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The innovation here is the new classification of aquatic vegetation based on
the association level using unmanned aerial vehicle (UAV)-mounted sensing
technology, and a light detection and ranging (LIiDAR) method to acquire
point cloud data and high-resolution red, green, and blue (RGB) imagery.
This research focuses on aquatic vegetation in the littoral zone of East
Lake Taihu. By innovatively introducing UAV and LiDAR provide clear single
images of both exterior and atmospheric surfaces by using a point cloud
canopy height model (PCHM), VDVI (visible-band difference vegetation index,
spectral information) and a decision tree classification model for littoral aquatic
vegetation at the association level. In terms of data processing, improving data
reliability through point cloud gridding and alignment with field quadrats. After
integrating point cloud and optical image data, we interpret canopy height and
spectral information of aquatic associations by precisely identifying and mapping
vegetation types to their individual vegetation associations. This is the first study
to achieve fine-scale classification of aquatic vegetation at the association level
in lakeshore wetlands based on UAV-LIDAR fusion technology. Results showed
the classification accuracy for these associations ranging from 79.80% to 97.40%.
The higher canopy associations have greater classification accuracy with an
overall classification accuracy of 87.93% and a kappa coefficient of 0.855. The
new association classification method can improve data results on scientific
management of littoral aquatic ecosystems.

KEYWORDS

aquatic vegetation, association classification, LiDAR point cloud, unmanned aerial
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1 Introduction

Lakeshore wetlands are regarded as the kidneys of lakes. A well-
functioning lakeshore wetland not only intercepts and purifies
pollutants entering the lake but also provides a wide range of vital
ecosystem services (Engelhardt and Ritchie, 2001; Cheng et al.,
2020). Aquatic vegetations are a necessary component of lakeshore
wetlands. Generally, the hierarchical levels of vegetation are class,
formation, alliance, and association. The association is the primary
and basic unit of vegetation (Jennings et al., 2009, Landucci et al,
2020). Aquatic vegetation is classified into four formations: (1)
emergent aquatic vegetation, (2) floating-leaf aquatic vegetation,
(3) free-floating aquatic vegetation, and (4) submerged aquatic
vegetation formation (Yu et al., 2022). Each vegetation formation
generally may include several associations, and each association has
its distinctive dominant species. The morphological characteristics
and functions of each association are strongly dependent on the
dominant species and habitat conditions.

For example, emergent plant association like Ass. Phragmites
australis (dominated by common reed) distributes on the upper
side of the lakeshores, while Ass. Zizania latifolia (dominated by
manchurian wild rice) distributes in the lower area of lakeshores,
and the Ass. Nelumbo nucifera (dominated by sacred lotus)
distributes in the open water area (Hong et al., 20215 Li et al., 2018;
Cao, 2007). In some special areas, the emergent aquatic vegetation
includes a complex mosaic of different associations, mainly
due to heterogeneous lakeshore habitats. Different associations
have different morphological characteristics and functions. The
common reed association is a typical emergent plant association
with a stable distribution, but the manchurian wild rice association
and the lotus association may spread too quickly and occupy niches
of other species, leading to a reduced biodiversity. Additionally, the
substantial biomass from these plant remains may worsen water
quality and accelerate the process of lake swampization (Li, 1997;
Zhang et al., 1999; Lawniczak-Malinska and Achtenberg, 2018).

Floating-leaf aquatic vegetations include some associations,
such as the Ass. Trapa natans (dominated by water chestnut) and
the Ass. Nymphoides peltata (dominated by yellow floating heart),
which are common in East Lake Taihu. These two associations
are usually dominated by a single dominant species in some
special areas where two associations form a mosaic of floating-leaf
aquatic vegetations with different size patches. Water chestnut and
yellow floating heart often have significantly different economic
values and ecological functions. For instance, water chestnut is an
important economic plant based on its medicinal uses (Shin et al,
2024). However, the floating-leaf aquatic vegetations overgrowth
covering the water surface will shade and deoxygenate the
water column, deteriorating the water quality due to degradation
(Kornijow et al, 2016; Wang et al., 2022). Submerged aquatic
vegetation is considered a key element in maintaining a clear-water
state and improving water quality in eutrophicated lakes (Sayer
et al, 2010; Ban et al, 2019, Thomaz, 2023). However, different
species of submerged plants exhibit diverse reproductive and
distribution characteristics. For example, the overgrowth of water
caltrop (Potamogeton crispus) is causing various environmental
problems, including degrading both the ecosystem and water
quality (Zhu et al.,, 2024).
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Generally, aquatic vegetation formation includes several
associations formed by different dominant species. These
associations have individual traits in structures,
physiological processes, ecological
functions, economic value, and environmental impacts. These

various traits include biodiversity, purification capacity, carbon

canopy

biomass accumulation,

and other element storage capacities, as well as economic value
(Temmink et al.,, 2022; Delle Grazie and Gill, 2022; Ronowski
et al,, 2023). The composition and spatial distribution of lakeshore
aquatic associations is essential for assessing lakeshore biodiversity,
ecological health, ecosystem functions, and carbon storage.

