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The innovation here is the new classification of aquatic vegetation based on

the association level using unmanned aerial vehicle (UAV)-mounted sensing

technology, and a light detection and ranging (LiDAR) method to acquire

point cloud data and high-resolution red, green, and blue (RGB) imagery.

This research focuses on aquatic vegetation in the littoral zone of East

Lake Taihu. By innovatively introducing UAV and LiDAR provide clear single

images of both exterior and atmospheric surfaces by using a point cloud

canopy height model (PCHM), VDVI (visible-band difference vegetation index,

spectral information) and a decision tree classification model for littoral aquatic

vegetation at the association level. In terms of data processing, improving data

reliability through point cloud gridding and alignment with field quadrats. After

integrating point cloud and optical image data, we interpret canopy height and

spectral information of aquatic associations by precisely identifying and mapping

vegetation types to their individual vegetation associations. This is the first study

to achieve fine-scale classification of aquatic vegetation at the association level

in lakeshore wetlands based on UAV-LiDAR fusion technology. Results showed

the classification accuracy for these associations ranging from 79.80% to 97.40%.

The higher canopy associations have greater classification accuracy with an

overall classification accuracy of 87.93% and a kappa coefficient of 0.855. The

new association classification method can improve data results on scientific

management of littoral aquatic ecosystems.

KEYWORDS

aquatic vegetation, association classification, LiDAR point cloud, unmanned aerial
vehicle (UAV), remote sensing, lakeshore wetland, East Lake Taihu
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1 Introduction 

Lakeshore wetlands are regarded as the kidneys of lakes. A well-
functioning lakeshore wetland not only intercepts and purifies 
pollutants entering the lake but also provides a wide range of vital 
ecosystem services (Engelhardt and Ritchie, 2001; Cheng et al., 
2020). Aquatic vegetations are a necessary component of lakeshore 
wetlands. Generally, the hierarchical levels of vegetation are class, 
formation, alliance, and association. The association is the primary 
and basic unit of vegetation (Jennings et al., 2009, Landucci et al., 
2020). Aquatic vegetation is classified into four formations: (1) 
emergent aquatic vegetation, (2) floating-leaf aquatic vegetation, 
(3) free-floating aquatic vegetation, and (4) submerged aquatic 
vegetation formation (Yu et al., 2022). Each vegetation formation 
generally may include several associations, and each association has 
its distinctive dominant species. The morphological characteristics 
and functions of each association are strongly dependent on the 
dominant species and habitat conditions. 

For example, emergent plant association like Ass. Phragmites 
australis (dominated by common reed) distributes on the upper 
side of the lakeshores, while Ass. Zizania latifolia (dominated by 
manchurian wild rice) distributes in the lower area of lakeshores, 
and the Ass. Nelumbo nucifera (dominated by sacred lotus) 
distributes in the open water area (Hong et al., 2021; Li et al., 2018; 
Cao, 2007). In some special areas, the emergent aquatic vegetation 
includes a complex mosaic of dierent associations, mainly 
due to heterogeneous lakeshore habitats. Dierent associations 
have dierent morphological characteristics and functions. The 
common reed association is a typical emergent plant association 
with a stable distribution, but the manchurian wild rice association 
and the lotus association may spread too quickly and occupy niches 
of other species, leading to a reduced biodiversity. Additionally, the 
substantial biomass from these plant remains may worsen water 
quality and accelerate the process of lake swampization (Li, 1997; 
Zhang et al., 1999; Lawniczak-Malinska and Achtenberg, 2018). 

Floating-leaf aquatic vegetations include some associations, 
such as the Ass. Trapa natans (dominated by water chestnut) and 
the Ass. Nymphoides peltata (dominated by yellow floating heart), 
which are common in East Lake Taihu. These two associations 
are usually dominated by a single dominant species in some 
special areas where two associations form a mosaic of floating-leaf 
aquatic vegetations with dierent size patches. Water chestnut and 
yellow floating heart often have significantly dierent economic 
values and ecological functions. For instance, water chestnut is an 
important economic plant based on its medicinal uses (Shin et al., 
2024). However, the floating-leaf aquatic vegetations overgrowth 
covering the water surface will shade and deoxygenate the 
water column, deteriorating the water quality due to degradation 
(Kornijów et al., 2016; Wang et al., 2022). Submerged aquatic 
vegetation is considered a key element in maintaining a clear-water 
state and improving water quality in eutrophicated lakes (Sayer 
et al., 2010; Ban et al., 2019, Thomaz, 2023). However, dierent 
species of submerged plants exhibit diverse reproductive and 
distribution characteristics. For example, the overgrowth of water 
caltrop (Potamogeton crispus) is causing various environmental 
problems, including degrading both the ecosystem and water 
quality (Zhu et al., 2024). 

Generally, aquatic vegetation formation includes several 
associations formed by dierent dominant species. These 
associations have individual traits in canopy structures, 
physiological processes, biomass accumulation, ecological 
functions, economic value, and environmental impacts. These 
various traits include biodiversity, purification capacity, carbon 
and other element storage capacities, as well as economic value 
(Temmink et al., 2022; Delle Grazie and Gill, 2022; Ronowski 
et al., 2023). The composition and spatial distribution of lakeshore 
aquatic associations is essential for assessing lakeshore biodiversity, 
ecological health, ecosystem functions, and carbon storage. 

