZ = 0.06	AMB: 50 mg/day IV, 2 weeks	None	Removed	Recovery
Case 5 (Bibashi et al., 2002)	Fusarium solani	None	AMB: $0.3 \text{ mg kg}^{-1} \text{ day}^{-1} \text{ IV}, 4 \text{ weeks}$ KCZ: $200 \text{ mg/day}, 10 \text{ days}$	None	Removed	Recovery
Case 6 (Garbino et al., 2005)	Fusarium spp.	VCZ, sensitive. AMB, FCZ, and ITZ, resistance	VCZ: 6 mg/kg, q12h, day 1 4 mg/kg IV, q12h, 2 months	None	Removed	Recovery
Case 7 (Unal et al., 2011)	Fusarium spp.	None	AMB	None	Removed	Recovery
Case 8 (Gaur et al., 2010)	Fusarium dimerum	AMB = 1 VCZ = 2 ITZ = 16	AmBL: 3 mg kg ⁻¹ day ⁻¹ IV, 2 months	None	Removed	Recovery
Case 9 (Shah et al., 2014)	Fusarium solani	AMB = 4 POS = 8 VCZ = 8 ITZ = 16	POS: 800 mg/day, then change for 600 mg/day, 3 months	None	Removed	Recovery
Case 10 (da Silva-Rocha et al., 2015)	Fusarium solani	FCZ = 64 ITZ = 16 MCF = 8 AMB = 1	AMB: 50 mg/day, 4 weeks	None	Removed	Recovery
Case 11 (Zhao et al., 2022)	Fusarium solani	AMB = 0.5 VCZ = 3 ITZ > 32	VCZ inefficacious (10 days) change for POS 400 mg bid, 12 weeks	VCZ: 3.7-4.5	Removed	Recovery
Case 12 (Liu and Sun, 2023)	Fusarium verticillioides	None	VCZ+AMB: 20 mg/72 h (total dose, 1.5 g)	None	Removed	Recovery

MIC, minimum inhibitory concentration; AMB, amphotericin B; AmBL liposomal amphotericin B; FCZ, fluconazole; VCZ, voriconazole; ITZ, itraconazole; KCZ, ketoconazole; POS, posaconazole.

recommended the initial regimen of oral voriconazole for this patient, with a measured plasma concentration of 1.05 μ g/ml. However, it is noteworthy that the MIC for *Fusarium* is relatively elevated. Studies have indicated that the MIC of the commonly obtained voriconazole is at least 2 μ g/ml (Espinel-Ingroff et al., 2016), with a maximum of 5 μ g/ml (Chen et al., 2018). Therefore, clinical pharmacists recommended an escalation in the voriconazole dosage to 150 mg in the morning. Subsequent monitoring revealed an increase in the plasma concentration to 2.02 μ g/ml. This adjusted treatment regimen resulted in a notable alleviation of the patient's abdominal pain and a substantial decrease in the infection markers.

Conclusion

PD-related peritonitis caused by *Fusarium* spp. is a rare occurrence. The diagnosis was confirmed for this case due to meeting all three of three diagnostic criteria: abdominal pain and cloudy effluent; effluent WBC count >100 \times 106/L (4,460 \times 106/L) with >90% NEU; and effluent culture positive for *Fusarium* spp. However, the pathogen was not cultured until 13 days after admission, which delayed the treatment to some extent. Rapid assays such as the (1 \rightarrow 3)- β -D-glucan test, the galactomannan test, and next-generation sequencing of the blood or peritoneal dialysate samples can accelerate the identification of rare fungal peritonitis.

Large-scale investigations focusing on antifungal interventions for Fusarium peritonitis are scarce, with the current therapeutic strategies predominantly documented through isolated case reports. A key limitation is the absence of Fusarium susceptibility data, leaving antifungal selection empirical rather than targeted. Fortunately, in this case, clinical pharmacists conducted a comprehensive review of the pertinent literature, evaluated the epidemiological aspects of Fusarium infections, appraised the pharmacological profiles of therapeutic agents, and collaborated with clinicians to devise personalized antifungal regimens incorporating therapeutic drug monitoring. Finally, despite the eventual recovery, the patient and her family lamented the delayed identification of the pathogen that needlessly prolonged hospitalization. This case underscores the significance of oral voriconazole combined with therapeutic drug monitoring in the management of peritonitis associated with Fusarium in PD and serves as a valuable reference regarding its efficacy.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material. Further inquiries can be directed to the corresponding author.