Traditional methods of surveying lakeshore aquatic vegetations
primarily rely on manual sampling, which is generally accurate
but time-consuming and labor-intensive. Particularly in flooded or
sedimented environments, where thick mud and dense vegetation
limit accessibility, it is often difficult to set up sample plots for
surveys. Moreover, many aquatic plant associations distribute in
lakeshores with various size patches (less than 10 m x 10 m, or
even smaller at I m x 1 m). Some discontinuous small patches form
the basial pattern of aquatic vegetation mosaics. The high spatial
heterogeneity of aquatic vegetations make it increasingly difficult
to obtain the representative samples needed to capture continuous
spatial distribution information. Remote sensing technology, with
its advantages of large-scale coverage, cost-effectiveness, rapid data
acquisition, and dynamic monitoring, has become a crucial tool for
surveying lakeshore aquatic vegetation.

Most current research focuses on using optical remote
sensing to construct various vegetation indices, such as the
Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI), which are used in remote sensing to
measure and monitor aquatic vegetation health, density, and
coverage in lakeshore zones. Optical remote sensing can effectively
differentiates between emergent, floating-leaf, free-floating, and
submerged vegetation formations due to structural and spectral
differences in their canopies (Luo et al., 2022). However, small-scale
differences in the shape and spectral characteristics of vegetation
patches within the same vegetation formation make it difficult to
accurately distinguish their differences (Khanna et al., 2011).

Light detection and ranging, known for its strong penetration
ability and high precision, can capture vertical structural
information of vegetation, such as vegetation height and canopy
cover. LiDAR offers new possibilities when identifying special
vegetations with varying heights and vertical structures. With the
rapid development of UAV technology, many studies have utilized
UAV-mounted LiDAR for fine-scale classification of vegetations,
especially for monitoring forest tree species and their heights.
For example, Hu et al. (2021) developed UAV LiDAR system and
evaluated its capability in estimating both individual tree-level
(i.e., tree height) and plot-level forest inventory attributes (i.e.,
canopy cover, gap fraction, and leaf area index). Their results
showed that UAV LiDAR data can accurately measure tree heights
and canopy structures, successfully classifying forest types. LIDAR
point cloud data also provides information on reflection intensity
and the number of returns, which is useful for identifying plant
community types and densities. Puletti et al. (2024) investigated
the heterogeneity of forest structure in broadleaf forests using UAV
LiDAR data, with a particular focus on tree crown features and
their different information content compared to diameters. UAV
LiDAR also proposes a semi-automatic approach for to assess tree
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crown competition indices. However, the low spatial resolution
of traditional satellite remote sensing data, making it difficult to
capture vegetation differences at the association level (usually
0.1-10 m scale); the complex habitat of lakeshore wetlands makes
large-scale manual field surveys difficult to carry out, resulting in
a lack of association-level classification data; single optical remote
sensing is susceptible to spectral confusion (e.g., spectral overlap
between floating-leaf aquatic vegetation), and the application of
LiDAR technology in aquatic vegetation research started late.

employed UAV LiDAR data
to generate a habitat map of reed beds, thereby verifying the
efficacy of height information derived from LiDAR in vegetation
verified that UAV LiDAR
data can accurately measure the presence, maximum height, and

classification.

horizontal extent of vegetation canopy. Therefore, employing
LiDAR to identify aquatic plant associations in lakes and lakeshore
areas might represent a novel approach.

The objective of this study was to obtain remote sensing
data of lakeshore vegetation using UAV-mounted multispectral
and LiDAR sensors, and by integrating optical and LiDAR data—
with data reliability enhanced through point cloud gridding and
alignment with field quadrats—alongside the application of a point
cloud canopy height model (PCHM), the visible-band difference
vegetation index (VDVI, capturing spectral information), and
a decision tree classification model. By combining surface
spectral information from optical sensors with vertical structural
information from LiDAR, we were able to obtain a novel, fine-
scale remote sensing classification method for different lakeshore
plant associations, and this is the first study to achieve fine-
scale classification of aquatic vegetation at the association level in
lakeshore wetlands based on UAV-LiDAR fusion technology. This
approach advances the classification of lakeshore aquatic vegetation
from formation (the upper level of hierarchy of vegetation
classification) to association (lower level of hierarchy of vegetation
classification). The fine-scale remote sensing classification results
provide methodological and data support for both resource surveys
and ecological monitoring of lakeshore wetlands. These results also
provide a better understanding of the dynamic changes in aquatic
plant associations. The results are also a helpful resource for lake
restoration and management efforts.

2.1 Study area

East Taihu Lake bay is a bay in the eastern part of Taihu Lake,
China ( ). The bay has a total length of 27.5 km,
a maximum width of 9.0 km, a water area of 131 km?, and a
water volume of approximately 1.22 x 10% m>. The average water
depth is approximately 1.2-1.3 m, and the water exchange rate is
approximately 10 days. East Lake Taihu serves as a flood discharge
channel for the inflowing water from Lake Taihu. In addition to
being a crucial breeding and protection area for fish and a base
for commercial fish production, East Lake Taihu also provides an
important water source for neighboring regions, such as Shanghai,
Suzhou, and Wuxi.
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The East Taihu Lake is very shallow. This study covers the
lakeshore zone at the mouth of East Taihu Lake Suzhou Bay, located
at the southern tip of Dongshan Island ( ). This region
is rich in aquatic vegetation. Field surveys indicate that the area
is primarily dominated by emergent aquatic vegetation (EAV),
floating-leaf aquatic vegetations (FLAV), and submerged aquatic
vegetation (SAV;

fine-scale classification methods for plant associations.

