

OPEN ACCESS

EDITED BY Zisheng Xing, Agriculture and Agri-Food Canada (AAFC),

Barbara Vento, CONICET Mendoza, Argentina

*CORRESPONDENCE Fei Li Dan Liu ☑ liudan750@126.com

RECEIVED 08 August 2025 ACCEPTED 11 October 2025 PUBLISHED 27 October 2025

Zhang W, Cheng Q, Li F, Kumar A, Qin G, Liu L, Hui D, Li H, Yuan X and Liu D (2025) Anthropogenic and climatic drivers of alpine wetland degradation: a multi-scale

Front. For. Glob. Change 8:1682353. doi: 10.3389/ffgc.2025.1682353

COPYRIGHT

© 2025 Zhang, Cheng, Li, Kumar, Qin, Liu, Hui, Li, Yuan and Liu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use distribution or reproduction is permitted which does not comply with these terms.

Anthropogenic and climatic drivers of alpine wetland degradation: a multi-scale perspective

Wenling Zhang¹, Qitai Cheng², Fei Li^{2*}, Amit Kumar³, Guiyong Qin¹, Lu Liu¹, Dafeng Hui⁴, Hepeng Li⁵, Xia Yuan⁶ and Dan Liu^{1,2}*

¹Department of Agricultural and Forestry Science and Technology, Chongqing Three Gorges Vocational College, Chongqing, China, ²School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China, ³School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, China, ⁴Department of Biological Sciences, Tennessee State University, Nashville, TN, United States, ⁵Zhejiang Academy of Forestry, Hangzhou, China, ⁶School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China

Alpine wetlands play a vital role in water storage, ecosystem services, biodiversity conservation, material recycling, climate change mitigation, and environmental purification. At present, these high-elevation and high-latitude ecosystems are facing dual threats from the combined impacts of climate change and human activities. This perspective reveals that climate-related factors such as phenological changes and plant migrations, as well as human activities like agricultural reclamation, have significantly damaged these ecosystems. To address alpine wetland degradation, multiple strategies are proposed through integrated approaches. First, exploring the synergistic application of multiple restoration techniques, including ditch-filling, terrain-leveling, invasive species removal, and vegetation restoration. Second, establishing long-term ecological monitoring frameworks, including extreme climate and water level monitoring, vegetation and soil survey, among others. Third, sustained investments in scientific research and active public awareness and stakeholder engagement. Through these comprehensive efforts, integrating traditional ecological knowledge with modern restoration techniques, we can jointly safeguard biodiversity, maintain ecosystem services, mitigate the degradation of alpine wetlands and preserve these high-value ecological systems for future generations.

KEYWORDS

alpine ecosystems, climate and human disturbances, wetland conservation, ecological restoration, monitoring frameworks, sustained investments

1 Introduction

Alpine wetlands, which are typically distributed at mid- to low-latitude high mountain or mid- to high-latitude plateaus, such as the Tibetan Plateaus and Yunnan-Kweichow Plateau (Zhang et al., 2025), play an important role in water storage, ecosystem services, biodiversity conservation, material recycling and environmental purification (Kang et al., 2021; Vahsen et al., 2023). These ecosystems are renowned as biodiversity hotspots, sheltering numerous rare, endemic, and endangered plant and animal species. For instance, alpine wetlands are crucial habitats for migratory birds, providing abundant food resources, including insects, small fish, and aquatic plants, as well as safe resting and breeding sites (Ghimire and Regmi,

2024). In addition, alpine wetlands function as both "natural water towers" and "water purifiers," which can absorb and store large amounts of precipitation and glacial meltwater during rainy season and ensure a stable water supply for surrounding rivers and streams during dry season (Toetz, 1995; Acreman and Holden, 2013). Moreover, due to the accumulation of remnants of plant litter and animals and the suppressed microbial and enzyme activity under anaerobic conditions, wetlands store substantial quantities organic carbon and subsequently play an vital role in mitigation climate change (Temmink et al., 2022).