Traditional methods of surveying lakeshore aquatic vegetations 
primarily rely on manual sampling, which is generally accurate 
but time-consuming and labor-intensive. Particularly in flooded or 
sedimented environments, where thick mud and dense vegetation 
limit accessibility, it is often diÿcult to set up sample plots for 
surveys. Moreover, many aquatic plant associations distribute in 
lakeshores with various size patches (less than 10 m × 10 m, or 
even smaller at 1 m × 1 m). Some discontinuous small patches form 
the basial pattern of aquatic vegetation mosaics. The high spatial 
heterogeneity of aquatic vegetations make it increasingly diÿcult 
to obtain the representative samples needed to capture continuous 
spatial distribution information. Remote sensing technology, with 
its advantages of large-scale coverage, cost-eectiveness, rapid data 
acquisition, and dynamic monitoring, has become a crucial tool for 
surveying lakeshore aquatic vegetation. 

Most current research focuses on using optical remote 
sensing to construct various vegetation indices, such as the 
Normalized Dierence Vegetation Index (NDVI) and Enhanced 
Vegetation Index (EVI), which are used in remote sensing to 
measure and monitor aquatic vegetation health, density, and 
coverage in lakeshore zones. Optical remote sensing can eectively 
dierentiates between emergent, floating-leaf, free-floating, and 
submerged vegetation formations due to structural and spectral 
dierences in their canopies (Luo et al., 2022). However, small-scale 
dierences in the shape and spectral characteristics of vegetation 
patches within the same vegetation formation make it diÿcult to 
accurately distinguish their dierences (Khanna et al., 2011). 

Light detection and ranging, known for its strong penetration 
ability and high precision, can capture vertical structural 
information of vegetation, such as vegetation height and canopy 
cover. LiDAR oers new possibilities when identifying special 
vegetations with varying heights and vertical structures. With the 
rapid development of UAV technology, many studies have utilized 
UAV-mounted LiDAR for fine-scale classification of vegetations, 
especially for monitoring forest tree species and their heights. 
For example, Hu et al. (2021) developed UAV LiDAR system and 
evaluated its capability in estimating both individual tree-level 
(i.e., tree height) and plot-level forest inventory attributes (i.e., 
canopy cover, gap fraction, and leaf area index). Their results 
showed that UAV LiDAR data can accurately measure tree heights 
and canopy structures, successfully classifying forest types. LiDAR 
point cloud data also provides information on reflection intensity 
and the number of returns, which is useful for identifying plant 
community types and densities. Puletti et al. (2024) investigated 
the heterogeneity of forest structure in broadleaf forests using UAV 
LiDAR data, with a particular focus on tree crown features and 
their dierent information content compared to diameters. UAV 
LiDAR also proposes a semi-automatic approach for to assess tree 
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crown competition indices. However, the low spatial resolution 
of traditional satellite remote sensing data, making it diÿcult to 
capture vegetation dierences at the association level (usually 
0.1–10 m scale); the complex habitat of lakeshore wetlands makes 
large-scale manual field surveys diÿcult to carry out, resulting in 
a lack of association-level classification data; single optical remote 
sensing is susceptible to spectral confusion (e.g., spectral overlap 
between floating-leaf aquatic vegetation), and the application of 
LiDAR technology in aquatic vegetation research started late. 
Onojeghuo and Blackburn (2011) employed UAV LiDAR data 
to generate a habitat map of reed beds, thereby verifying the 
eÿcacy of height information derived from LiDAR in vegetation 
classification. Sumnall et al. (2017) verified that UAV LiDAR 
data can accurately measure the presence, maximum height, and 
horizontal extent of vegetation canopy. Therefore, employing 
LiDAR to identify aquatic plant associations in lakes and lakeshore 
areas might represent a novel approach. 

The objective of this study was to obtain remote sensing 
data of lakeshore vegetation using UAV-mounted multispectral 
and LiDAR sensors, and by integrating optical and LiDAR data— 
with data reliability enhanced through point cloud gridding and 
alignment with field quadrats—alongside the application of a point 
cloud canopy height model (PCHM), the visible-band dierence 
vegetation index (VDVI, capturing spectral information), and 
a decision tree classification model. By combining surface 
spectral information from optical sensors with vertical structural 
information from LiDAR, we were able to obtain a novel, fine-
scale remote sensing classification method for dierent lakeshore 
plant associations, and this is the first study to achieve fine-
scale classification of aquatic vegetation at the association level in 
lakeshore wetlands based on UAV-LiDAR fusion technology. This 
approach advances the classification of lakeshore aquatic vegetation 
from formation (the upper level of hierarchy of vegetation 
classification) to association (lower level of hierarchy of vegetation 
classification). The fine-scale remote sensing classification results 
provide methodological and data support for both resource surveys 
and ecological monitoring of lakeshore wetlands. These results also 
provide a better understanding of the dynamic changes in aquatic 
plant associations. The results are also a helpful resource for lake 
restoration and management eorts. 

2 Materials and methods 

2.1 Study area 

East Taihu Lake bay is a bay in the eastern part of Taihu Lake, 
China (Figures 1a, b). The bay has a total length of 27.5 km, 
a maximum width of 9.0 km, a water area of 131 km2 , and a 
water volume of approximately 1.22 × 108 m3 . The average water 
depth is approximately 1.2–1.3 m, and the water exchange rate is 
approximately 10 days. East Lake Taihu serves as a flood discharge 
channel for the inflowing water from Lake Taihu. In addition to 
being a crucial breeding and protection area for fish and a base 
for commercial fish production, East Lake Taihu also provides an 
important water source for neighboring regions, such as Shanghai, 
Suzhou, and Wuxi. 

The East Taihu Lake is very shallow. This study covers the 
lakeshore zone at the mouth of East Taihu Lake Suzhou Bay, located 
at the southern tip of Dongshan Island (Figure 1c). This region 
is rich in aquatic vegetation. Field surveys indicate that the area 
is primarily dominated by emergent aquatic vegetation (EAV), 
floating-leaf aquatic vegetations (FLAV), and submerged aquatic 
vegetation (SAV; Table 1). It is an ideal location for developing 
fine-scale classification methods for plant associations. 