). It is an ideal location for developing

The aquatic plant associations of species composition,
distribution areas, and dynamics in this region not only directly
affect water quality, water supply security, and fishery production,
but also play a key role in the ecological succession of the lake.
Recently, many researchers have focused on aquatic plants of
East Lake Taihu ( ; H

). Mapping the spatial distribution of plant associations in this
lakeshore area is essential for managing the lake ecosystem.

2.2 Methods

The general workflow for this study is illustrated in
Three tasks follow: (1) In situ quadrat investigation with UAV data
acquisition and preprocessing, (2) data processing extraction of
quadrat classification indicators, and (3) decision tree model and
validation, generating vegetation classification maps.

2.2.1 Data collection and processing
2.2.1.1 Field data collection and processing

Field surveys were conducted during the peak growing season
of aquatic plants in 2023 from June 20 to 25 and from June 27 to
30. A total of 111 quadrats were set up in the study area ( )
each quadrat was 1 m x 1 m. For each quadrat, in situ records were
kept, providing a database of plant species composition. Moreover,
the plant count and height were measured for each species using a
tape measure. Water depth and center coordinates of each plot were
recorded concurrently; then, underwater and over water surface
heights were calculated for each quadrat. All plants within the
quadrat were harvested, and biomass (fresh weight) were measured
separately.

2.2.1.2 Unmanned aerial vehicle (UAV) data collection and
processing

The UAV data collection was synchronized with in situ plot
surveys using a DJI M300 real time kinematic (RTK) drone
equipped with an L1 LiDAR sensor, L1 RGB camera, and RTK
system. The L1 LiDAR sensor uses the 905 nm band, with a
maximum power of 60 W. The ranging accuracy (Root Mean
Square, RMS 10) is an error of 3 cm at 100 m. The system accuracy
(RMS 10) is as follows: the planar accuracy is an error of 10 cm at
50 m; the elevation accuracy is an error of 5 cm at 50 m. It supports
a maximum of 3 echoes. The field of view (FOV) is 70.4 x 4.5° for
repetitive scanning; and 70.4 x 77.2 for non-repetitive scanning.
The point cloud data rate is a maximum of 240,000 points per
second for a single echo; and a maximum of 480,000 points per
second for multiple echoes. The L1 RGB camera has an image
resolution of 20 million pixels, a focal length of 8.8 mm/24 mm
(equivalent), a sensor size of 1 inch, a shutter speed of 1/2000-8 s for
the mechanical shutter; and 1/8000-8 s for the electronic shutter.
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FIGURE 1

Quadrats

0 025 05

(a) Location of the study area, (b) Grayscale map of Lake Taihu using Landsat 8 OLI B4 (RED) band, showing the location of the study area, and (c)
DSM map of the study area obtained from UAV data, showing sampling point distribution locations.

4

TABLE 1 Main aquatic vegetation formation, association and dominant species in the study area.

Vegetation formation

Association and dominant Common names of dominant
species species

EAV (emergent aquatic vegetation) Phragmites australis Common reed Pa
Zizania latifolia Manchurian wild rice Zl
Nelumbo nucifera Sacred lotus Nn
FLAV (floating-leaf aquatic vegetations) Trapa natans Water chestnut Tn
Nymphoides peltata Yellow floating heart Np

SAV (submerged aquatic vegetation) Not identified to species level SAV

The ISO is 100-3200 (automatic), and 100-12800 (manual), and
the aperture is f/2.8-f/11. Data was collected at an altitude of 100 m
in a zigzag flight pattern, covering the entire study area. Collected
data included flight path and waypoint information for aquatic
vegetations and water surfaces, airborne triangulation (AT) data,
RGB imagery, and point cloud scatter data.

The UAV flight control system and RTK system calculated
flight trajectories, waypoint information, and AT data. Airborne
triangulation is a key step in UAV photogrammetry due to
its ability to utilize precise camera positioning, and record at
each exposure using RTK equipment, as a crucial observational
parameter in AT calculations. This approach accurately established
the 3D coordinates of the camera’s phase center at each exposure,
achieving high-precision geographic information acquisition
for map production.

Use the L1 RGB camera on the UAV to capture RGB images,
and use the L1 LiDAR sensor on the UAV to record real-time
point clouds. After that, use the airborne triangulation (AT) data
to geo-reference both these RGB images and the point cloud

Frontiers in Forests and Global Change 04

data. The flight speed is set at 10 m/s, the flight altitude is
100 m, the pitch angle of the gimbal is —60°, the scanning
angle range is from —35° to 35°, the laser side overlap rate was
10%, the visible - light side overlap rate was 70%, the number
of echoes was 3, the sampling frequency was 160 Hz, and the
resolution of the orthophoto was 2.73 cm/pixel. The point cloud
resolution was 119 points/m?. Colorized point cloud data were
generated with RGB information at a resolution of 0.1 m and
a horizontal accuracy of 0.1 m, as well as a vertical accuracy of
0.05 m. AT data was used to geo-reference point cloud data and
produce RGB orthophotos, point cloud scatter data, and true-color
point cloud data.

