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Wildfires present a significant threat to ecosystems, property, and human life in 
Kazakhstan. Understanding fire hazards is essential for effective management and 
mitigation of these risks. This study develops a comprehensive fire hazard index 
for Kazakhstan by integrating static, long-term landscape factors with dynamic, 
real-time weather and vegetation conditions. The static component employs a 
machine learning approach, specifically the Random Forest algorithm, trained 
on a dataset that includes topographic variables derived from the SRTM DEM, 
land cover classifications from MODIS Terra/Aqua LULC products, and historical 
fire occurrence data from NASA FIRMS. This model quantifies the inherent fire 
susceptibility of various landscapes based on these enduring characteristics. The 
dynamic component captures short-term fluctuations in fire risk by incorporating 
satellite-derived vegetation information and meteorological observations. The 
MODIS-derived Normalized Difference Vegetation Index (NDVI) serves as a proxy 
for fuel availability and moisture content. Spatially interpolated weather data such 
as temperature, humidity, wind speed, and precipitation provide the necessary 
meteorological context. The dynamic index is calculated using a modified Canadian 
Fire Weather Index (FWI) system, specifically adapted to account for the influence 
of live fuel moisture, as indicated by NDVI, on fire ignition and spread dynamics. 
The final fire risk index is created by additively combining the static and dynamic 
components, offering a spatiotemporal perspective on fire risk. This integrated 
approach allows for the assessment of both the underlying susceptibility of a 
landscape to fire and the immediate effects of weather and vegetation conditions. The 
resulting high-resolution fire hazard maps are intended to inform fire management 
decisions, optimize resource allocation for fire prevention and suppression efforts, 
and support targeted interventions in high-risk areas. This research underscores 
the value of combining machine learning techniques with remotely sensed data 
for enhanced fire risk assessment in Kazakhstan, facilitating more proactive and 
effective fire management strategies.
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1 Introduction

Kazakhstan faces persistent and escalating wildfire challenges that 
pose serious risks to its ecosystems, economy, and human well-being 
(Babu et al., 2019; Chepashev et al., 2025). The country has a history 
of severe fire events that destroyed hectares of forest (Zhanbossinova 
et al., 2024). According to the Global Forest Watch report, between 
2001 and 2024 fires accounted for 38% of Kazakhstan’s total tree cover 
loss (33.4 thousand hectares), with 2023 alone contributing 14.0 
thousand hectares (Global Forest Watch, n.d.). These figures highlight 
the increasing frequency and intensity of wildfires and their 
devastating ecological and social consequences for the country.

The occurrence and severity of wildfires in Kazakhstan are shaped 
by a combination of climatic, anthropogenic, and natural drivers 
(Kolluru, 2024). Hot and dry summers produce highly flammable 
conditions (Xu et  al., 2021). Anthropogenic influences, such as 
negligence and fire safety violations, frequently act as ignition sources 
(Kenzhebayeva et al., 2023). Natural lightning events also contribute 
significantly to fire ignition (Kharyutkina et  al., 2024). Beyond 
ignition, the consequences of wildfires are wide-ranging: economic 
losses, destruction of tree cover (Babu et  al., 2019; Singh, 2022), 
population displacement, air pollution, and long-term ecological 
degradation (Zong et al., 2020). These impacts feature the perseverance 
of proactive fire management strategies cantered on prevention, early 
detection, and rapid suppression (Zhanbossinova et al., 2024; Sample 
et al., 2022).

Accurate fire risk assessment is a critical foundation for wildfire 
management, as it supports targeted resource allocation and the 
development of preventive measures in high-risk regions (Suresh 
Babu et al., 2024). Fire risk assessment typically integrates two types 
of factors: static indicators, which describe long-term predispositions 
of landscapes to fire, and dynamic indicators, which capture short-
term variability (Zagalikis, 2023; Moreno et al., 2025). This distinction 
is important for designing risk indices that not only highlight 
inherently flammable regions but also adapt to changing 
environmental conditions.

Static indices focus on relatively stable variables, including 
topography, vegetation type, and historical fire occurrence. These 
indices provide insights into the inherent flammability of landscapes 
and have been widely used for mapping baseline fire susceptibility 
(Scott et al., 2012; Finney, 1998; Babu and Roy, 2020). However, their 
limitation is that they do not capture temporal dynamics such as fuel 
moisture fluctuations or rapid changes in weather conditions. 
Dynamic indices, in contrast, capture short-term variations in fire risk 
by integrating real-time meteorological and vegetation data. Among 
these, the Canadian Fire Weather Index (FWI) (Van Wagner, 1987) 
remains the most widely applied due to its robust integration of 
weather variables such as temperature, relative humidity, wind speed, 
and precipitation (Babu, 2019). However, dynamic indices often fail 
to incorporate static drivers of susceptibility, leading to incomplete 
assessments (Taylor et al., 2024).