Alpine wetlands are complex ecosystems, that include water bodies, vegetation, soil, and the associated wildlife. These components interact to maintain the functions and stability of alpine wetlands (Xiong et al., 2023). For example, wetland vegetation plays an indispensable role in purifying waterbody, providing food sources for wild animals, maintaining biodiversity, conserving water sources, and enhancing the landscape (Cooper et al., 2017), while alpine wetland soil can regulate hydrology, degrade pollutants, store carbon, and provide ideal habitats for vegetation, soil animals, and microbes (Meng et al., 2020). These components should be considered jointly when facing external changes. Due to their lower temperature under high altitude or high latitude, alpine wetlands are sensitive to variations in temperature and precipitation patterns than other wetlands (Kuang and Jiao, 2016; Geppert et al., 2020). Climate change (e.g., increase of regional temperatures, frequent extreme droughts) and human activities (e.g., agricultural reclamation, overgrazing, tourism) have resulted in severe degradation, such as reduction of wetland area and loss of biodiversity (Miehe et al., 2019; Jiang et al., 2023; Xiong et al., 2023). Previous research has shown that the available water resource in alpine wetlands has been converted from natural to heavily modified water bodies, which severely hampered hydro-morphology, ecological functions, and the landscape of alpine wetlands (Kumar et al., 2024). Moreover, the degradation of alpine wetlands could lead to substantial carbon emissions to the atmosphere that is buried in anaerobic soils, which triggers a significant positive feedback to climate warming (Cheng et al., 2025; Li et al., 2019). Therefore, more research is necessary to characterize the problems of alpine wetland degradation and propose effective strategies for the conservation of alpine wetlands.

Despite the progress, key research gaps about wetland conservation still persist. Firstly, the interactive effects of climate change and human activities on wetland degradation remain poorly understood. Region-specific, cost-effective restoration strategies are limited, and long-term monitoring mechanisms are largely absent. Secondly, interdisciplinary collaboration across ecology, hydrology, climate science, and social science is insufficient, and public engagement in conservation efforts remains weak. Additionally, a disconnect between scientific evidence and policy implementation hampers effective protection. This perspective aims to address these gaps by advocating for integrated approaches that combine climate mitigation, ecological restoration, interdisciplinary cooperation, and public involvement. The goal is to inform decision-making and support the sustainable management of alpine wetland ecosystems.

2 Current challenges

Climate change poses severe threats to global ecosystems, with alpine regions being particularly vulnerable due to their unique physical and ecological characteristics (Zhang et al., 2025). Firstly, climate change can trigger phenological shifts in plants, which may lead to changes in community dynamics, population-pollinator interactions, plant reproduction, plant evolution and adaptation, and ultimately affect ecosystem functions and stability (Memmott et al., 2007; Cleland et al., 2012; Collins et al., 2021). Secondly, climate warming can cause upward shift in plant species, species accumulation at higher elevations, and contraction of alpine plants, which further promotes plant invasions and threatens native species (Lázaro-Lobo and Ervin, 2021; Iseli et al., 2023). The increasingly biological invasions could subsequently alter vegetation structure and lead to habitat fragmentation and loss at high-altitude and high-latitude ecosystems (Descombes et al., 2020; Iseli et al., 2023). Moreover, rising atmospheric carbon dioxide (CO₂) and melting permafrost under increasing global mean temperature enhanced nutrient (particularly carbon and nitrogen) availability, which has driven an unprecedented increase in tree growth and expansion of woody vegetation in these alpine areas (Silva et al., 2016; Lin et al., 2023; Zhao et al., 2023; Figure 1a). The expansion of this type of vegetation has further created favorable conditions for woody species to establish themselves in alpine wetland areas, which subsequently exacerbate alpine wetland degradation (Colautti and Barrett, 2013). In addition, a significant increase in temperature of alpine wetlands can stimulate the decomposition of soil organic carbon (Li et al., 2020), which weakens the carbon sink function of alpine wetlands, and subsequently goes against the carbon neutrality target. These effects can irreversibly change alpine ecosystems and result in biodiversity loss and carbon emissions.

