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Wildfires present a significant threat to ecosystems, property, and human life in
Kazakhstan. Understanding fire hazards is essential for effective management and
mitigation of these risks. This study develops a comprehensive fire hazard index
for Kazakhstan by integrating static, long-term landscape factors with dynamic,
real-time weather and vegetation conditions. The static component employs a
machine learning approach, specifically the Random Forest algorithm, trained
on a dataset that includes topographic variables derived from the SRTM DEM,
land cover classifications from MODIS Terra/Aqua LULC products, and historical
fire occurrence data from NASA FIRMS. This model quantifies the inherent fire
susceptibility of various landscapes based on these enduring characteristics. The
dynamic component captures short-term fluctuations in fire risk by incorporating
satellite-derived vegetation information and meteorological observations. The
MODIS-derived Normalized Difference Vegetation Index (NDVI) serves as a proxy
for fuel availability and moisture content. Spatially interpolated weather data such
as temperature, humidity, wind speed, and precipitation provide the necessary
meteorological context. The dynamic index is calculated using a modified Canadian
Fire Weather Index (FWI) system, specifically adapted to account for the influence
of live fuel moisture, as indicated by NDVI, on fire ignition and spread dynamics.
The final fire risk index is created by additively combining the static and dynamic
components, offering a spatiotemporal perspective on fire risk. This integrated
approach allows for the assessment of both the underlying susceptibility of a
landscape to fire and the immediate effects of weather and vegetation conditions. The
resulting high-resolution fire hazard maps are intended to inform fire management
decisions, optimize resource allocation for fire prevention and suppression efforts,
and support targeted interventions in high-risk areas. This research underscores
the value of combining machine learning techniques with remotely sensed data
for enhanced fire risk assessment in Kazakhstan, facilitating more proactive and
effective fire management strategies.
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1 Introduction

Kazakhstan faces persistent and escalating wildfire challenges that
pose serious risks to its ecosystems, economy, and human well-being
(Babu et al., 2019; Chepashev et al., 2025). The country has a history
of severe fire events that destroyed hectares of forest (Zhanbossinova
etal., 2024). According to the Global Forest Watch report, between
2001 and 2024 fires accounted for 38% of Kazakhstan's total tree cover
loss (33.4 thousand hectares), with 2023 alone contributing 14.0
thousand hectares (Global Forest Watch, n.d.). These figures highlight
the increasing frequency and intensity of wildfires and their
devastating ecological and social consequences for the country.

The occurrence and severity of wildfires in Kazakhstan are shaped
by a combination of climatic, anthropogenic, and natural drivers
(Kolluru, 2024). Hot and dry summers produce highly flammable
conditions (Xu et al, 2021). Anthropogenic influences, such as
negligence and fire safety violations, frequently act as ignition sources
(Kenzhebayeva et al., 2023). Natural lightning events also contribute
significantly to fire ignition (Kharyutkina et al., 2024). Beyond
ignition, the consequences of wildfires are wide-ranging: economic
losses, destruction of tree cover (Babu et al., 2019; Singh, 2022),
population displacement, air pollution, and long-term ecological
degradation (Zong et al., 2020). These impacts feature the perseverance
of proactive fire management strategies cantered on prevention, early
detection, and rapid suppression (Zhanbossinova et al., 2024; Sample
etal., 2022).

Accurate fire risk assessment is a critical foundation for wildfire
management, as it supports targeted resource allocation and the
development of preventive measures in high-risk regions (Suresh
Babu et al., 2024). Fire risk assessment typically integrates two types
of factors: static indicators, which describe long-term predispositions
of landscapes to fire, and dynamic indicators, which capture short-
term variability (Zagalikis, 2023; Moreno et al., 2025). This distinction
is important for designing risk indices that not only highlight
inherently flammable regions but also adapt to changing
environmental conditions.