Ethics statement

Written informed consent was obtained from the individuals for the publication of any potentially identifiable images or data included in this article.

Author contributions

QP: Writing – original draft. WW: Writing – original draft, Writing – review & editing. LD: Writing – original draft. HT: Writing – original draft. HW: Conceptualization, Writing – original draft.

Funding

The author(s) declare financial support was received for the research and/or publication of this article. This study was funded by Scientific Research Fund of Guangdong Pharmaceutical Association (2024KP04).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Bibashi, E., Kokolina, E., Sigler, L., Sofianou, D., Tsakiris, D., Visvardis, G., et al. (2002). Three cases of uncommon fungal peritonitis in patients undergoing peritoneal dialysis. *Perit. Dial. Int.* 22, 523–525. doi: 10.1177/089686080202200415

Chen, K., Zhang, X., Ke, X., Du, G., Yang, K., Zhai, S., et al. (2018). Individualized medication of voriconazole: a practice guideline of the division of therapeutic drug monitoring, Chinese Pharmacological Society. *Ther. Drug Monit.* 40, 663–674. doi: 10.1097/ftd.0000000000000561

da Silva-Rocha, W. P., Zuza-Alves, D. L., de Azevedo Melo, A. S., and Chaves, G. M. (2015). Fungal peritonitis due to Fusarium solani species complex sequential isolates identified with DNA sequencing in a kidney transplant recipient in Brazil. *Mycopathologia* 180, 397–401. doi: 10.1007/s11046-015-9929-7

Espinel-Ingroff, A., Colombo, A., Cordoba, S., Dufresne, P., Fuller, J., Ghannoum, M., et al. (2016). International evaluation of MIC distributions and epidemiological cutoff value (ECV) definitions for Fusarium species identified by molecular methods for the CLSI broth microdilution method. *Antimicrob. Agents Chemother.* 60, 1079–1084. doi: 10.1128/AAC.02456-15

Flynn, J. T., Meislich, D., Kaiser, B. A., Polinsky, M. S., and Baluarte, H. J. (1996). Fusarium peritonitis in a child on peritoneal dialysis: case report and review of the literature. *Perit. Dial. Int.* 16, 52–57. doi: 10.1177/089686089601600113

Garbino, J., Uckay, I., Rohner, P., Lew, D., and Delden, C. V. (2005). Fusarium peritonitis concomitant to kidney transplantation successfully managed with voriconazole: case report and review of the literature. *Transpl. Int.* 18, 613–618. doi: 10.1111/j.1432-2277.2005.00102.x

García-Tapia, A., Aznar, E., García-Martos, P., Marín, P., Márquez, A., Lozano, C., et al. (1999). Fusarium peritonitis in a patient on peritoneal dialysis. *Rev. Iberoam. Mical.* 16, 166–167

Gaur, S., Rajgopal, A., and Ashbee, R. (2010). A successfully treated case of peritonitis due to Fusarium dimerum. *J. Infect.* 61, 86–88. doi: 10.1016/j.jinf.2010.03.020

Hoenigl, M., Salmanton-García, J., Walsh, T. J., Nucci, M., Neoh, C. F., Jenks, J. D., et al. (2021). Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. *Lancet Infect. Dis.* 21, e246–e257. doi: 10.1016/s1473-3099(20)30784-2

Htay, H., Cho, Y., Pascoe, E. M., Darssan, D., Nadeau-Fredette, A.-C., Hawley, C., et al. (2018). Center effects and peritoneal dialysis peritonitis outcomes: analysis of a national registry. *Am. J. Kidney Dis.* 71, 814–821. doi: 10.1053/j.ajkd.2017.10.017