Recognizing the limitations of purely static or purely dynamic 
indices, recent research has emphasized integrated approaches that 
combine both long-term landscape susceptibility and short-term 
weather-driven variability (Singh and Babu, 2021). Such combined 
indices provide a more holistic assessment of wildfire risk, but 
applications remain limited and often underdeveloped, especially in 
Central Asian ecosystems. Kazakhstan, with its vast forest–steppe 

mosaic, sparse meteorological infrastructure, and increasing fire 
frequency, presents an ideal case where integrated approaches can 
significantly improve operational fire management (Chepashev 
et al., 2025).

To address this gap, we propose a Spatiotemporal Fire Risk Index 
(SFRI) tailored to Kazakhstan’s diverse landscapes. This framework 
integrates: (i) a static hazard index, generated using a Random Forest 
(RF) model trained on terrain attributes, land cover data, and 
historical fire records; (ii) a dynamic fire risk index, derived from the 
Fire Weather Index (FWI) system, modified with vegetation indices 
(NDVI) and the Fuel Moisture Index (FMI); and (iii) validation with 
satellite-based fire detections, including both MODIS and VIIRS. This 
combination captures both baseline landscape susceptibility and real-
time environmental triggers, making the index more reliable for 
predicting fire risk in Central Asia.

2 Materials and methods

2.1 Study area

Kazakhstan, the largest landlocked country in the world, is located 
in Central Asia and covers an area of approximately 2.7 million square 
kilometers. The nation features a diverse geography that includes 
steppes, deserts, mountains, and forested areas, primarily found in the 
northern regions. The vast landscape of Kazakhstan significantly 
influences its climate, which ranges from continental to arid, leading 
to notable variations in ecosystems and land use patterns (World 
Bank, 2021). The northern part of the country, particularly regions 
such as Pavlodar, Akmolinsk, and Kostanay, is distinguished by its 
forested areas, while the southern regions are mainly arid or semi-arid.

Forests in Kazakhstan cover about 5% of the country’s territory 
and play a crucial role in supporting biodiversity and ecological 
stability (Zhanbossinova et al., 2024). The main types of forests include 
coniferous, deciduous, and mixed forests, with key species such as 
larch, pine, birch, and aspen that are essential for maintaining local 
climates and soil health (Suresh Babu et al., 2024). However, these 
forests face significant threats from logging, agricultural expansion, 
and wildfires (Babu et al., 2019). The ongoing degradation of forest 
ecosystems demonstrates the need for immediate management 
interventions to protect these vital resources (Suresh Babu et  al., 
2024). Figure 1, which represents the study area map of Kazakhstan, 
is comprised of two distinct datasets: MODIS IGBP (International 
Geosphere-Biosphere Programme) and a Digital Elevation Model 
(DEM). These two components provide crucial information about the 
geography of Kazakhstan, which is essential for fire risk assessment.

2.2 Methodology

The datasets utilized in this research are outlined in Table 1, and 
Figure 2 depicts the entire process of developing the Spatiotemporal 
Fire Risk Index (SFRI). The initial step in assessing fire risk is the 
establishment of a static fire hazard index. This index evaluates the 
likelihood of a fire occurring in a specific area by considering various 
factors, such as the types of vegetation present and the land’s 
topography, including slope, direction, and elevation (Babu and Roy, 
2020). These factors are crucial for understanding fire behavior and 
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susceptibility, as they affect the availability of fuel and the spread of 
fire across different landscapes. Following the development of the 
static fire hazard index, the next phase involves applying the Canadian 
Fire Weather Index (FWI). This index serves as a framework for 
evaluating fire risk based on meteorological conditions (Van Wagner, 
1987). The weather-based fire risk index is calculated using key 
weather parameters derived from satellite datasets. Essential variables 
in this assessment include air temperature, relative humidity, wind 
speed, and precipitation, which together play a significant role in 
determining fire risk (Bedia et al., 2012). In the final stage, we combine 
the static fire hazard index with the dynamic fire risk index to develop 
an SFRI. This integration facilitates a thorough assessment of fire risk 
by considering both the long-term susceptibility of landscapes to fire 
and the immediate effects of weather and climatic conditions.

2.2.1 Static fire hazard index
To evaluate the static fire hazard, we obtained several geospatial 

datasets, including Terrain Data, Land Cover Data, and Fire History 

Data. The Shuttle Radar Topography Mission (SRTM) Digital 
Elevation Model (DEM) was sourced from the USGS Earth Explorer 
website (USGS Earth Explorer, n.d.)1 and provides detailed elevation 
information. MODIS (Moderate Resolution Imaging 
Spectroradiometer) Terra and Aqua land use and land cover (LULC) 
maps were downloaded from the Earthdata Search portal (Earthdata 
Search, n.d.)2, which categorizes the land cover types throughout 
Kazakhstan. Additionally, active fire point data specific to Kazakhstan 
was retrieved from the NASA Fire Information for Resource 
Management System (FIRMS) website (NASA, Fire information for 
resource management system, n.d.)3, encompassing the fire seasons 
from 2018 to 2023.