Static indices focus on relatively stable variables, including
topography, vegetation type, and historical fire occurrence. These
indices provide insights into the inherent flammability of landscapes
and have been widely used for mapping baseline fire susceptibility
(Scottetal,, 2012; Finney, 1998; Babu and Roy, 2020). However, their
limitation is that they do not capture temporal dynamics such as fuel
moisture fluctuations or rapid changes in weather conditions.
Dynamic indices, in contrast, capture short-term variations in fire risk
by integrating real-time meteorological and vegetation data. Among
these, the Canadian Fire Weather Index (FWTI) (Van Wagner, 1987)
remains the most widely applied due to its robust integration of
weather variables such as temperature, relative humidity, wind speed,
and precipitation (Babu, 2019). However, dynamic indices often fail
to incorporate static drivers of susceptibility, leading to incomplete
assessments (Taylor et al., 2024).

Recognizing the limitations of purely static or purely dynamic
indices, recent research has emphasized integrated approaches that
combine both long-term landscape susceptibility and short-term
weather-driven variability (Singh and Babu, 2021). Such combined
indices provide a more holistic assessment of wildfire risk, but
applications remain limited and often underdeveloped, especially in
Central Asian ecosystems. Kazakhstan, with its vast forest-steppe
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mosaic, sparse meteorological infrastructure, and increasing fire
frequency, presents an ideal case where integrated approaches can
significantly improve operational fire management (Chepashev
etal., 2025).

To address this gap, we propose a Spatiotemporal Fire Risk Index
(SFRI) tailored to Kazakhstan’s diverse landscapes. This framework
integrates: (i) a static hazard index, generated using a Random Forest
(RF) model trained on terrain attributes, land cover data, and
historical fire records; (ii) a dynamic fire risk index, derived from the
Fire Weather Index (FWI) system, modified with vegetation indices
(NDVI) and the Fuel Moisture Index (FMI); and (iii) validation with
satellite-based fire detections, including both MODIS and VIIRS. This
combination captures both baseline landscape susceptibility and real-
time environmental triggers, making the index more reliable for
predicting fire risk in Central Asia.

2 Materials and methods

2.1 Study area

Kazakhstan, the largest landlocked country in the world, is located
in Central Asia and covers an area of approximately 2.7 million square
kilometers. The nation features a diverse geography that includes
steppes, deserts, mountains, and forested areas, primarily found in the
northern regions. The vast landscape of Kazakhstan significantly
influences its climate, which ranges from continental to arid, leading
to notable variations in ecosystems and land use patterns (World
Bank, 2021). The northern part of the country, particularly regions
such as Pavlodar, Akmolinsk, and Kostanay, is distinguished by its
forested areas, while the southern regions are mainly arid or semi-arid.

Forests in Kazakhstan cover about 5% of the country’s territory
and play a crucial role in supporting biodiversity and ecological
stability (Zhanbossinova et al., 2024). The main types of forests include
coniferous, deciduous, and mixed forests, with key species such as
larch, pine, birch, and aspen that are essential for maintaining local
climates and soil health (Suresh Babu et al., 2024). However, these
forests face significant threats from logging, agricultural expansion,
and wildfires (Babu et al., 2019). The ongoing degradation of forest
ecosystems demonstrates the need for immediate management
interventions to protect these vital resources (Suresh Babu et al.,
2024). Figure 1, which represents the study area map of Kazakhstan,
is comprised of two distinct datasets: MODIS IGBP (International
Geosphere-Biosphere Programme) and a Digital Elevation Model
(DEM). These two components provide crucial information about the
geography of Kazakhstan, which is essential for fire risk assessment.

2.2 Methodology

The datasets utilized in this research are outlined in Table 1, and
Figure 2 depicts the entire process of developing the Spatiotemporal
Fire Risk Index (SFRI). The initial step in assessing fire risk is the
establishment of a static fire hazard index. This index evaluates the
likelihood of a fire occurring in a specific area by considering various
factors, such as the types of vegetation present and the land’s
topography, including slope, direction, and elevation (Babu and Roy,
2020). These factors are crucial for understanding fire behavior and
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Maps depicting the study area in Kazakhstan, including land use and land cover (LULC) and the Digital Elevation Model (DEM).

TABLE 1 Datasets utilized in generating SFRI.