Anthropogenic interventions such as agricultural reclamation, ditching, and channeling have altered the original terrain and hydrology, causing sustainable damage to these alpine wetlands (Kingsford et al., 2016; Qiu et al., 2024), which have decreased their area all around the world (Figure 1b). Concurrently, the human disturbance induced erosion of water networks, decline in water levels, drought, and invasion by non-native plants have led to increasingly severe wetland degradation (Sun et al., 2024; Xu et al., 2024). Moreover, dam construction and urbanization damaged the growth of alpine vegetation, altered the original landscape, and subsequently resulted in alterations in natural and regional water distribution patterns (Xiong et al., 2023; Figure 1c). The infrastructure associated with dam construction and urbanization, including the construction of electrical grid and access roads, further exacerbated exploitation and disturbance. In addition, overgrazing was another serious threat to alpine wetlands (Figure 1d). Excessive grazing can reduce vegetation $\,$ through chewing and trampling of livestock, which affects the selfpurification efficiency of the wetland and leads to the reduction in food supply and the loss of habitats for some wetland wildlife (Xiong et al., 2023). During recent years, with the development of tourism and agriculture, microplastics have become another important pollutant for alpine wetlands. The microplastics can disrupt the physical and chemical protection of soil organic carbon by minerals and aggregates, and stimulate soil organic carbon decomposition by increasing microbial activities, which leading to reduce of alpine wetland carbon sequestration capacity (Lan et al., 2025; Lin et al., 2025). These anthropogenic disturbances compromised ecosystem services of alpine wetlands, such as carbon sequestration and soil conservation. For example, the degradation of alpine wetland induced by drought resulted in significant loss of soil organic carbon and total

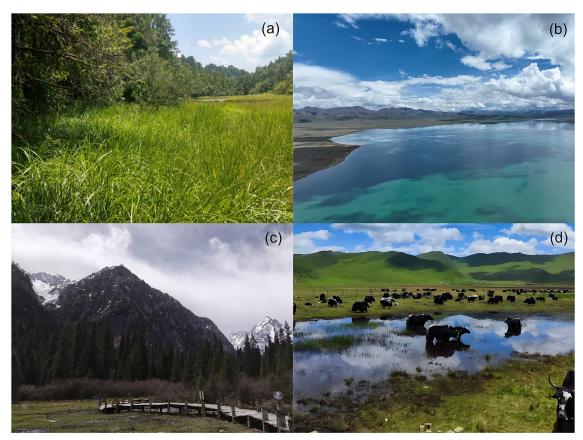


FIGURE 1
Different types of alpine wetland degradation. (a) Tree invasion of mountain pond photographed by H. Li in the Jingning Wangdongyang Wetland with an altitude of 1,300 m asl, in Lishui, Zhejiang, China. (b) Reduced area of alpine lake photographed by F. Li in Maduo County, Tibetan Plateau. (c) Humans' utilization of riparian wetland photographed by F. Li in the Wanglang Nature Reserve, Pingwu County, Sichuan Province, China. (d) Overgrazing of alpine swamp meadow photographed by F. Li in the Wayan mountain, Gangca County, Tibetan Plateau.

nitrogen, which reduced the carbon sink function of alpine wetlands (Li et al., 2021; Lin et al., 2021). Thus, the detrimental effects of human activities on alpine wetlands highlight the urgent need to take effective measures to protect these ecologically sensitive areas.

3 Conservation strategies

3.1 Ecological restoration

Various ecological restoration measures have been applied in alpine ecosystem restoration. Firstly, ditch-filling and terrain-leveling, which refer to filling the entire volume of the ditch with native wetland spoil material or natural non-wetland organic material, are the most common techniques for the restoration of the wetland hydrological system damaged by human activities such as ditch digging (Cooper et al., 2017; Chimner et al., 2018). The above techniques can promote surface hydrological connectivity, maintain hydrological balance and accelerate recolonization of plants, which further stabilize the area (Appels et al., 2016; Chimner et al., 2018). Secondly, the artificial barrier elimination, including fence, small earth dam, and simple bridge, helps restore the natural hydrology and terrain of alpine wetlands by removing the obstacles, and subsequently creates a favorable foundation for the healthy

development of the alpine wetland ecosystem (Meng et al., 2020). Moreover, vegetation restoration is another important strategy for the conservation of alpine wetlands, which should be strengthened to recover the wetland landscape, enhance the carbon sink and partially offset greenhouse gases emissions (He et al., 2024). The specific measure includes manually removing invasive species, which can specifically expand the ecological space and support the self-renewal of original vegetation (Wang et al., 2016; Li et al., 2024). Although these ecological restoration measures are very effective for the conservation of alpine wetlands, they are partly hampered by their high construction and human resource costs, property rights disputes, and species rebounding (Bell-James et al., 2023; Kovaleva and Kovalev, 2023; Zachary, 2023). Therefore, agricultural reclamation, dam construction, and grazing must be regulated by strict planning and approval systems to protect wetlands from destruction (Zheng et al., 2024). The ecological impact assessment is recommended to be executed to avoid strengthened and illegal occupation and destruction of alpine wetlands (Ritika et al., 2024). In addition, an ecological compensation system should be established to provide financial support to stakeholders affected by wetland conservation measures, including nearby residents, local enterprises, and non-profit organizations engaged in wetland conservation (Zhang et al., 2024). This can encourage greater community participation and reduce the

economic hardships of alpine wetlands and surrounding communities (Liu et al., 2025).

intangible value, the improvement of climate monitoring and early-warning systems.