The aquatic plant associations of species composition, 
distribution areas, and dynamics in this region not only directly 
aect water quality, water supply security, and fishery production, 
but also play a key role in the ecological succession of the lake. 
Recently, many researchers have focused on aquatic plants of 
East Lake Taihu (Wang et al., 2022; Luo et al., 2023; Yang et al., 
2023). Mapping the spatial distribution of plant associations in this 
lakeshore area is essential for managing the lake ecosystem. 

2.2 Methods 

The general workflow for this study is illustrated in Figure 2. 
Three tasks follow: (1) In situ quadrat investigation with UAV data 
acquisition and preprocessing, (2) data processing extraction of 
quadrat classification indicators, and (3) decision tree model and 
validation, generating vegetation classification maps. 

2.2.1 Data collection and processing 
2.2.1.1 Field data collection and processing 

Field surveys were conducted during the peak growing season 
of aquatic plants in 2023 from June 20 to 25 and from June 27 to 
30. A total of 111 quadrats were set up in the study area (Figure 1c), 
each quadrat was 1 m × 1 m. For each quadrat, in situ records were 
kept, providing a database of plant species composition. Moreover, 
the plant count and height were measured for each species using a 
tape measure. Water depth and center coordinates of each plot were 
recorded concurrently; then, underwater and over water surface 
heights were calculated for each quadrat. All plants within the 
quadrat were harvested, and biomass (fresh weight) were measured 
separately. 

2.2.1.2 Unmanned aerial vehicle (UAV) data collection and 
processing 

The UAV data collection was synchronized with in situ plot 
surveys using a DJI M300 real time kinematic (RTK) drone 
equipped with an L1 LiDAR sensor, L1 RGB camera, and RTK 
system. The L1 LiDAR sensor uses the 905 nm band, with a 
maximum power of 60 W. The ranging accuracy (Root Mean 
Square, RMS 1σ) is an error of 3 cm at 100 m. The system accuracy 
(RMS 1σ) is as follows: the planar accuracy is an error of 10 cm at 
50 m; the elevation accuracy is an error of 5 cm at 50 m. It supports 
a maximum of 3 echoes. The field of view (FOV) is 70.4 × 4.5◦ for 
repetitive scanning; and 70.4 × 77.2 for non-repetitive scanning. 
The point cloud data rate is a maximum of 240,000 points per 
second for a single echo; and a maximum of 480,000 points per 
second for multiple echoes. The L1 RGB camera has an image 
resolution of 20 million pixels, a focal length of 8.8 mm/24 mm 
(equivalent), a sensor size of 1 inch, a shutter speed of 1/2000-8 s for 
the mechanical shutter; and 1/8000-8 s for the electronic shutter. 
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FIGURE 1 

(a) Location of the study area, (b) Grayscale map of Lake Taihu using Landsat 8 OLI B4 (RED) band, showing the location of the study area, and (c) 
DSM map of the study area obtained from UAV data, showing sampling point distribution locations. 

TABLE 1 Main aquatic vegetation formation, association and dominant species in the study area. 

Vegetation formation Association and dominant 
species 

Common names of dominant 
species 

Abbreviation 

EAV (emergent aquatic vegetation) Phragmites australis Common reed Pa 

Zizania latifolia Manchurian wild rice Zl 

Nelumbo nucifera Sacred lotus Nn 

FLAV (floating-leaf aquatic vegetations) Trapa natans Water chestnut Tn 

Nymphoides peltata Yellow floating heart Np 

SAV (submerged aquatic vegetation) Not identified to species level SAV 

The ISO is 100–3200 (automatic), and 100–12800 (manual), and 
the aperture is f/2.8-f/11. Data was collected at an altitude of 100 m 
in a zigzag flight pattern, covering the entire study area. Collected 
data included flight path and waypoint information for aquatic 
vegetations and water surfaces, airborne triangulation (AT) data, 
RGB imagery, and point cloud scatter data. 

The UAV flight control system and RTK system calculated 
flight trajectories, waypoint information, and AT data. Airborne 
triangulation is a key step in UAV photogrammetry due to 
its ability to utilize precise camera positioning, and record at 
each exposure using RTK equipment, as a crucial observational 
parameter in AT calculations. This approach accurately established 
the 3D coordinates of the camera’s phase center at each exposure, 
achieving high-precision geographic information acquisition 
for map production. 

Use the L1 RGB camera on the UAV to capture RGB images, 
and use the L1 LiDAR sensor on the UAV to record real-time 
point clouds. After that, use the airborne triangulation (AT) data 
to geo-reference both these RGB images and the point cloud 

data. The flight speed is set at 10 m/s, the flight altitude is 
100 m, the pitch angle of the gimbal is −60◦ , the scanning 
angle range is from −35◦ to 35◦ , the laser side overlap rate was 
10%, the visible - light side overlap rate was 70%, the number 
of echoes was 3, the sampling frequency was 160 Hz, and the 
resolution of the orthophoto was 2.73 cm/pixel. The point cloud 
resolution was 119 points/m2 . Colorized point cloud data were 
generated with RGB information at a resolution of 0.1 m and 
a horizontal accuracy of 0.1 m, as well as a vertical accuracy of 
0.05 m. AT data was used to geo-reference point cloud data and 
produce RGB orthophotos, point cloud scatter data, and true-color 
point cloud data. 

The purpose of surveying ground quadrats is to validate UAV 
point cloud data (Figure 3). This requires performing spatial 
alignment between field data and UAV data, ensuring each quadrat 
corresponds precisely to a grid cell in the point cloud dataset. This 
alignment enables the validation of point cloud accuracy and the 
classification precision of vegetation or terrain samples within the 
designated quadrats. 
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FIGURE 2 

General workflow of study. 