S. No. Datasets Product Spatial Temporal
resolution | resolution
1 Shuttle Radar DEM 90 m
Topography
Mission (SRTM)
2 MODIS/ MCD12Q1 500 m Year
Terra + Aqua
Land Cover
Type
3 MODIS/Terra MOD13A2 1,000 m 16 day
Vegetation
Indices
4 MODIS Terra, MOD14 1,000 m Daily
Aqua fire MYDI14
hotspot data
5 AWS data AT, RH, WS Daily

susceptibility, as they affect the availability of fuel and the spread of
fire across different landscapes. Following the development of the
static fire hazard index, the next phase involves applying the Canadian
Fire Weather Index (FWI). This index serves as a framework for
evaluating fire risk based on meteorological conditions (Van Wagner,
1987). The weather-based fire risk index is calculated using key
weather parameters derived from satellite datasets. Essential variables
in this assessment include air temperature, relative humidity, wind
speed, and precipitation, which together play a significant role in
determining fire risk (Bedia et al., 2012). In the final stage, we combine
the static fire hazard index with the dynamic fire risk index to develop
an SFRI. This integration facilitates a thorough assessment of fire risk
by considering both the long-term susceptibility of landscapes to fire
and the immediate effects of weather and climatic conditions.

2.2.1 Static fire hazard index
To evaluate the static fire hazard, we obtained several geospatial
datasets, including Terrain Data, Land Cover Data, and Fire History
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Data. The Shuttle Radar Topography Mission (SRTM) Digital
Elevation Model (DEM) was sourced from the USGS Earth Explorer
website (USGS Earth Explorer, n.d.)" and provides detailed elevation
MODIS  (Moderate Imaging
Spectroradiometer) Terra and Aqua land use and land cover (LULC)

information. Resolution
maps were downloaded from the Earthdata Search portal (Earthdata
Search, n.d.)?, which categorizes the land cover types throughout
Kazakhstan. Additionally, active fire point data specific to Kazakhstan
was retrieved from the NASA Fire Information for Resource
Management System (FIRMS) website (NASA, Fire information for
resource management system, n.d.)’, encompassing the fire seasons
from 2018 to 2023.

The acquired data underwent further processing to derive
additional spatial variables and prepare it for the machine learning
model. A terrain analysis was conducted using the SRTM DEM data
to calculate the slope and aspect of the terrain, which are essential
factors influencing fire behavior (Finney, 1998; Jain et al., 2021). A
Random Forest model was developed in a Python Jupyter Notebook
to predict fire occurrence in Kazakhstan, taking advantage of its
effectiveness in modeling complex, non-linear relationships. The
model was trained on a dataset that included terrain attributes, land
cover classifications from MODIS IGBP, and historical fire records.
The dataset was divided into a 70% training set and a 30% testing set,
employing a fivefold cross-validation approach to ensure robust
performance. Hyperparameter tuning was performed using a
randomized search to optimize key parameters, such as the number
of trees (ranging from 100 to 500), maximum features (The number
of features considered at each split, testing “sqrt”, “log2”, 0.6, and 0.8.
This parameter controls the randomness of the model and helps in
reducing correlation among trees), and tree depth (ranging from
510 20).

The trained model displayed strong predictive capabilities,
achieving an accuracy of 0.78 and a robust AUC score of 0.80 on the

1 https://earthexplorer.usgs.gov/
2 https://search.earthdata.nasa.gov/

3 https://firms.modaps.eosdis.nasa.gov/
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FIGURE 2
Flowchart illustrating the methodology of SFRI.
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test set. An analysis of variable importance indicated that static factors
like slope and elevation were the most significant predictors of fire
occurrence. This validated model was subsequently used to generate
a spatially explicit static fire hazard index, which serves as a
foundational component of the Spatiotemporal Fire Risk Index (SFRI)
for Kazakhstan.