The purpose of surveying ground quadrats is to validate UAV
point cloud data (Figure 3). This requires performing spatial
alignment between field data and UAV data, ensuring each quadrat
corresponds precisely to a grid cell in the point cloud dataset. This
alignment enables the validation of point cloud accuracy and the
classification precision of vegetation or terrain samples within the
designated quadrats.
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FIGURE 2
General workflow of study.
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The correspondence between quadrats and point cloud.
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Preprocessed PDEM and PDSM. (a) PDEM and PDSM from a top-down view, (b) PDEM and PDSM in cross-sectional view (horizontal perspective), (c)
actual photograph of point location, and (d) profile illustration of the wetland vegetation point cloud data acquired by UAV LiDAR.

2.2.2 Construction of the PCHM model

The aquatic plant association height was calculated using a
canopy height model (CHM), which integrates a digital surface
model (DSM) and digital elevation model (DEM;

). DSMs and DEMs are typically represented by either regular
rectangular grids or irregular triangulated networks. When point
cloud data is converted into grids or triangulated networks, the
process can be highly labor-intensive and may reduce data integrity
and accuracy. In this study, we developed a direct point-based
approach for constructing a point cloud digital surface model
(PDSM) and a point cloud digital elevation model (PDEM) to
calculate aquatic plant association height. This point cloud canopy
height model (PCHM) represents the aquatic plant association
canopy height ( ) and was evaluated using the R? and
RMSE between estimated and measured canopy heights.

PCHM = PDSM — PDEM (1)

The specific workflow includes initial preprocessing of point cloud
point cloud data, using DJI Terra v.4.0.10 software. Preprocessing
removes noise points with abnormal heights and automatically
classifies ground and water surface points, which are used to
construct the PDEM ( ). Remaining points are categorized
as vegetation points and used to create the PDSM ( ). The
XY coordinates of the PCHM match those of the PDSM (

). In the PCHM, canopy height is determined on a point-by-point
basis. For each PDSM point, the nearest PDEM point is identified
based on XY coordinates, and the difference between their heights
(Z-axis values) represents the canopy height. Each point in the
PCHM contains RGB information, spatial position, and canopy
height for the aquatic plant association.

Frontiers in

2.2.3 Establishment of VDVI index for aquatic
plant associations in littoral zone

This study employed the visible light spectrum to construct
a vegetation index (VI) for aquatic vegetation by calculating the
) based
on RGB data from scatter points ( ). The DJI M300
RTK UAV used in this study is only equipped with an RGB camera

visible-band difference vegetation index (VDVI;

(without a multispectral sensor), and VDVT is calculated based on
RGB bands, which can be directly extracted from existing data;
in contrast, NDVI requires near-infrared band data, which cannot
be obtained with the existing equipment. Statistical analysis of the
VDVI across representative sample points of dominant species in
the study area revealed that while VDVI can distinguish certain
aquatic plant associations, it faces significant limitations for fine-
scale classification of aquatic plant associations. This challenge
is primarily because the VDVI index, built from optical bands,
captures only differences in vegetation canopy characteristics
and lacks the capacity to discern vegetation’s vertical structural
information. However, in the FLAV, because the vegetation canopy
is flush with the water surface, there is no necessity for information
on the vertical structure of vegetation; instead, only VDVI is
employed for differentiation.

Moreover, our analysis found instances where aquatic plant
associations with similar VDVI values had significant height
differences, illustrating the phenomenon of similar height, different
spectrum; similar spectrum, different height. This observation
indicates that, when paired with the PCHM, the VDVT can support
precise mapping and classification of aquatic plant associations

( )-
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FIGURE 5
Decision tree model flow chart.

The calculation formula of the Visible-Band Difference
Vegetation Index (VDVI) is expressed as follows:

2G—-R - B
VDVI = =—— —— — 2(—1 < VDVI < 1) )
2G+ R + B

with a value range of -1 < VDVI < 1, where G denotes the visible
green band, R represents the visible red band, and B stands for the
visible blue band.

To mitigate the influence of outliers and leverage the inherent
separation between groups, a non-parametric threshold selection
method was employed, structured as follows:

(1) Data Trimming

For each group, the top 5% and bottom 5% of values were
truncated, retaining the central 90% of the data distribution (i.e.,
the 5th to 95th percentiles). This step reduces noise from extreme
values while preserving the core distribution characteristics.

(2) Non-Overlapping Interval Validation

The trimmed ranges were defined as [in, Qgsi] ( )
for group Gj. A separation condition was evaluated:Qg1 < ng
(or vice versa), the threshold is calculated as T ( ). This
ensures a clear boundary between groups.

Frontiers in 07

Trimming Process: For a dataset i, the retained interval after
trimming is:

Z.trimmed = {X €X|Q5 (X) < x =< Qo (X)} (3)

Threshold  Definition: If groups G; and G, satisfy
Qo5(G1) < Qs(G), the threshold T is:

_ Qo5(G1) + Qs(Ga)
2

T )
In the formulas (3) and (4) for non-overlapping interval validation
above, i represents the index of the dataset, x represents an
individual data point within the dataset, X represents the dataset.
Q represents a percentile where Qs specifically stands for the 5th
percentile (a value below which 5% of the data in the dataset lies)
and Qo5 represents the 95th percentile (a value below which 95% of
the data in the dataset lies), G represents a group, and T represents
the classification threshold used to clearly distinguish between two
groups when the separation condition is satisfied.