The acquired data underwent further processing to derive 
additional spatial variables and prepare it for the machine learning 
model. A terrain analysis was conducted using the SRTM DEM data 
to calculate the slope and aspect of the terrain, which are essential 
factors influencing fire behavior (Finney, 1998; Jain et al., 2021). A 
Random Forest model was developed in a Python Jupyter Notebook 
to predict fire occurrence in Kazakhstan, taking advantage of its 
effectiveness in modeling complex, non-linear relationships. The 
model was trained on a dataset that included terrain attributes, land 
cover classifications from MODIS IGBP, and historical fire records. 
The dataset was divided into a 70% training set and a 30% testing set, 
employing a fivefold cross-validation approach to ensure robust 
performance. Hyperparameter tuning was performed using a 
randomized search to optimize key parameters, such as the number 
of trees (ranging from 100 to 500), maximum features (The number 
of features considered at each split, testing “sqrt”, “log2”, 0.6, and 0.8. 
This parameter controls the randomness of the model and helps in 
reducing correlation among trees), and tree depth (ranging from 
5 to 20).

The trained model displayed strong predictive capabilities, 
achieving an accuracy of 0.78 and a robust AUC score of 0.80 on the 

1  https://earthexplorer.usgs.gov/

2  https://search.earthdata.nasa.gov/

3  https://firms.modaps.eosdis.nasa.gov/

FIGURE 1

Maps depicting the study area in Kazakhstan, including land use and land cover (LULC) and the Digital Elevation Model (DEM).

TABLE 1  Datasets utilized in generating SFRI.

S. No. Datasets Product Spatial 
resolution

Temporal 
resolution

1 Shuttle Radar 

Topography 

Mission (SRTM)

DEM 90 m

2 MODIS/

Terra + Aqua 

Land Cover 

Type

MCD12Q1 500 m Year

3 MODIS/Terra 

Vegetation 

Indices

MOD13A2 1,000 m 16 day

4 MODIS Terra, 

Aqua fire 

hotspot data

MOD14

MYD14

1,000 m Daily

5 AWS data AT, RH, WS Daily
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test set. An analysis of variable importance indicated that static factors 
like slope and elevation were the most significant predictors of fire 
occurrence. This validated model was subsequently used to generate 
a spatially explicit static fire hazard index, which serves as a 
foundational component of the Spatiotemporal Fire Risk Index (SFRI) 
for Kazakhstan.

2.2.2 Dynamic fire risk index
We developed a dynamic fire risk index for Kazakhstan by 

enhancing the Canadian Fire Weather Index (FWI) with satellite-
derived vegetation data, which improves the assessment of fuel 
availability. We  also modified the fuel moisture content by 
incorporating the Fuel Moisture Index (FMI), thereby simplifying the 
calculations. This modification was necessary because the original 
equation relied on ground-based parameters and values from the 
previous day. We utilized the Normalized Difference Vegetation Index 
(NDVI) from MODIS TERRA (MOD13A2 product) as fuel proxies. 
A network of Automatic Weather Stations (AWS) in Kazakhstan 
provided current data on temperature, humidity, and wind speed. 
These datasets were spatially interpolated using deterministic Inverse 
Distance Weighting (IDW) to generate continuous raster surfaces. 
IDW was chosen over Kriging because of its computational efficiency 
and fewer statistical assumptions. IDW interpolation is both simpler 
and faster than Kriging, which requires a robust variogram model and 
is more computationally intensive (Kravchenko and Bullock, 1999). 
This approach enabled the efficient processing of the large dataset by 
ensuring that the influence of each AWS observation was inversely 
proportional to its distance from the interpolated location, allowing 
for the rapid and reliable generation of representative spatial surfaces 
for analysis. The FWI system, which includes the Fine Fuel Moisture 
Code (FMC), Duff Moisture Code, and Drought Code, was modified 
to incorporate Enhanced Vegetation Index (EVI). The FMC, which 
represents the moisture content of readily ignitable fuels, was adjusted 
using the Fuel Moisture Index equation (Sharples et al., 2009) to better 
reflect live fuel moisture dynamics. The original FWI system, without 
the FMI, often underestimated fire danger in these areas, especially 
during periods of green-up or drought stress where live fuel moisture 

deviates significantly from that inferred solely from weather variables. 
The FMI improves fire danger assessment and prediction by providing 
a more holistic and ecologically relevant indicator of fuel moisture 
conditions. The remaining components of the FWI, which are 
primarily driven by weather, were derived from the interpolated 
meteorological data. The Initial Spread Index (ISI), which combines 
FMC and weather conditions, quantifies the potential rate of fire 
spread (Bourlière et al., 2006). The FWI integrates both FMC and ISI 
to produce a fire danger rating that ranges from very low to very high 
(Equations (1–5)).