2.2.2 Dynamic fire risk index

We developed a dynamic fire risk index for Kazakhstan by
enhancing the Canadian Fire Weather Index (FWI) with satellite-
derived vegetation data, which improves the assessment of fuel
availability. We also modified the fuel moisture content by
incorporating the Fuel Moisture Index (FMI), thereby simplifying the
calculations. This modification was necessary because the original
equation relied on ground-based parameters and values from the
previous day. We utilized the Normalized Difference Vegetation Index
(NDVI) from MODIS TERRA (MOD13A2 product) as fuel proxies.
A network of Automatic Weather Stations (AWS) in Kazakhstan
provided current data on temperature, humidity, and wind speed.
These datasets were spatially interpolated using deterministic Inverse
Distance Weighting (IDW) to generate continuous raster surfaces.
IDW was chosen over Kriging because of its computational efficiency
and fewer statistical assumptions. IDW interpolation is both simpler
and faster than Kriging, which requires a robust variogram model and
is more computationally intensive (Kravchenko and Bullock, 1999).
This approach enabled the efficient processing of the large dataset by
ensuring that the influence of each AWS observation was inversely
proportional to its distance from the interpolated location, allowing
for the rapid and reliable generation of representative spatial surfaces
for analysis. The FWI system, which includes the Fine Fuel Moisture
Code (FMC), Duff Moisture Code, and Drought Code, was modified
to incorporate Enhanced Vegetation Index (EVI). The FMC, which
represents the moisture content of readily ignitable fuels, was adjusted
using the Fuel Moisture Index equation (Sharples et al., 2009) to better
reflect live fuel moisture dynamics. The original FWI system, without
the FMI, often underestimated fire danger in these areas, especially
during periods of green-up or drought stress where live fuel moisture
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deviates significantly from that inferred solely from weather variables.
The FMI improves fire danger assessment and prediction by providing
a more holistic and ecologically relevant indicator of fuel moisture
conditions. The remaining components of the FWI, which are
primarily driven by weather, were derived from the interpolated
meteorological data. The Initial Spread Index (ISI), which combines
FMC and weather conditions, quantifies the potential rate of fire
spread (Bourliere et al., 2006). The FWT integrates both FMC and ISI
to produce a fire danger rating that ranges from very low to very high
(Equations (1-5)).

The following equations are used to generate the FWI for each day:

0.05039W
4

wind function= f (W)= 1)

The FMI is a simplified index developed by Sharples in 2009 to
estimate the moisture content of fuel in a forest or grassland. It’s a
relatively straightforward calculation compared to more complex
indices. The FMI equation is used as a proxy for the fuel moisture
content (m).

FMI =10-0.25*(T—RH) )

Where:

FMI: Fuel Moisture Index=m; T: Air temperature; RH:
Relative humidity.

The equations of FWT are shown in the following equations.

531

Fine fuel moisture function= f (F)=91.9 g 0138om g (71177) 3)
4.93x10

Initial Spread Index (ISI)=R=0.208 f (W) f (F) (4)

Intermediate FWI=B=O.1Rf(D) (5)
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In the Intermediate FWI (B), f(D) is the fuel availability and the
NDVT has been used as a proxy in this study.

2.2.3 Spatiotemporal Fire Risk Index

To develop a comprehensive and robust fire risk assessment, a
Spatiotemporal Fire Risk Index can be established by combining both
static and dynamic components through an additive model. This
methodological framework leverages the strengths of both static fire
hazard and dynamic fire risk indices, resulting in a more accurate and
nuanced representation of fire risk. The daily calculations of the
integrated fire hazard index during the 2023 fire season facilitate real-
time analysis and application in fire management strategies. This index
can be overlaid with actual fire occurrences on corresponding days,
allowing for a direct comparison between predicted fire risk and
observed events. The resulting fire danger maps are categorized into
five distinct fire hazard levels: very low, low, moderate, high, and very
high. These classifications, derived from pixel values, provide practical
guidance to fire management agencies, enabling them to adapt their
prevention and suppression strategies dynamically according to the
changing fire risk landscape (Stocks et al., 2002). A summary of the
classification criteria is included in Table 2.