(3) Iterative Robustness Adjustment

If overlap persisted after initial trimming, the truncation
proportion was incrementally increased (e.g., 10%, 15%) until the
separation condition was satisfied. This iterative approach balances
minimal data loss with reliable threshold identification.
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2.2.4 Fine-scale classification method for aquatic
plant associations in the littoral zone using PCHM
and VDVI

The classification of aquatic plant associations was performed
based on the point cloud canopy height model (PCHM) and the
visible-band difference vegetation index (VDVI). A decision tree
model was employed, using a two-layer conditional filter to classify
aquatic plant associations (Figure 5). In wetland ecosystems,
there were significant differences between emergent and floating-
leaf aquatic vegetations associations in their heights relative to
the water surface (Table 2). The water level fluctuation can
affect the distribution of aquatic vegetation, especially during the
germination and seedling stages where water level fluctuations have
a significant impact on the growth and distribution of aquatic
plants. This article only focuses on the remote sensing classification
of typical aquatic vegetation during the vigorous growth period.
Based on our field observation results and other research finding
(Tippery et al., 2021), we conclude that even when these floating
leaf plants are in vigorous growth or lifted by wind and waves,
they will not rise more than 20 cm above the water surface. The
heights of emergent aquatic vegetation associations usually were
about tens of centimeters or more, for instance, generally Ass.
Phragmites australis reached 200-350 cm; Ass. Zizania latifolia
100-200 cm, and Ass. Nelumbo nucifera just fewer than 100 cm
over water surface. In contrast, the leaves of floating-leaf aquatic
vegetations associations floated on the water surface unless dense
growth, with their flowers emerging above the water surface. When
the density was too high or they were lifted by wind-wave forces, the
leaves could rise above water surface. However, generally neither
the flowers nor the leaves would be more than 20 cm over water
surface. For example, Ass Nymphoides peltata generally do not
exceed 10 cm over water surface.

The initial step to classifying plant associations into three
major groups begins with height data obtained from LiDAR:
These vegetation formations are submerged aquatic vegetation
(SAV) and floating-leaf aquatic vegetations differentiation among
associations within the same formation. We identified VDVI value
differences between associations of distinct species. For example,
both Zizania latifolia and Phragmites australis belong to emergent
aquatic vegetation formations and have similar average heights
(1.86 m and 2.70 m, respectively). However, their VDVI ranges are
markedly different, averaging 0.3924 for Zizania latifolia and 0.1938
for Phragmites australis.

TABLE 2 Measured average canopy height of aquatic plant associations
over the water surface.

Dominant species Abbreviation Average
canopy height
over water
surface
Phragmites australis Pa 2.70 m
Zizania latifolia Zl 1.86 m
Nelumbo nucifera Nn 0.40 m
Trapa natans Tn 0m
Nymphoides peltata Np 0m
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Following this approach, we trained VDVI thresholds for
each association sample and constructed a two-tier decision tree
classification model. This model was then applied to the study area
to achieve fine-scale remote sensing classification and mapping of
the aquatic plant associations.

Importantly, both VDVT values and plant elevation of aquatic
vegetation exhibit temporal variability. The sampling period
chosen in this study corresponds to the peak growing season
for most aquatic species, ensuring that the VDVI and elevation
thresholds derived herein can be applied to inter-annual vegetation
classification during this specific seasonal window.

3 Results

3.1 Validation of calculation results of
point cloud canopy height model
(PCHM)

Canopy height is a key parameter for identifying aquatic plant
associations. In this study, the point cloud canopy height model
(PCHM) was developed for calculating the canopy heights of
plant associations (see Section “2.2.2 Construction of the PCHM
model”). While using UVAs to obtain the point cloud data of
typical aquatic plant associations in the study area, we conducted
on-site measurements of the canopy heights of three types of
emergent aquatic plant associations in 111 quadrats. We compared
the model calculated results and the measured heights to verify
the accuracy of the model. The validation indicated that the Ass.
Phragmites australis had the greatest canopy height and the highest
PCHM accuracy (R? = 0.97, RMSE = 0.0999 m). The Ass. Zizania
latifolia ranked second in canopy height and PCHM accuracy
(R? = 0.96, RMSE = 0.0942 m). The Ass. Nelumbo nucifera had the
lowest canopy height and the lowest PCHM accuracy (R? = 0.88,
RMSE = 0.0620 m) (Figure 6).

However, it is difficult to distinguish between the floating-
leaf aquatic vegetations associations, submerged vegetation, and
the water surface using this model. Therefore, it is necessary
to comprehensively utilize other information and further discuss
methods for more accurate classification.