FIGURE 3 

The correspondence between quadrats and point cloud. 
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FIGURE 4 

Preprocessed PDEM and PDSM. (a) PDEM and PDSM from a top-down view, (b) PDEM and PDSM in cross-sectional view (horizontal perspective), (c) 
actual photograph of point location, and (d) profile illustration of the wetland vegetation point cloud data acquired by UAV LiDAR. 

2.2.2 Construction of the PCHM model 
The aquatic plant association height was calculated using a 

canopy height model (CHM), which integrates a digital surface 
model (DSM) and digital elevation model (DEM; Bendig et al., 
2014). DSMs and DEMs are typically represented by either regular 
rectangular grids or irregular triangulated networks. When point 
cloud data is converted into grids or triangulated networks, the 
process can be highly labor-intensive and may reduce data integrity 
and accuracy. In this study, we developed a direct point-based 
approach for constructing a point cloud digital surface model 
(PDSM) and a point cloud digital elevation model (PDEM) to 
calculate aquatic plant association height. This point cloud canopy 
height model (PCHM) represents the aquatic plant association 
canopy height (Equation 1) and was evaluated using the R2 and 
RMSE between estimated and measured canopy heights. 

PCHM = PDSM − PDEM (1) 

The specific workflow includes initial preprocessing of point cloud 
point cloud data, using DJI Terra v.4.0.10 software. Preprocessing 
removes noise points with abnormal heights and automatically 
classifies ground and water surface points, which are used to 
construct the PDEM (Figure 4a). Remaining points are categorized 
as vegetation points and used to create the PDSM (Figure 4d). The 
XY coordinates of the PCHM match those of the PDSM (Figures 4b, 
c). In the PCHM, canopy height is determined on a point-by-point 
basis. For each PDSM point, the nearest PDEM point is identified 
based on XY coordinates, and the dierence between their heights 
(Z-axis values) represents the canopy height. Each point in the 
PCHM contains RGB information, spatial position, and canopy 
height for the aquatic plant association. 

2.2.3 Establishment of VDVI index for aquatic 
plant associations in littoral zone 

This study employed the visible light spectrum to construct 
a vegetation index (VI) for aquatic vegetation by calculating the 

visible-band dierence vegetation index (VDVI; Equation 2) based 

on RGB data from scatter points (Wang et al., 2015). The DJI M300 

RTK UAV used in this study is only equipped with an RGB camera 

(without a multispectral sensor), and VDVI is calculated based on 

RGB bands, which can be directly extracted from existing data; 
in contrast, NDVI requires near-infrared band data, which cannot 
be obtained with the existing equipment. Statistical analysis of the 

VDVI across representative sample points of dominant species in 

the study area revealed that while VDVI can distinguish certain 

aquatic plant associations, it faces significant limitations for fine-
scale classification of aquatic plant associations. This challenge 

is primarily because the VDVI index, built from optical bands, 
captures only dierences in vegetation canopy characteristics 
and lacks the capacity to discern vegetation’s vertical structural 
information. However, in the FLAV, because the vegetation canopy 

is flush with the water surface, there is no necessity for information 

on the vertical structure of vegetation; instead, only VDVI is 
employed for dierentiation. 

Moreover, our analysis found instances where aquatic plant 
associations with similar VDVI values had significant height 
dierences, illustrating the phenomenon of similar height, dierent 
spectrum; similar spectrum, dierent height. This observation 

indicates that, when paired with the PCHM, the VDVI can support 
precise mapping and classification of aquatic plant associations 
(Figure 5). 
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FIGURE 5 

Decision tree model flow chart. 

The calculation formula of the Visible-Band Dierence 
Vegetation Index (VDVI) is expressed as follows: 

VDVI = 
2∗ G − R − B 

2∗G + R + B 
(−1 ≤ VDVI ≤ 1) (2) 

with a value range of –1 ≤ VDVI ≤ 1, where G denotes the visible 
green band, R represents the visible red band, and B stands for the 
visible blue band. 

To mitigate the influence of outliers and leverage the inherent 
separation between groups, a non-parametric threshold selection 
method was employed, structured as follows: 

(1) Data Trimming 
For each group, the top 5% and bottom 5% of values were 

truncated, retaining the central 90% of the data distribution (i.e., 
the 5th to 95th percentiles). This step reduces noise from extreme 
values while preserving the core distribution characteristics. 

(2) Non-Overlapping Interval Validation 
The trimmed ranges were defined as [QGi 

5 , Q
Gi 
95] (Equation 3) 

for group Gi. A separation condition was evaluated:QG1 
95 < QG2 

5 

(or vice versa), the threshold is calculated as T (Equation 4). This 
ensures a clear boundary between groups. 

Trimming Process: For a dataset i, the retained interval after 
trimming is: 

itrimmed = {x ∈ X|Q5 (X) ≤ x ≤ Q95 (X)} . (3) 

Threshold Definition: If groups G1 and G2 satisfy 
Q95(G1) < Q5(G2), the threshold T is: 

T = 
Q95(G1) + Q5(G2) 

2 
(4) 

In the formulas (3) and (4) for non-overlapping interval validation 
above, i represents the index of the dataset, x represents an 
individual data point within the dataset, X represents the dataset. 
Q represents a percentile where Q5 specifically stands for the 5th 
percentile (a value below which 5% of the data in the dataset lies) 
and Q95 represents the 95th percentile (a value below which 95% of 
the data in the dataset lies), G represents a group, and T represents 
the classification threshold used to clearly distinguish between two 
groups when the separation condition is satisfied. 