3.2 Strengthening monitoring

It is highly recommended to establish a comprehensive climate monitoring system in alpine regions. This can be achieved by integrating meteorological satellites, ground-based monitoring stations, and using big data analytics to track climate change trends in real-time (Montillet et al., 2024). To prevent and mitigate the potential damage of extreme climate events, accurate early warning mechanisms using AI-driven models should be adopted to protect wetland ecosystems from climate change impacts (Lu and Xiao, 2024). Otherwise, to accurately monitor the effectiveness of alpine wetlands restoration, water level, flow rate, and groundwater level can be measured using instruments like water-level gauges and piezometers. Vegetation can be surveyed through systematic vegetation surveys and by measuring plant growth parameters and biomass. Soil quality and erosion can be evaluated by analyzing soil samples and using erosion pins or sediment traps. Animal and microbial diversity can be monitored through trapping, surveys, sampling, and DNA sequencing. However, implementing a climate monitoring system in alpine regions faces challenges such as equipment setup and maintenance, technology integration, high costs, and data security concerns (Zandonai et al., 2024). Nevertheless, policy-making should support the quantification of wetlands'

3.3 Innovative strategies for alpine wetland protection

Sustained investments in scientific research are essential to drive innovation and optimize the current conservation strategies (Shen et al., 2023). This includes developing efficient, cost-effective ditch-filling, and terrain-leveling techniques for complex areas, as well as exploring water-storage technologies that can operate stably under extreme climates. Research should focus on effective invasive species removal and prevention to reduce manual intervention and improve long-term treatment results. Promoting cooperation and communication among multiple disciplines like ecology, geography, meteorology, and sociology is crucial for an in-depth understanding of the complex interactions between climate change and human activities affecting alpine wetlands (Lu and Xiao, 2024). Joint projects that integrate the expertise of multiple disciplines in alpine wetland restoration should be initiated, and cross-disciplinary training and education in relevant institutions should be strengthened. This collaboration can also foster innovative restoration technologies tailored to specific terrains and help understand the combined impacts of climate change and human activities on alpine wetlands, providing a theoretical basis for formulating more scientific and holistic protection strategies

Climate change

- ♦ Phenological changes
- ◆ Plant migration
- ♦ Biology invasion
- ◆ Increase nutrient availability
- ♦ Stimulate decomposition

Interventions

- ◆ Agricultural reclamation
- ◆ Erosion of water networks
- ♦ Dam construction, urbanization
- **♦** Overgrazing
- ◆ Microplastic pollution

Alpine wetlands degradation

Ecological restoration

- > Ditch-filling
- > Terrain-leveling
- > Invasive species removed
- > Vegetation restoration

Strengthening monitoring

- > Extreme climate monitoring
- > Water level monitoring
- > Flow rate monitoring
- > Vegetation and soil survey

Innovative strategies

- > Sustained investments
- > Cooperation of multiple disciplines
- > Public and stakeholder engagement
- > International cooperation

Promoting the sustainable restoration and development of alpine wetlands ecosystem

FIGURE 2

Conceptual framework of current challenges and conservation strategies under alpine wetland degradation

(Adams et al., 2021). Environmental education for the public should be strengthened to enhance awareness of the importance of alpine wetlands (Bassi et al., 2019). Public outreach through science communication, awareness campaigns, and community engagement initiatives can foster a collective sense of responsibility and encourage active participation in wetland protection actions (Wang et al., 2018). For example, promoting the use of clean energy sources through public environmental education can reduce greenhouse gases emissions and contribute to global climate change mitigation. As climate change and wetland protection are global concerns, strengthening international cooperation and knowledge-sharing initiatives should be promoted. Sharing experiences and technologies in wetland protection among countries can jointly address global challenges and promote the sustainable development of alpine wetlands (Bibi et al., 2024).