3.2 Classification of aquatic plant
associations using a decision tree model

The optical information of plant associations is a key parameter
for identifying aquatic plant associations. In this study, the VDVI
was used to obtain the optical information of different associations.
Through the location information in the ground quadrats, we
accurately knew the associations represented by the point clouds
within some of the grids. By calculating the RGB features in the
point clouds corresponding to different associations, we found that
there were significant differences in the VDVI indices of different
associations. According to the calculation results of the VDVI
model (Figure 7), the VDVI value of the Ass. Zizania latifolia is
the highest (with an average value of 0.3565), followed by that of
the Ass. Trapa natans (with an average value of 0.3291), and there
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is a certain overlap between them. The average VDVI values of Ass.
Phragmites australis, Ass. Nelumbo nucifera, and Ass. Nymphoides
peltata are 0.1607, 0.1713, and 0.1245, respectively, and there is
also a certain overlap among them. The average VDVI value of the
submerged vegetation is the lowest, only 0.0272, and the average
VDVI value of the open water surface is negative. Therefore, it is
very difficult to classify aquatic plant associations using only the
VDVI index.

The decision tree model was created and used to classify aquatic
plant associations. A 0.1 m resolution distribution map of typical
vegetation formations and aquatic plant associations in the study
area was produced ( ).

The total study area spans approximately 8.87 km?2. The
distribution areas of the following associations are: the floating-
leaf aquatic vegetations (FLAV) covers 1.78 km?, including the
water chestnut association covers 1.22 km?; yellow floating heart
association covers 0.56 km?, and emergent aquatic vegetation

Frontiers in

(EAV) covers 3.81 km?, as well as the sacred lotus association covers
1.47 km?. The common reed association covers 0.77 km?, and the
Manchurian wild rice association covers 1.57 km?. The submerged
aquatic vegetation (SAV) covers about 0.26 km?.

The study area was formerly occupied by enclosing nets and
man-made fishponds designed to create fish farms. In order to
restore the lake ecosystem and improve the water quality, since
2019, all the enclosing nets and fishponds have been completely
removed, and the project of returning fishing areas to the lake
has been implemented. However, the embankments of some
fishponds are still underwater. The common reed association
predominantly distributes in stripped along the lakeshore, or
in grid-like embankments around former fishponds. Many large
patches of the sacred lotus association can be found in the central
area of former fishponds. Generally, the common reed grows in
shallow areas, often on the embankments of former fish ponds or
lakeshore, and the sacred lotus grows in the deeper area such as
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Visible-band difference vegetation index (VDVI) values of dominant aquatic plant associations in the study area.

the center area of fishpond. The Manchurian wild rice association
distributes in the deeper water area below the distribution belt
of common reed. The associated floating-leaf aquatic vegetations,
such as water chestnut association and the yellow floating heart
association are distributed in patches in the deepest areas of the
former fishpond. This interpreted distribution of aquatic plant
associations is based on the decision tree model, which aligns well
with the actual vegetation distribution and topographic features
in the study area.

3.3 Accuracy verification of aquatic plant
association classifications

A total of 3,000 random samples were manually selected
from RGB images, and classification accuracy was validated using
an error matrix. The results indicated an overall classification
accuracy of 87.93% and a kappa coefficient of 0.855 (Figure 9).
Classification accuracy varied across vegetation formations, with
mapping accuracy ranging from 75% to 95.52% and user
accuracy from 79.8% to 97.4%. Higher canopy of aquatic plant
associations demonstrated higher classification accuracy, with
the emergent association Ass. Phragmites australis achieving the
highest classification accuracy at 97.40%, followed by Ass. Zizania
latifolia at 93.80%, and Ass. Nelumbo nucifera at 91.20%. Floating-
leaf associations exhibited lower accuracy, Ass. Nymphoides peltata
at 80.20%, Ass. Trapa natans recording the lowest classification
accuracy at 79.80% (Table 3).
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4 Discussion

4.1 Advantages of UAV LiDAR point cloud
data in wetland vegetation applications

The complex and inaccessible environment of the lakeshore
zone makes it challenging to obtain extensive, high-resolution
maps of aquatic plant associations. Traditional studies, while often
relying on satellite data, typically differentiate only between general
vegetation formations and water bodies; therefore, traditional
studies are limited in achieving fine-scale classifications of
aquatic plant associations. This approach also faces challenges in
distinguishing between aquatic vegetation and algal blooms in
eutrophic waters. The spatial heterogeneity of lakeshore aquatic
vegetation, especially in enclosed bays, often contains many small
patches of aquatic plant associations that exhibit spectral similarity.
Constrained by the spatial and spectral resolution of satellite
data, even high-resolution satellite imagery can miss capturing the
differences in these patches.

In this study, we utilized a combination of UAV LiDAR and
RGB imagery to overcome these limitations. By capturing high-
resolution elevation and color information from point cloud data
and RGB imagery, we developed a precise classification method.
Grid processing of UAV point cloud data enabled alignment with
ground survey plots, enhancing classification model reliability
and accuracy, allowing fine-scale classification of vegetation from
formation level to association levels. The high accuracy of this
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(a) Distribution of typical aquatic vegetation formations in the study area and (b) distribution of aquatic plant associations in the study area

method effectively replaces traditional field sampling and can cover
sample areas on a spatial scale, covering several square kilometers.
Moreover, UAV-based LiDAR provides high-precision point
cloud data, making it possible to improve classification accuracy
at a lower cost. Previous studies have used LiDAR to identify
specific plant species, and our method also demonstrated a high
precision for reed (Phragmites australis) identification, which
is consistent with previous findings ( ;
; ). Compared
with traditional satellite imagery-based methods, LiDAR offers
significant advantages due to its capability to capture both
horizontal and vertical structural information (
; ). This study extends the application of LIDAR
to complex environments containing multiple species, maintaining
accuracy in species identification despite high biodiversity.