(3) Iterative Robustness Adjustment 
If overlap persisted after initial trimming, the truncation 

proportion was incrementally increased (e.g., 10%, 15%) until the 
separation condition was satisfied. This iterative approach balances 
minimal data loss with reliable threshold identification. 
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2.2.4 Fine-scale classification method for aquatic 
plant associations in the littoral zone using PCHM 
and VDVI 

The classification of aquatic plant associations was performed 
based on the point cloud canopy height model (PCHM) and the 
visible-band dierence vegetation index (VDVI). A decision tree 
model was employed, using a two-layer conditional filter to classify 
aquatic plant associations (Figure 5). In wetland ecosystems, 
there were significant dierences between emergent and floating-
leaf aquatic vegetations associations in their heights relative to 
the water surface (Table 2). The water level fluctuation can 
aect the distribution of aquatic vegetation, especially during the 
germination and seedling stages where water level fluctuations have 
a significant impact on the growth and distribution of aquatic 
plants. This article only focuses on the remote sensing classification 
of typical aquatic vegetation during the vigorous growth period. 
Based on our field observation results and other research finding 
(Tippery et al., 2021), we conclude that even when these floating 
leaf plants are in vigorous growth or lifted by wind and waves, 
they will not rise more than 20 cm above the water surface. The 
heights of emergent aquatic vegetation associations usually were 
about tens of centimeters or more, for instance, generally Ass. 
Phragmites australis reached 200–350 cm; Ass. Zizania latifolia 
100–200 cm, and Ass. Nelumbo nucifera just fewer than 100 cm 
over water surface. In contrast, the leaves of floating-leaf aquatic 
vegetations associations floated on the water surface unless dense 
growth, with their flowers emerging above the water surface. When 
the density was too high or they were lifted by wind-wave forces, the 
leaves could rise above water surface. However, generally neither 
the flowers nor the leaves would be more than 20 cm over water 
surface. For example, Ass Nymphoides peltata generally do not 
exceed 10 cm over water surface. 

The initial step to classifying plant associations into three 
major groups begins with height data obtained from LiDAR: 
These vegetation formations are submerged aquatic vegetation 
(SAV) and floating-leaf aquatic vegetations dierentiation among 
associations within the same formation. We identified VDVI value 
dierences between associations of distinct species. For example, 
both Zizania latifolia and Phragmites australis belong to emergent 
aquatic vegetation formations and have similar average heights 
(1.86 m and 2.70 m, respectively). However, their VDVI ranges are 
markedly dierent, averaging 0.3924 for Zizania latifolia and 0.1938 
for Phragmites australis. 

TABLE 2 Measured average canopy height of aquatic plant associations 
over the water surface. 

Dominant species Abbreviation Average 
canopy height 

over water 
surface 

Phragmites australis Pa 2.70 m 

Zizania latifolia Zl 1.86 m 

Nelumbo nucifera Nn 0.40 m 

Trapa natans Tn 0 m 

Nymphoides peltata Np 0 m 

Following this approach, we trained VDVI thresholds for 
each association sample and constructed a two-tier decision tree 
classification model. This model was then applied to the study area 
to achieve fine-scale remote sensing classification and mapping of 
the aquatic plant associations. 

Importantly, both VDVI values and plant elevation of aquatic 
vegetation exhibit temporal variability. The sampling period 
chosen in this study corresponds to the peak growing season 
for most aquatic species, ensuring that the VDVI and elevation 
thresholds derived herein can be applied to inter-annual vegetation 
classification during this specific seasonal window. 

3 Results 

3.1 Validation of calculation results of 
point cloud canopy height model 
(PCHM) 

Canopy height is a key parameter for identifying aquatic plant 
associations. In this study, the point cloud canopy height model 
(PCHM) was developed for calculating the canopy heights of 
plant associations (see Section “2.2.2 Construction of the PCHM 
model”). While using UVAs to obtain the point cloud data of 
typical aquatic plant associations in the study area, we conducted 
on-site measurements of the canopy heights of three types of 
emergent aquatic plant associations in 111 quadrats. We compared 
the model calculated results and the measured heights to verify 
the accuracy of the model. The validation indicated that the Ass. 
Phragmites australis had the greatest canopy height and the highest 
PCHM accuracy (R2 = 0.97, RMSE = 0.0999 m). The Ass. Zizania 
latifolia ranked second in canopy height and PCHM accuracy 
(R2 = 0.96, RMSE = 0.0942 m). The Ass. Nelumbo nucifera had the 
lowest canopy height and the lowest PCHM accuracy (R2 = 0.88, 
RMSE = 0.0620 m) (Figure 6). 

However, it is diÿcult to distinguish between the floating-
leaf aquatic vegetations associations, submerged vegetation, and 
the water surface using this model. Therefore, it is necessary 
to comprehensively utilize other information and further discuss 
methods for more accurate classification. 

3.2 Classification of aquatic plant 
associations using a decision tree model 

The optical information of plant associations is a key parameter 
for identifying aquatic plant associations. In this study, the VDVI 
was used to obtain the optical information of dierent associations. 
Through the location information in the ground quadrats, we 
accurately knew the associations represented by the point clouds 
within some of the grids. By calculating the RGB features in the 
point clouds corresponding to dierent associations, we found that 
there were significant dierences in the VDVI indices of dierent 
associations. According to the calculation results of the VDVI 
model (Figure 7), the VDVI value of the Ass. Zizania latifolia is 
the highest (with an average value of 0.3565), followed by that of 
the Ass. Trapa natans (with an average value of 0.3291), and there 
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FIGURE 6 

Scatter Plot of field-measurements vs. LiDAR-derived sample heights. Red points represent Ass. Phragmites australis, green points represent Ass. 
Zizania latifolia, and purplish red points represent Ass. Nelumbo nucifera. 

is a certain overlap between them. The average VDVI values of Ass. 
Phragmites australis, Ass. Nelumbo nucifera, and Ass. Nymphoides 
peltata are 0.1607, 0.1713, and 0.1245, respectively, and there is 
also a certain overlap among them. The average VDVI value of the 
submerged vegetation is the lowest, only 0.0272, and the average 
VDVI value of the open water surface is negative. Therefore, it is 
very diÿcult to classify aquatic plant associations using only the 
VDVI index. 