4 Conclusion

Alpine wetlands are experiencing profound and often irreversible degradation due to the compounded effects of climate change and anthropogenic pressures. Climate-related factors such as shifts in phenology, species migrations, and woody plant expansion are exacerbating wetland degradation, while human interventions like agricultural reclamation, dam-building, and grazing have directly altered the terrain, hydrology, and productivity of these sensitive ecosystems (Figure 2). Conservation strategies face significant challenges due to the unique geographical characteristics of alpine wetlands, such as sloping terrains and soil erosion, and the need for cost-effective, long-term solutions. The future of alpine wetland conservation requires synergistic use of multiple restoration technologies, establishment of long-term ecological monitoring frameworks, sustained investments in scientific research and active public awareness and stakeholder engagement (Figure 2). Through these comprehensive efforts, integrating traditional ecological knowledge with modern restoration techniques, we can jointly safeguard biodiversity, maintain ecosystem services, and mitigate the degradation of alpine wetlands and preserve these precious ecological treasures for future generations.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding authors.

References

Acreman, M., and Holden, J. (2013). How wetlands affect floods. Wetlands 33, 773–786. doi: 10.1007/s13157-013-0473-2

Adams, C. R., Hovick, S. M., Anderson, N. O., and Kettenring, K. M. (2021). We can better manage ecosystems by connecting solutions to constraints: learning from wetland plant invasions. *Front. Environ. Sci.* 9:715350. doi: 10.3389/fenvs.2021.715350

Appels, W. M., Bogaart, P. W., and van der Zee, S. E. A. T. M. (2016). Surface runoff in flat terrain: how field topography and runoff generating processes control hydrological connectivity. *J. Hydrol.* 534, 493–504. doi: 10.1016/j.jhydrol.2016.01.021

Bassi, I., Gori, E., and Iseppi, L. (2019). Assessing environmental awareness towards protection of the Alps: a case study. *Land Use Policy* 87:104028. doi: 10.1016/j.landusepol.2019.104028

Author contributions

WZ: Funding acquisition, Writing – original draft. QC: Writing – review & editing. FL: Writing – original draft, Conceptualization, Writing – review & editing. AK: Writing – review & editing. GQ: Funding acquisition, Writing – review & editing. LL: Writing – review & editing. DH: Writing – review & editing. TL: Writing – review & editing. XY: Writing – review & editing. DL: Writing – review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K202503502, KJQN202303502), the Chongqing Science and Technology Commission (CSTB2023NSCQ-MSX0111) and the "Pioneer" and "Leading Goose" R&D Program of Zhejiang (2024C03226).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Bell-James, J., Fitzsimons, J. A., and Lovelock, C. E. (2023). Land tenure, ownership and use as barriers to coastal wetland restoration projects in Australia: recommendations and solutions. *Environ. Manag.* 72, 179–189. doi: 10.1007/s00267-023-01817-w

Bibi, C., Tabassum, S., and Roussel, Y. (2024). International environmental law: challenges and opportunities for biodiversity conservation. *J. Energ. Environ. Policy Options* 7, 28–35. Available at: https://resdojournals.com/index.php/JEEPO/article/viaw/360

Cheng, S., Kumar, A., Lan, G., Zhang, W., Yu, Z., Zhang, S., et al. (2025). Thermal sensitivity and rising greenhouse gas emissions in riparian zone soils: implications for ecosystem carbon dynamics. *J. Environ. Manag.* 381:125194. doi: 10.1016/j.jenvman.2025.125194

Chimner, R. A., Cooper, D. J., Bidwell, M. D., Culpepper, A., Zillich, K., and Nydick, K. (2018). A new method for restoring ditches in peatlands: ditch filling with fiber bales. *Restor. Ecol.* 27, 63–69. doi: 10.1111/rec.12817