3 Results and discussion

The developed SFRI provides a comprehensive assessment of fire
risk across Kazakhstan. This spatial layer can assist authorities in
prioritizing resources and focusing their efforts on areas with a higher
likelihood of fire occurrence (Akther and Hassan, 2011). The SFRI
maps were generated during the 2023 fire season, and the selected
maps have been overlaid with the corresponding MODIS fire
incidents, as shown in Figure 3. These maps were generated daily to
provide a thorough and operationally relevant assessment of fire
danger throughout the season. However, Figure 3 presents only a
limited selection of dates to demonstrate the model’s accuracy during
specific, representative instances.

Accuracy assessment of the SFRI will be conducted by comparing
predicted fire risk classifications against observed fire occurrences
derived from satellite-based fire detection datasets, specifically MODIS
(MCD14) (Giglio et al., 2016; Babu et al., 2016). A contingency table
(Table 3) displaying the frequency of fire incidents across the discretized
risk categories (very low to very high) will be generated, providing a
comprehensive examination of fire point distribution across various fire
danger classes over the specified timeframe. This analysis will illuminate
trends and patterns in fire occurrence, providing critical insights for
effective fire management and prevention strategies. A positive
correlation between observed fire incidence and predicted risk level is

TABLE 2 Fire hazard classes.

S. No. ‘ Hazard class ‘ Pixel values
1 Very low <4
2 Low 4-5
3 Moderate 5-6
4 High 6-8
5 Very high >8
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anticipated, with a concentration of fire events within the high to very
high-risk classes (Babu and Roy, 2020). Understanding the temporal
dynamics reflected in this distribution is crucial for developing adaptive
management strategies responsive to fluctuating fire conditions.

The validation process comprises three steps: (1) spatial
discretization of the study area into distinct fire risk zones based on
the index output; (2) quantification of fire occurrences within each
risk zone using MODIS active fire detection data; and (3) a binary
classification of fire detections, where fires occurring within moderate,
high, and very high-risk zones are considered correctly identified by
the index, while those within low and very low-risk zones are deemed
misclassifications (Babu et al., 2019). Preliminary analysis suggests an
accuracy exceeding 80% during the fire season in Kazakhstan.

This binary classification approach is predicated on the heightened
probability of fire occurrence in areas classified as moderate to very
high risk, driven by contributing factors such as fuel availability, aridity,
and meteorological conditions conducive to fire ignition and spread
(Burgan et al., 1998). This assumption allows for a focused evaluation
of the index’s performance in identifying fire occurrences within these
critical zones. Overall, the accuracy of the fire risk model, determined
by the percentage of correctly classified fire points, is generally high,
indicating the effectiveness of the fire hazard index in predicting fire
occurrences. However, periods characterized by highly variable
weather conditions or significant shifts in fuel moisture can lead to
reduced accuracy. These fluctuations underscore the importance of
ongoing model refinement and validation to enhance predictive
capability, particularly under dynamic environmental conditions.

The entire procedure for calculating the SFRI involves generating
a raster surface from weather parameters, including temperature (T),
relative humidity (RH), and wind speed (WS). This process entails
calculating various components, such as the wind speed component,
fuel moisture index, moisture content, fuel moisture function, Initial
Spread Index, and fire weather index. Ultimately, the static fire hazard
index is integrated to produce the SFRI in a Python environment, with
sample output illustrated in Figure 4. These fire risk maps are uploaded
daily to the website https://tabigat.gov.kz/ throughout the fire season
in the region. A snapshot of the fire risk map is displayed in Figure 5.
This map demonstrates the spatial distribution of fire risk across
Kazakhstan, categorized into five hazard levels: very low, low,
moderate, high, and very high, based on the calculated SFRI.