The decision tree model was created and used to classify aquatic 
plant associations. A 0.1 m resolution distribution map of typical 
vegetation formations and aquatic plant associations in the study 
area was produced (Figures 8a, b). 

The total study area spans approximately 8.87 km2 . The 
distribution areas of the following associations are: the floating-
leaf aquatic vegetations (FLAV) covers 1.78 km2 , including the 
water chestnut association covers 1.22 km2; yellow floating heart 
association covers 0.56 km2 , and emergent aquatic vegetation 

(EAV) covers 3.81 km2 , as well as the sacred lotus association covers 
1.47 km2 . The common reed association covers 0.77 km2 , and the 
Manchurian wild rice association covers 1.57 km2 . The submerged 
aquatic vegetation (SAV) covers about 0.26 km2 . 

The study area was formerly occupied by enclosing nets and 
man-made fishponds designed to create fish farms. In order to 
restore the lake ecosystem and improve the water quality, since 
2019, all the enclosing nets and fishponds have been completely 
removed, and the project of returning fishing areas to the lake 
has been implemented. However, the embankments of some 
fishponds are still underwater. The common reed association 
predominantly distributes in stripped along the lakeshore, or 
in grid-like embankments around former fishponds. Many large 
patches of the sacred lotus association can be found in the central 
area of former fishponds. Generally, the common reed grows in 
shallow areas, often on the embankments of former fish ponds or 
lakeshore, and the sacred lotus grows in the deeper area such as 
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FIGURE 7 

Visible-band difference vegetation index (VDVI) values of dominant aquatic plant associations in the study area. 

the center area of fishpond. The Manchurian wild rice association 
distributes in the deeper water area below the distribution belt 
of common reed. The associated floating-leaf aquatic vegetations, 
such as water chestnut association and the yellow floating heart 
association are distributed in patches in the deepest areas of the 
former fishpond. This interpreted distribution of aquatic plant 
associations is based on the decision tree model, which aligns well 
with the actual vegetation distribution and topographic features 
in the study area. 

3.3 Accuracy verification of aquatic plant 
association classifications 

A total of 3,000 random samples were manually selected 
from RGB images, and classification accuracy was validated using 
an error matrix. The results indicated an overall classification 
accuracy of 87.93% and a kappa coeÿcient of 0.855 (Figure 9). 
Classification accuracy varied across vegetation formations, with 
mapping accuracy ranging from 75% to 95.52% and user 
accuracy from 79.8% to 97.4%. Higher canopy of aquatic plant 
associations demonstrated higher classification accuracy, with 
the emergent association Ass. Phragmites australis achieving the 
highest classification accuracy at 97.40%, followed by Ass. Zizania 
latifolia at 93.80%, and Ass. Nelumbo nucifera at 91.20%. Floating-
leaf associations exhibited lower accuracy, Ass. Nymphoides peltata 
at 80.20%, Ass. Trapa natans recording the lowest classification 
accuracy at 79.80% (Table 3). 

4 Discussion 

4.1 Advantages of UAV LiDAR point cloud 
data in wetland vegetation applications 

The complex and inaccessible environment of the lakeshore 
zone makes it challenging to obtain extensive, high-resolution 
maps of aquatic plant associations. Traditional studies, while often 
relying on satellite data, typically dierentiate only between general 
vegetation formations and water bodies; therefore, traditional 
studies are limited in achieving fine-scale classifications of 
aquatic plant associations. This approach also faces challenges in 
distinguishing between aquatic vegetation and algal blooms in 
eutrophic waters. The spatial heterogeneity of lakeshore aquatic 
vegetation, especially in enclosed bays, often contains many small 
patches of aquatic plant associations that exhibit spectral similarity. 
Constrained by the spatial and spectral resolution of satellite 
data, even high-resolution satellite imagery can miss capturing the 
dierences in these patches. 

In this study, we utilized a combination of UAV LiDAR and 
RGB imagery to overcome these limitations. By capturing high-
resolution elevation and color information from point cloud data 
and RGB imagery, we developed a precise classification method. 
Grid processing of UAV point cloud data enabled alignment with 
ground survey plots, enhancing classification model reliability 
and accuracy, allowing fine-scale classification of vegetation from 
formation level to association levels. The high accuracy of this 
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FIGURE 8 

(a) Distribution of typical aquatic vegetation formations in the study area and (b) distribution of aquatic plant associations in the study area. 

method eectively replaces traditional field sampling and can cover 
sample areas on a spatial scale, covering several square kilometers. 

Moreover, UAV-based LiDAR provides high-precision point 
cloud data, making it possible to improve classification accuracy 
at a lower cost. Previous studies have used LiDAR to identify 
specific plant species, and our method also demonstrated a high 
precision for reed (Phragmites australis) identification, which 
is consistent with previous findings (Onojeghuo et al., 2010; 
Gilmore et al., 2012; Onojeghuo and Blackburn, 2011). Compared 
with traditional satellite imagery-based methods, LiDAR oers 
significant advantages due to its capability to capture both 
horizontal and vertical structural information (Stratoulias et al., 
2015; Sun et al., 2023). This study extends the application of LiDAR 
to complex environments containing multiple species, maintaining 
accuracy in species identification despite high biodiversity. 