4.2 Accuracy of the decision tree model
based on the PCHM model and VDVI
index

Given the characteristics of aquatic plant associations, their
point cloud data exhibit significant spatial heterogeneity. For
different plant associations, distinct features can be observed
in both height and VDVI index values when applying specific
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thresholds. Therefore, the selection of classification algorithms
should prioritize models with strong interpretability (

). This interpretability is critical for vegetation classification
studies using point cloud data, as understanding the underlying
logic and rationale behind classification is essential in wetland
ecological research. Such transparency allows researchers to clearly
visualize the role of each feature in the classification process
and how combinations of different features influence final results,
thereby facilitating verification of corresponding plant parameters.

Moreover, point cloud datasets typically possess characteristics
of large volume and high dimensionality, necessitating substantial
computational resources and time for processing and analysis.
Decision tree algorithms demonstrate superior computational
efficiency in handling such large-scale datasets. Unlike black-box
models such as neural networks and deep learning, whose internal
decision-making processes are inherently opaque, decision trees
provide explicit classification rules that can be easily interpreted.
Additionally, training neural networks requires extensive amounts
of labeled data, which is often impractical to obtain for
). Neural
networks also suffer from challenges related to complex parameter

accurately annotated point cloud datasets (

tuning and optimization, increasing the risk of overfitting and
compromising model generalization capabilities. The primary
objective of this study is to establish a highly reliable and accurate
method for generating interpretable large-scale training datasets.
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TABLE 3 Confusion in matrix statistical accuracy.

Association Mapping accuracy Omission User accuracy Commission
Pa 95.30% 4.70% 97.40% 2.60%
zl 95.52% 4.48% 93.80% 6.20%
Nn 88.37% 11.63% 91.20% 8.80%
Tn 75.00% 25.00% 79.80% 20.20%
Np 83.54% 16.46% 80.20% 19.80%
SAV 90.64% 9.36% 85.20% 14.80%

TABLE 4 Authors’ new canopy height mode (CHM) accuracy compared
with existing research.

CHM method Data source of Model accuracy
CHM (highest)

Khosravipour et al., Helicopter LIDAR R2 =0.54,
2015 RMSE =0.32 m

Hao et al., 2021 UAV RGB R2=10.87,
RMSE =0.24 m

Tamiminia et al., GEDI 2A, Sentinel-2 R2=0.74,
2024 MS]I, Sentinel-1 SAR RMSE = 4.40 m

Torresani et al., 2023 GEDI 2A R2=0.73

Sumnall et al., 2017 UAV Lidar R2=0.87,
RMSE =2.10 m

Our methods UAV Lidar R2=0.97,

RMSE = 0.0999 m

The constructed point cloud canopy height model (PCHM)
demonstrates satisfactory accuracy across three plant associations,
with the Ass. Phragmites australis achieving the highest precision
(R? = 0.97 and RMSE = 0.0999 m), while the Ass. Nelumbo nucifera
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has the lowest canopy height, which exhibits the lowest precision
(R? = 0.88 and RMSE = 0.0620 m, as shown in Figure 7). Research
on vegetation height often employs CHM models, typically using
UAV (Khosravipour et al., 2015; Hao et al., 2021; Sumnall et al,,
2017) or satellite LIDAR data (Tamiminia et al., 2024; Torresani
et al, 2023), primarily to study forest trees. While satellite data
information struggles to achieve high precision for low-lying
vegetation, some satellite datasets, such as ICESat-2 ATL08 and
GEDI L2A products, monitor vegetation height. ICESat-2 ATL08
samples were found along a track at approximately 0.7 m intervals
with areas measured between 11 and 12 m. Each group was spaced
90 m apart along 3.3 km tracks. GEDI L2As ground footprint
diameter measured 25 m, spaced 60 m along the track (Liu et al.,
2021). Although this data lacks the resolution needed to accurately
assess ground vegetation height, it is widely used for identifying tall
forest trees. However, relying solely on satellite data in complex
aquatic habitats for low-lying aquatic vegetation is insufficient. In
contrast, the UAV LiDAR data employed in this study achieved
0.1 m precision in canopy height measurements, allowing for
accurate fine-grained classifications of small community patches.
Our method has been compared to existing studies and exhibits
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superior accuracy relative to the precision requirements of each
respective research objective ( ). This method effectively
replaces traditional manual field sampling, extending sample plot
dimensions to the square-kilometer scale and providing essential
ground sampling data for satellite remote sensing to perform
quantitative, detailed aquatic community classifications. The same
approach can be used to complete different tasks: (1) to conduct
future quantitative vegetation parameter retrieval, (2) to address
current challenges in obtaining ground sample data for quantitative
modeling of aquatic vegetation parameters and (3) to expand the
scope of aquatic vegetation remote sensing.