- Cleland, E. E., Allen, J. M., Crimmins, T. M., Dunne, J. A., Pau, S., Travers, S. E., et al. (2012). Phenological tracking enables positive species responses to climate change. *Ecology* 93, 1765–1771. doi: 10.1890/11-1912.1
- Colautti, R. I., and Barrett, S. C. H. (2013). Rapid adaptation to climate facilitates range expansion of an invasive plant. *Science* 342, 364–366. doi: 10.1126/science.1242121
- Collins, C. G., Elmendorf, S. C., Hollister, R. D., Henry, G. H. R., Clark, K., and Bjorkman, A. D. (2021). Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. *Nat. Commun.* 12:3442. doi: 10.1038/s41467-021-23841-2
- Cooper, D. J., Kaczynski, K. M., Sueltenfuss, J., Gaucherand, S., and Hazen, C. (2017). Mountain wetland restoration: the role of hydrologic regime and plant introductions after 15 years in the Colorado Rocky Mountains, USA. *Ecol. Eng.* 101, 46–59. doi: 10.1016/j.ecoleng.2017.01.017
- Descombes, P., Pitteloud, C., Glauser, G., Defossez, E., Kergunteuil, A., Allard, P.-M., et al. (2020). Novel trophic interactions under climate change promote alpine plant coexistence. *Science* 370, 1469–1473. doi: 10.1126/science.abd7015
- Geppert, C., Perazza, G., Wilson, R. J., Bertolli, A., Prosser, F., Melchiori, G., et al. (2020). Consistent population declines but idiosyncratic range shifts in alpine orchids under global change. *Nat. Commun.* 11:5835. doi: 10.1038/s41467-020-19680-2
- Ghimire, M., and Regmi, T. (2024). Distribution, importance, threats and management strategies of wetlands in Nepal. Wetlands 44:106. doi: 10.1007/s13157-024-01861-0
- He, T., Ding, W., Cheng, X., Cai, Y., Zhang, Y., Xia, H., et al. (2024). Meta-analysis shows the impacts of ecological restoration on greenhouse gas emissions. *Nat. Commun.* 15:2668. doi: 10.1038/s41467-024-46991-5
- Iseli, E., Chisholm, C., Lenoir, J., Haider, S., and Seipel, T. (2023). Rapid upwards spread of non-native plants in mountains across continents. *Nat. Ecol. Evol.* 7, 405–413. doi: 10.1038/s41559-022-01979-6
- Jiang, R., Liu, J., Liu, W., Zhang, D., and Hu, W. (2023). Changes and driving forces analysis of alpine wetlands in the first meander of the Yellow River based on long-term time series remote sensing data. *Front. Ecol. Evol.* 11:1193059. doi: 10.3389/fevo.2023.1193059
- Kang, E., Li, Y., Zhang, X., Yan, Z., Wu, H., Li, M., et al. (2021). Soil pH and nutrients shape the vertical distribution of microbial communities in an alpine wetland. *Sci. Total Environ*. 774:145780. doi: 10.1016/j.scitotenv.2021.145780
- Kingsford, R. T., Basset, A., and Jackson, L. (2016). Wetlands: conservation's poor cousins. *Aquat. Conserv. Mar. Freshw. Ecosyst.* 26, 892–916. doi: 10.1002/aqc.2709
- Kovaleva, N. O., and Kovalev, I. V. (2023). Soil engineering: modern challenges and development prospects. *Moscow Univ. Soil Sci. Bull.* 78, 410–424. doi: 10.3103/S0147687423040014
- Kuang, X., and Jiao, J. (2016). Review on climate change on the Tibetan plateau during the last half century. *J. Geophys Res. Atmos.* 121, 3979–4007. doi: 10.1002/2015JD024728
- Kumar, A., Huang, Y., Lin, J., Hui, D., and Fohrer, N. (2024). Heavily modified freshwater: potential ecological indicators. *Ecol. Indic.* 159:111620. doi: 10.1016/j.ecolind.2024.111620
- Lan, G., Huang, X., Li, T., Huang, Y., Liao, Y., Zheng, Q., et al. (2025). Effect of microplastics on carbon, nitrogen and phosphorus cycle in farmland soil: a meta-analysis. *Environ. Pollut.* 370:125871. doi: 10.1016/j.envpol.2025.125871
- $L\'{a}zaro-Lobo, A., and Ervin, G. N. (2021). We tland invasion: a multi-faceted challenge during a time of rapid global change. \textit{Wetlands}~41:64. doi: 10.1007/s13157-021-01462-1$
- Li, Z., Gao, J., Wen, L., Zou, C., Feng, C., Li, D., et al. (2019). Dynamics of soil respiration in alpine wetland meadows exposed to different levels of degradation in the Qinghai-Tibet plateau, China. *Sci. Rep.* 9:7469. doi: 10.1038/s41598-019-43904-1
- Li, C., Lai, C., Peng, F., Zhou, J., Zhang, W., Song, X., et al. (2024). Restoration of degraded alpine meadows from the perspective of plant–soil feedbacks. *Biol. Fertil. Soils* 60, 941–953. doi: 10.1007/s00374-024-01847-4
- Li, H., Li, T., Sun, W., Zhang, W., Zhang, Q., Yu, L., et al. (2021). Degradation of wetlands on the Qinghai-Tibetan plateau causing a loss in soil organic carbon in 1966-2016. *Plant Soil* 467, 253–265. doi: 10.1007/s11104-021-05086-6
- Li, F., Peng, Y., Chen, L., Yang, G., Abbott, B. W., Zhang, D., et al. (2020). Warming alters surface soil organic matter composition despite unchanged carbon stocks in a Tibetan permafrost ecosystem. *Funct. Ecol.* 34, 911–922. doi: 10.1111/1365-2435.13489
- Lin, J., Cheng, Q., Kumar, A., Zhang, W., Yu, Z., Hui, D., et al. (2025). Effect of degradable microplastics, biochar and their coexistence on soil organic matter decomposition: a critical review. *TrAC Trends Anal. Chem.* 183:118082. doi: 10.1016/j.trac.2024.118082
- Lin, J., Hui, D., Kumar, A., Yu, Z., and Huang, Y. (2023). Climate change and/or pollution on the carbon cycle in terrestrial ecosystems. *Front. Environ. Sci.* 11:1253172. doi: 10.3389/fenvs.2023.1253172
- Lin, C., Li, X., Zhang, J., Sun, H., Zhang, J., Han, H., et al. (2021). Effects of degradation succession of alpine wetland on soil organic carbon and total nitrogen in the Yellow River source zone, West China. *J. Mt. Sci.* 18, 694–705. doi: 10.1007/s11629-020-6117-0