4.2 Accuracy of the decision tree model 
based on the PCHM model and VDVI 
index 

Given the characteristics of aquatic plant associations, their 
point cloud data exhibit significant spatial heterogeneity. For 
dierent plant associations, distinct features can be observed 
in both height and VDVI index values when applying specific 

thresholds. Therefore, the selection of classification algorithms 
should prioritize models with strong interpretability (Tian et al., 
2024). This interpretability is critical for vegetation classification 
studies using point cloud data, as understanding the underlying 
logic and rationale behind classification is essential in wetland 
ecological research. Such transparency allows researchers to clearly 
visualize the role of each feature in the classification process 
and how combinations of dierent features influence final results, 
thereby facilitating verification of corresponding plant parameters. 

Moreover, point cloud datasets typically possess characteristics 
of large volume and high dimensionality, necessitating substantial 
computational resources and time for processing and analysis. 
Decision tree algorithms demonstrate superior computational 
eÿciency in handling such large-scale datasets. Unlike black-box 
models such as neural networks and deep learning, whose internal 
decision-making processes are inherently opaque, decision trees 
provide explicit classification rules that can be easily interpreted. 
Additionally, training neural networks requires extensive amounts 
of labeled data, which is often impractical to obtain for 
accurately annotated point cloud datasets (Yao et al., 2022). Neural 
networks also suer from challenges related to complex parameter 
tuning and optimization, increasing the risk of overfitting and 
compromising model generalization capabilities. The primary 
objective of this study is to establish a highly reliable and accurate 
method for generating interpretable large-scale training datasets. 
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FIGURE 9 

Confusion matrix. The y-axis represents true classification based on RGB images, and the x-axis represents the predicted classifications. Red cells 
along the diagonal indicate the number of correctly classified pixels, with each category’s total quantity evaluated shown at the top and totals of real 
classifications on the right. Other cells represent misclassified samples: The gradient from yellow to red signifies increasing classification error, with 
yellow indicating minimal error and red indicating maximal error. 

TABLE 3 Confusion in matrix statistical accuracy. 

Association Mapping accuracy Omission User accuracy Commission 

Pa 95.30% 4.70% 97.40% 2.60% 

Zl 95.52% 4.48% 93.80% 6.20% 

Nn 88.37% 11.63% 91.20% 8.80% 

Tn 75.00% 25.00% 79.80% 20.20% 

Np 83.54% 16.46% 80.20% 19.80% 

SAV 90.64% 9.36% 85.20% 14.80% 

TABLE 4 Authors’ new canopy height mode (CHM) accuracy compared 
with existing research. 

CHM method Data source of 
CHM 

Model accuracy 
(highest) 

Khosravipour et al., 
2015 

Helicopter LiDAR R2 = 0.54, 
RMSE = 0.32 m 

Hao et al., 2021 UAV RGB R2 = 0.87, 
RMSE = 0.24 m 

Tamiminia et al., 
2024 

GEDI 2A, Sentinel-2 

MSI, Sentinel-1 SAR 

R2 = 0.74, 
RMSE = 4.40 m 

Torresani et al., 2023 GEDI 2A R2 = 0.73 

Sumnall et al., 2017 UAV Lidar R2 = 0.87, 
RMSE = 2.10 m 

Our methods UAV Lidar R2 = 0.97, 
RMSE = 0.0999 m 

The constructed point cloud canopy height model (PCHM) 
demonstrates satisfactory accuracy across three plant associations, 
with the Ass. Phragmites australis achieving the highest precision 
(R2 = 0.97 and RMSE = 0.0999 m), while the Ass. Nelumbo nucifera 

has the lowest canopy height, which exhibits the lowest precision 
(R2 = 0.88 and RMSE = 0.0620 m, as shown in Figure 7). Research 
on vegetation height often employs CHM models, typically using 
UAV (Khosravipour et al., 2015; Hao et al., 2021; Sumnall et al., 
2017) or satellite LiDAR data (Tamiminia et al., 2024; Torresani 
et al., 2023), primarily to study forest trees. While satellite data 
information struggles to achieve high precision for low-lying 
vegetation, some satellite datasets, such as ICESat-2 ATL08 and 
GEDI L2A products, monitor vegetation height. ICESat-2 ATL08 
samples were found along a track at approximately 0.7 m intervals 
with areas measured between 11 and 12 m. Each group was spaced 
90 m apart along 3.3 km tracks. GEDI L2A’s ground footprint 
diameter measured 25 m, spaced 60 m along the track (Liu et al., 
2021). Although this data lacks the resolution needed to accurately 
assess ground vegetation height, it is widely used for identifying tall 
forest trees. However, relying solely on satellite data in complex 
aquatic habitats for low-lying aquatic vegetation is insuÿcient. In 
contrast, the UAV LiDAR data employed in this study achieved 
0.1 m precision in canopy height measurements, allowing for 
accurate fine-grained classifications of small community patches. 
Our method has been compared to existing studies and exhibits 
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superior accuracy relative to the precision requirements of each 
respective research objective (Table 4). This method eectively 
replaces traditional manual field sampling, extending sample plot 
dimensions to the square-kilometer scale and providing essential 
ground sampling data for satellite remote sensing to perform 
quantitative, detailed aquatic community classifications. The same 
approach can be used to complete dierent tasks: (1) to conduct 
future quantitative vegetation parameter retrieval, (2) to address 
current challenges in obtaining ground sample data for quantitative 
modeling of aquatic vegetation parameters and (3) to expand the 
scope of aquatic vegetation remote sensing. 