The overall trend in wetland plant classification accuracy
shows that taller vegetation tends to achieve higher classification
precision, with elevation accuracy differences directly impacting
final classification results. LiDAR systems may encounter
challenges when scanning low-growing vegetation, often
misclassifying plant structures with water surfaces or soil,
resulting in significant noise points that distort actual elevation
measurements. For FLAV Ass. Nymphoides peltate and Ass. Trapa
natans, their identical elevation values (as they float on the water
surface) necessitate exclusive reliance on VDVI thresholds for
differentiation. This results in inherently lower classification
accuracy compared to EAV, which benefit from additional height-
based discrimination. The main reason for the low classification
accuracy of Nymphoides peltate and Trapa natans is sole reliance
on VDVI, and the causes also include: first, the similar growth
morphology of Nymphoides peltate and Trapa natans (both
are floating-leaf plants with similar leaf sizes, approximately
5-10 cm), resulting in small differences in canopy structure
information obtained by LiDAR; second, the mosaic growth of
Nymphoides peltate and Trapa natans in some areas of East Taihu
Lake (patch size < 5 m), leading to a high proportion of mixed
pixels (about 20%), which further intensifies spectral confusion;
third, water background interference (superposition of reflectance
spectra of floating-leaf vegetation and water surface), making
it impossible for VDVI to effectively distinguish the boundary
between vegetation and background.

Secondly, among EAV, Ass. Nelumbo nucifera exhibits the
lowest classification accuracy due to its high variability in growth
heights, ranging from floating leaf structures at water level to
significantly elevated stems above the surface. In contrast, Ass.
Zizania latifolia and Ass. Phragmites australis demonstrate more
homogeneous height distributions, which likely contributes to
their significantly higher classification accuracies compared to
Ass. Nelumbo nucifera. Beyond the height-related traits that
support their classification accuracy, these two EAV associations
also present distinct spatial distribution patterns and associated
ecological impacts—factors that further highlight the practical
value of their precise identification and mapping. Ass. Phragmites
australis is mainly distributed in the upper part of the lakeshore
zone, specifically the near-shore area, and grows densely in strips;
this growth habit allows it to easily form a single dominant
community, thereby occupying the ecological niches of other
coexisting species. To address the potential ecological competition
caused by its overexpansion, the "moderate mowing" strategy is
recommended: this approach involves mowing the above-ground
part of the plants every autumn while retaining their root systems,
which helps control the rate of its spread without disrupting
the basic ecological function of the association. Ass. Zizania
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latifolia, by comparison, is distributed in the lower part of the
lakeshore zone, namely the deeper water area, and typically grows
in patches around the embankments of former fishponds. A key
ecological concern with this association is that the decomposition
of its residual biomass tends to cause water quality deterioration.
To mitigate this issue and restore the surrounding habitat, the
“seasonal cleaning + habitat restoration” strategy is proposed:
this strategy includes removing aged plant residues in spring
and simultaneously introducing submerged vegetation such as
Potamogeton crispus to construct a composite vegetation system,
which in turn helps improve the overall water quality of the area.

4.3 The ecological significance of aquatic
vegetation classification

Accurate classification of aquatic vegetation is essential for
ecosystem monitoring and management. The composition and
density of aquatic vegetations significantly impact ecosystem
structure and function. Emergent and floating-leaf vegetations near
shorelines can trap sediments and pollutants, support biodiversity,
and contribute biomass. However, excessive growth and biomass
accumulation of emergent aquatic vegetations can adversely affect
water quality, potentially leading to Brownification water (

; ) and lake bogginess ( ).
Aquatic vegetation types are considered key components of aquatic
ecosystems, especially in shallow lakes when submerged vegetations
maintain a clear water state (i.e., the macrophyte-dominated state),
which sustains the clear water phase. Aquatic vegetation largely
determines the composition of other hydrobionts and the course of
various processes. The emergent and floating-leaf vegetation define
the functioning of the lake ecosystem and its resilience.

It is crucial to have precise and timely information on the
distribution of aquatic vegetation in both lakeshore zones and lake
areas. The findings of this study offer scientific support for planning
and managing ecological reserves, assessing lake resources,
and monitoring environmental conditions, as well as aiding
in ecological conservation and sustainable resource utilization.
Additionally, incorporating high-resolution multispectral satellite
data synchronized with UAV data can further enhance the accuracy
and scope of aquatic vegetation classification.

This study established an accurate classification method for
aquatic plant associations by combining UAV LiDAR point cloud
data and RGB imagery (0.1 m spatial resolution). Using PCHM
and a decision tree model, the study achieved precise mapping
from a general vegetation formation down to a specific association
level, resulting in a high-resolution distribution map of lakeshore
aquatic vegetation.

The classification accuracy for emergent associations
in East Lake Tajhu ranged from 75% to 95.52% with a

user accuracy between 79.8% and 97.4% and a kappa
coefficient of 0.855. Among emergent associations, Ass.
Phragmites  australis achieved the highest accuracy at

97.40%, followed by Ass. Zizania latifolia at 93.80% and
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Ass. Nelumbo nucifera at 91.20%. Floating-leaf associations showed
lower classification accuracy, Ass. Nymphoides peltata achieved
accuracy at 80.20%, and Ass. Trapa natans achieved accuracy
at 79.80%.

Unmanned aerial vehicle LIDAR technology enables precise
recognition of aquatic vegetation formations down to the
association level, with promising applications based on a large-
scale identification using optical and SAR satellites. This method
offers a reliable alternative to traditional field sampling and
can support quantitative inversion of structural parameters like
biomass, paving the way for advancements in aquatic vegetation
remote sensing.
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