Liu, S., Dong, Y., Sun, Y., and Wang, Q. (2025). Multi-scale ecological restoration strategies to enhance water conservation in Ruoergai on the Qinghai-Tibet plateau. *Plants* 14:1085. doi: 10.3390/plants14071085

- Lu, M., and Xiao, Z. (2024). Wetland ecology and climate change: addressing global challenges with countermeasures. *Adv. Resour. Res.* 4, 67–88. doi: 10.50908/arr.4.1_67
- Memmott, J., Craze, P. G., Waser, N. M., and Price, M. V. (2007). Global warming and the disruption of plant–pollinator interactions. *Ecol. Lett.* 10, 710–717. doi: 10.1111/j.1461-0248.2007.01061.x
- Meng, B., Liu, J. l., Bao, K., and Sun, B. (2020). Methodologies and management framework for restoration of wetland hydrologic connectivity: a synthesis. *Integr. Environ. Assess. Manag.* 16, 438–451. doi: 10.1002/ieam.4256
- Miehe, G., Schleuss, P. M., Seeber, E., Babel, W., Biermann, T., Braendle, M., et al. (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands-origin, functioning and degradation of the world's largest pastoral alpine ecosystem Kobresia pastures of Tibet. Sci. Total Environ. 648, 754–771. doi: 10.1016/j.scitotenv.2018.08.164
- Montillet, J. P., Kermarrec, G., Forootan, E., Haberreiter, M., He, X., Finsterle, W., et al. (2024). How big data can help to monitor the environment and to mitigate risks due to climate change: a review. *IEEE Geosci. Remote Sens. Mag.* 12, 67–89. doi: 10.1109/MGRS.2024.3379108
- Qiu, D., Zhang, H., Ren, Y., and Zhu, Y. (2024). The lost biodiversity and degraded alpine wetlands caused by strong earthquake on the Qinghai—Tibet plateau did not self-restore in the short term. *Global Ecol. Conserv.* 50:e02830. doi: 10.1016/j.gecco.2024.e02830
- Ritika, K. C., Rai, U., Ghimire, M., and Khadka, U. R. (2024). "Wetlands in the Hindu Kush Himalayan region: eco-economic function; and conservation strategies" in Sustainable ecological restoration and conservation in the Hindu Kush Himalayan region: a comprehensive review (GB: CABI), 234–250.
- Shen, Z., Tian, Y., Yao, Y., Jiang, W., Dong, J., Huang, X., et al. (2023). Ecological restoration research progress and prospects: a bibliometric analysis. *Ecol. Indic.* 155:110968. doi: 10.1016/j.ecolind.2023.110968
- Silva, L. C. R., Sun, G., Zhu-Barker, X., Liang, Q., Wu, N., and Horwath, W. R. (2016). Tree growth acceleration and expansion of alpine forests: the synergistic effect of atmospheric and edaphic change. *Sci. Adv.* 2:e1501302. doi: 10.1126/sciadv.1501302
- Sun, H., Wang, W. J., Liu, Z., Ballantyne, A. P., Yu, K., Bao, S. G., et al. (2024). Enhanced productivity and evapotranspiration dominated by woody plant encroachment-induced vegetation greening in boreal wetland ecosystems. *GI. Sci. Remote Sens.* 61:2391144. doi: 10.1080/15481603.2024.2391144
- Temmink, R. J. M., Lamers, L. P. M., Angelini, C., Bouma, T. J., Fritz, C., van de Koppel, J., et al. (2022). Recovering wetland biogeomorphic feedbacks to restore the world's biotic carbon hotspots. *Science* 376:594. doi: 10.1126/science.abn1479