The overall trend in wetland plant classification accuracy 
shows that taller vegetation tends to achieve higher classification 
precision, with elevation accuracy dierences directly impacting 
final classification results. LiDAR systems may encounter 
challenges when scanning low-growing vegetation, often 
misclassifying plant structures with water surfaces or soil, 
resulting in significant noise points that distort actual elevation 
measurements. For FLAV Ass. Nymphoides peltate and Ass. Trapa 
natans, their identical elevation values (as they float on the water 
surface) necessitate exclusive reliance on VDVI thresholds for 
dierentiation. This results in inherently lower classification 
accuracy compared to EAV, which benefit from additional height-
based discrimination. The main reason for the low classification 
accuracy of Nymphoides peltate and Trapa natans is sole reliance 
on VDVI, and the causes also include: first, the similar growth 
morphology of Nymphoides peltate and Trapa natans (both 
are floating-leaf plants with similar leaf sizes, approximately 
5–10 cm), resulting in small dierences in canopy structure 
information obtained by LiDAR; second, the mosaic growth of 
Nymphoides peltate and Trapa natans in some areas of East Taihu 
Lake (patch size < 5 m), leading to a high proportion of mixed 
pixels (about 20%), which further intensifies spectral confusion; 
third, water background interference (superposition of reflectance 
spectra of floating-leaf vegetation and water surface), making 
it impossible for VDVI to eectively distinguish the boundary 
between vegetation and background. 

Secondly, among EAV, Ass. Nelumbo nucifera exhibits the 
lowest classification accuracy due to its high variability in growth 
heights, ranging from floating leaf structures at water level to 
significantly elevated stems above the surface. In contrast, Ass. 
Zizania latifolia and Ass. Phragmites australis demonstrate more 
homogeneous height distributions, which likely contributes to 
their significantly higher classification accuracies compared to 
Ass. Nelumbo nucifera. Beyond the height-related traits that 
support their classification accuracy, these two EAV associations 
also present distinct spatial distribution patterns and associated 
ecological impacts—factors that further highlight the practical 
value of their precise identification and mapping. Ass. Phragmites 
australis is mainly distributed in the upper part of the lakeshore 
zone, specifically the near-shore area, and grows densely in strips; 
this growth habit allows it to easily form a single dominant 
community, thereby occupying the ecological niches of other 
coexisting species. To address the potential ecological competition 
caused by its overexpansion, the "moderate mowing" strategy is 
recommended: this approach involves mowing the above-ground 
part of the plants every autumn while retaining their root systems, 
which helps control the rate of its spread without disrupting 
the basic ecological function of the association. Ass. Zizania 

latifolia, by comparison, is distributed in the lower part of the 
lakeshore zone, namely the deeper water area, and typically grows 
in patches around the embankments of former fishponds. A key 
ecological concern with this association is that the decomposition 
of its residual biomass tends to cause water quality deterioration. 
To mitigate this issue and restore the surrounding habitat, the 
“seasonal cleaning + habitat restoration” strategy is proposed: 
this strategy includes removing aged plant residues in spring 
and simultaneously introducing submerged vegetation such as 
Potamogeton crispus to construct a composite vegetation system, 
which in turn helps improve the overall water quality of the area. 

4.3 The ecological significance of aquatic 
vegetation classification 

Accurate classification of aquatic vegetation is essential for 
ecosystem monitoring and management. The composition and 
density of aquatic vegetations significantly impact ecosystem 
structure and function. Emergent and floating-leaf vegetations near 
shorelines can trap sediments and pollutants, support biodiversity, 
and contribute biomass. However, excessive growth and biomass 
accumulation of emergent aquatic vegetations can adversely aect 
water quality, potentially leading to Brownification water (Li, 
1997; Wang et al., 2022) and lake bogginess (Zhang et al., 1999). 
Aquatic vegetation types are considered key components of aquatic 
ecosystems, especially in shallow lakes when submerged vegetations 
maintain a clear water state (i.e., the macrophyte-dominated state), 
which sustains the clear water phase. Aquatic vegetation largely 
determines the composition of other hydrobionts and the course of 
various processes. The emergent and floating-leaf vegetation define 
the functioning of the lake ecosystem and its resilience. 

It is crucial to have precise and timely information on the 
distribution of aquatic vegetation in both lakeshore zones and lake 
areas. The findings of this study oer scientific support for planning 
and managing ecological reserves, assessing lake resources, 
and monitoring environmental conditions, as well as aiding 
in ecological conservation and sustainable resource utilization. 
Additionally, incorporating high-resolution multispectral satellite 
data synchronized with UAV data can further enhance the accuracy 
and scope of aquatic vegetation classification. 

5 Conclusion 

This study established an accurate classification method for 
aquatic plant associations by combining UAV LiDAR point cloud 
data and RGB imagery (0.1 m spatial resolution). Using PCHM 
and a decision tree model, the study achieved precise mapping 
from a general vegetation formation down to a specific association 
level, resulting in a high-resolution distribution map of lakeshore 
aquatic vegetation. 

The classification accuracy for emergent associations 
in East Lake Taihu ranged from 75% to 95.52% with a 
user accuracy between 79.8% and 97.4% and a kappa 
coeÿcient of 0.855. Among emergent associations, Ass. 
Phragmites australis achieved the highest accuracy at 
97.40%, followed by Ass. Zizania latifolia at 93.80% and 
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Ass. Nelumbo nucifera at 91.20%. Floating-leaf associations showed 
lower classification accuracy, Ass. Nymphoides peltata achieved 
accuracy at 80.20%, and Ass. Trapa natans achieved accuracy 
at 79.80%. 

Unmanned aerial vehicle LiDAR technology enables precise 
recognition of aquatic vegetation formations down to the 
association level, with promising applications based on a large-
scale identification using optical and SAR satellites. This method 
oers a reliable alternative to traditional field sampling and 
can support quantitative inversion of structural parameters like 
biomass, paving the way for advancements in aquatic vegetation 
remote sensing. 
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