Hu, S., Tong, R., Bo, Y., Ming, P., and Yang, H. (2019). Fungal peritonitis in peritoneal dialysis: 5-year review from a North China center. *Infection* 47, 35–43. doi: 10.1007/s15010-018-1204-7

Kanjanabuch, T., Nopsopon, T., Chatsuwan, T., Purisinsith, S., Johnson, D. W., Udomsantisuk, N., et al. (2022). Predictors and outcomes of peritoneal dialysis-related

infections due to filamentous molds (MycoPDICS). PloS One 17, e0268823. doi: 10.1371/journal.pone.0268823

Kerr, C. M., Perfect, J. R., Craven, P. C., Jorgensen, J. H., Drutz, D. J., Shelburne, J. D., et al. (1983). Fungal peritonitis in patients on continuous ambulatory peritoneal dialysis. *Ann. Intern. Med.* 99, 334–337. doi: 10.1046/j.0933-7407.2003.00922.x

Kim, D. K., Yoo, T.-H., Ryu, D.-R., Xu, Z.-G., Kim, H. J., Choi, K. H., et al. (2004). Changes in causative organisms and their antimicrobial susceptibilities in CAPD peritonitis: a single center's experience over one decade. *Perit. Dial. Int.* 24, 424–432. doi: 10.1177/089686080402400506

Ledoux, M.-P., Dicop, E., Sabou, M., Letscher-Bru, V., Castelain, V., Danion, F., et al. (2024). Fusarium, scedosporium and other rare mold invasive infections: over twenty-five-year experience of a european tertiary-care center. *J. Fungi* 10, 289. doi: 10.3390/jof10040289

Liu, Y., and Sun, F. (2023). Peritoneal dialysis-related peritonitis and bacteremia caused by Fusarium verticillioides: a case report and literature review. *Chin. J. Nephrol.* 39, 935–938. doi: 10.3760/cma.j.cn441217-20230321-00329

Nucci, M., and Anaissie, E. (2023). Invasive fusariosis. Clin. Microbiol. Rev. 36, e00159–e00122. doi: 10.1128/eissn.1098-6618

Nucci, M., Jenks, J., Thompson, G. R. III, Hoenigl, M., Dos Santos, M. C., Forghieri, F., et al. (2021). Do high MICs predict the outcome in invasive fusariosis? *J. Antimicrob. Chemother.* 76, 1063–1069. doi: 10.1093/jac/dkaa516

Nucci, M., Marr, K., Vehreschild, M., De Souza, C., Velasco, E., Cappellano, P., et al. (2014). Improvement in the outcome of invasive fusariosis in the last decade. *Clin. Microbiol. Infect.* 20, 580–585. doi: 10.1111/1469-0691.12409

Rippon, J. W., Larson, R. A., Rosenthal, D. M., and Clayman, J. (1988). Disseminated cutaneous and peritoneal hyalohyphomycosis caused by Fusarium species: three cases and review of the literature. *Mycopathologia* 101, 105–111. doi: 10.1007/bf00452895

Shah, P. J., Bergman, S., Vegi, S., and Sundareshan, V. (2014). Fusarium peritonitis successfully managed with posaconazole and catheter removal. *Perit. Dial. Int.* 34, 566–568. doi: 10.3747/pdi.2013.00142

Unal, A., Kocyigit, I., Sipahioglu, M. H., Tokgoz, B., Oymak, O., and Utas, C. (2011). Fungal peritonitis in peritoneal dialysis: an analysis of 21 cases. *Int. Urol. Nephrol.* 43, 211–213. doi: 10.1007/s11255-010-9763-2

Whitty, R., Bargman, J. M., Kiss, A., Dresser, L., and Lui, P. (2017). Residual kidney function and peritoneal dialysis-associated peritonitis treatment outcomes. *Clin. J. Am. Soc Nephrol.* 12, 2016–2022. doi: 10.2215/cjn.00630117

Zhao, B., Li, T., Wang, H., Jia, Y., and Mao, Y. (2022). A case of intractable peritoneal dialysis-related peritonitis caused by Fusarium solani. *Chin. Med. Case Repos.* 04, E07371. doi: 10.3760/cma.j.cmcr.2022.e07371