- Toetz, D. (1995). Water chemistry and periphyton in an alpine wetland. $\it Hydrobiologia$ 312, 93–105. doi: 10.1007/BF00020765
- Vahsen, M. L., Blum, M. J., Megonigal, J. P., Emrich, S. J., Holmquist, J. R., Stiller, B., et al. (2023). Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. *Science* 379, 393–398. doi: 10.1126/science.abq0595
- Wang, H. W., Dodd, A., Kuo, P. H., and LePage, B. (2018). Science as a bridge in communicating needs and implementing changes towards wetland conservation in Taiwan. *Wetlands* 38, 1223–1232. doi: 10.1007/s13157-018-1096-4
- Wang, R., Wang, Z., Sun, Q., Zhao, M., Du, L., Wu, D., et al. (2016). Effects of crop types and nitrogen fertilization on temperature sensitivity of soil respiration in the semi-arid loess plateau. *Soil Till. Res.* 163, 1–9. doi: 10.1016/j.still.2016.05.005
- Xiong, Y., Mo, S., Wu, H., Qu, X., Liu, Y., and Zhou, L. (2023). Influence of human activities and climate change on wetland landscape pattern—a review. *Sci. Total Environ*. 879:163112. doi: 10.1016/j.scitotenv.2023.163112
- Xu, G., Kang, X., Wang, F., Zhuang, W., Yan, W., and Zhang, K. (2024). Alpine wetlands degradation leads to soil nutrient imbalances that affect plant growth and microbial diversity. *Commun. Earth Environ.* 5:397. doi: 10.1038/s43247-024-01562-w
- Zachary, T. S. (2023). A review of common factors among successful and failed efforts to eradicate invasive vertebrates in Florida. *Southeast. Nat.* 22, 222–253. doi: 10.1656/058.022.0208
- Zandonai, A., Fontana, V., Klotz, J., Bertoldi, G., Crepaz, H., Tappeiner, U., et al. (2024). Six years of high-resolution climatic data collected along an elevation gradient in the Italian Alps. *Sci Data* 11:751. doi: 10.1038/s41597-024-03580-x
- Zhang, B., Feng, Q., Lu, Z., Li, Z., Zhang, B., and Cheng, W. (2024). Ecosystem service value and ecological compensation in Qilian Mountain National Park: implications for ecological conservation strategies. *Ecol. Indic.* 167:112661. doi: 10.1016/j.ecolind.2024.112661
- Zhang, J., Li, J., Zhu, C., Bao, A., Frankl, A., De Maeyer, P., et al. (2025). A comprehensive environmental index for monitoring ecological quality of typical alpine wetlands in Central Asia. *Ecol. Indic.* 171:113216. doi: 10.1016/j.ecolind.2025.113216
- Zhao, Y., Lin, J., Cheng, S., Wang, K., Kumar, A., Yu, Z. G., et al. (2023). Linking soil dissolved organic matter characteristics and the temperature sensitivity of soil organic carbon decomposition in the riparian zone of the three gorges reservoir. *Ecol. Indic.* 154:110768. doi: 10.1016/j.ecolind.2023.110768
- Zheng, H., Liu, D., Yuan, J., Li, Y., Li, J., Miao, Y., et al. (2024). Wetland restoration after agricultural abandonment enhances soil organic carbon efficiently by stimulating plant- rather than microbial-derived carbon accumulation in Northeast China. *Catena* 241:108077. doi: 10.1016/j.catena.2024.108077