4 Conclusion

This study demonstrates the development and application of a
Spatiotemporal Fire Risk Index (SFRI) for Kazakhstan, combining
static and dynamic factors to provide a comprehensive fire risk
assessment. The static component, derived from a Random Forest
model trained on terrain attributes, land cover, and historical fire data,
represents the inherent fire susceptibility of the landscape. The
dynamic component, a modified Canadian Fire Weather Index (FWI)
incorporating satellite-derived Normalized Difference Vegetation
Index (NDVI) and interpolated weather data, captures the influence
of real-time meteorological conditions and fuel availability on fire risk.
The integration of these components through an additive model
allows for a more nuanced and accurate representation of fire hazard,
accounting for both long-term landscape vulnerability and short-term
weather-driven fluctuations.

frontiersin.org


https://doi.org/10.3389/ffgc.2025.1680856
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://tabigat.gov.kz/

Babu et al.

Validation of the SFRI against observed fire occurrences from
MODIS active fire detection datasets indicates a generally high
accuracy, exceeding 80% during the 2023 fire season. The binary
classification approach, focusing on the index’s ability to identify
fires within moderate to very high-risk zones, underscores its
effectiveness in predicting fire occurrences in areas with elevated
fire potential due to fuel availability, aridity, and conducive
meteorological conditions. The contingency table analysis,

10.3389/ffgc.2025.1680856

illustrating the distribution of fire incidents across discretized risk
categories, confirms a positive correlation between predicted risk
level and observed fire incidence, with a concentration of fire
events within the higher risk classes.

While the overall accuracy is promising, periods of highly variable
weather or significant shifts in fuel moisture can influence the index’s
predictive capability. Further research and model refinement,
including the exploration of alternative fuel moisture indices and
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advanced spatial interpolation techniques for meteorological data,
may enhance the model’s robustness and adaptability to dynamic
environmental conditions. The incorporation of real-time or near
real-time fuel moisture data, derived from remote sensing or field
observations, could further improve the accuracy of the dynamic

Frontiers in Forests and Global Change 07

component of the index. This SFRI is currently operational and
accessible online during the fire season, providing valuable real-time
information for fire management agencies in Kazakhstan. This
resource enables more effective resource allocation, targeted
prevention efforts, and proactive fire suppression strategies.
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TABLE 3 Fire point distribution across fire danger classes and accuracies (selected).

DL Very low Moderate High %)
Jun-02 1 2 27 210 56 98.99
Jun-10 6 7 28 70 33 90.97
Jul-04 4 3 43 105 36 96.34
Jul-18 6 1 21 136 20 96.20
Jul-26 0 5 19 65 6 94.74
Aug-02 9 2 95 304 73 97.72
Aug-13 5 10 26 28 43 86.61
Aug-31 3 12 15 68 0 84.69
Sep-06 3 7 7 35 0 80.76
Sep-18 8 3 10 68 0 87.64
Sep-30 8 4 9 43 4 82.35
Extreme Extreme
Very High Very High
° KapTa noXxapoonacHOCTH Ha AeHb: AeHb 1 High ° KapTa noxapoonacHOCTH Ha fieHs: AeHs 10 High
250 250
Moderate Moderate
500 500
750 750
1000 1000
1250 1250
Low Low
1500 1500
o 1000 2000 3000 4000 o 1000 2000 3000 4000
Very Low Very Low

FIGURE 4
Daily Spatiotemporal Fire Risk Index (SFRI) outputs in python environment.
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FIGURE 5
Snapshot of the fire risk map on 24th May, 2025 from the tabigat website (https://tabigat.gov.kz/).
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5 Future work

The Spatiotemporal Fire Risk Index (SFRI) will be enhanced in the
future by incorporating more advanced and dynamic data sources, as
well as machine learning techniques, to increase the accuracy of
predictions and the practical utility of the index. One crucial area for
our future work is dynamic fuel moisture. We plan to utilize data from
the Sentinel-2 and Landsat 9 satellites, which offer superior spatial and
temporal resolutions compared to the MODIS data used in this study.
From these datasets, we will develop more precise dynamic fuel
moisture content (FMC) indices, such as the Normalized Difference
Moisture Index (NDMI) or other specialized indices. This advancement
will enable near-real-time monitoring of live fuel moisture, providing
a clearer picture of the landscape’s flammability compared to the static
vegetation index. Additionally, we will explore the integration of more
weather data, including real-time wind speed and direction, into the
model to enhance our understanding of fire behavior and spread.
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