The following equations are used to generate the FWI for each day:

	 ( )= = 0.05039 Wwind function f W e 	 (1)

The FMI is a simplified index developed by Sharples in 2009 to 
estimate the moisture content of fuel in a forest or grassland. It’s a 
relatively straightforward calculation compared to more complex 
indices. The FMI equation is used as a proxy for the fuel moisture 
content (m).

	 ( )= − ∗ −10 0.25FMI T RH 	 (2)

Where:
FMI: Fuel Moisture Index = m; T: Air temperature; RH: 

Relative humidity.
The equations of FWI are shown in the following equations.

	

( ) ( )
−

 
 = = + ×  

5.31
0.1386

7
   91.9 1

4.93 10
m mFine fuel moisture function f F e

	

(3)

	 ( ) ( ) ( )= =  0.208Initial Spread Index ISI R f W f F 	 (4)

	 ( )= = 0.1Intermediate FWI B R f D 	 (5)

FIGURE 2

Flowchart illustrating the methodology of SFRI.
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In the Intermediate FWI (B), f(D) is the fuel availability and the 
NDVI has been used as a proxy in this study.

2.2.3 Spatiotemporal Fire Risk Index
To develop a comprehensive and robust fire risk assessment, a 

Spatiotemporal Fire Risk Index can be established by combining both 
static and dynamic components through an additive model. This 
methodological framework leverages the strengths of both static fire 
hazard and dynamic fire risk indices, resulting in a more accurate and 
nuanced representation of fire risk. The daily calculations of the 
integrated fire hazard index during the 2023 fire season facilitate real-
time analysis and application in fire management strategies. This index 
can be overlaid with actual fire occurrences on corresponding days, 
allowing for a direct comparison between predicted fire risk and 
observed events. The resulting fire danger maps are categorized into 
five distinct fire hazard levels: very low, low, moderate, high, and very 
high. These classifications, derived from pixel values, provide practical 
guidance to fire management agencies, enabling them to adapt their 
prevention and suppression strategies dynamically according to the 
changing fire risk landscape (Stocks et al., 2002). A summary of the 
classification criteria is included in Table 2.

3 Results and discussion

The developed SFRI provides a comprehensive assessment of fire 
risk across Kazakhstan. This spatial layer can assist authorities in 
prioritizing resources and focusing their efforts on areas with a higher 
likelihood of fire occurrence (Akther and Hassan, 2011). The SFRI 
maps were generated during the 2023 fire season, and the selected 
maps have been overlaid with the corresponding MODIS fire 
incidents, as shown in Figure 3. These maps were generated daily to 
provide a thorough and operationally relevant assessment of fire 
danger throughout the season. However, Figure 3 presents only a 
limited selection of dates to demonstrate the model’s accuracy during 
specific, representative instances.

Accuracy assessment of the SFRI will be conducted by comparing 
predicted fire risk classifications against observed fire occurrences 
derived from satellite-based fire detection datasets, specifically MODIS 
(MCD14) (Giglio et al., 2016; Babu et al., 2016). A contingency table 
(Table 3) displaying the frequency of fire incidents across the discretized 
risk categories (very low to very high) will be generated, providing a 
comprehensive examination of fire point distribution across various fire 
danger classes over the specified timeframe. This analysis will illuminate 
trends and patterns in fire occurrence, providing critical insights for 
effective fire management and prevention strategies. A positive 
correlation between observed fire incidence and predicted risk level is 

anticipated, with a concentration of fire events within the high to very 
high-risk classes (Babu and Roy, 2020). Understanding the temporal 
dynamics reflected in this distribution is crucial for developing adaptive 
management strategies responsive to fluctuating fire conditions.

The validation process comprises three steps: (1) spatial 
discretization of the study area into distinct fire risk zones based on 
the index output; (2) quantification of fire occurrences within each 
risk zone using MODIS active fire detection data; and (3) a binary 
classification of fire detections, where fires occurring within moderate, 
high, and very high-risk zones are considered correctly identified by 
the index, while those within low and very low-risk zones are deemed 
misclassifications (Babu et al., 2019). Preliminary analysis suggests an 
accuracy exceeding 80% during the fire season in Kazakhstan.

This binary classification approach is predicated on the heightened 
probability of fire occurrence in areas classified as moderate to very 
high risk, driven by contributing factors such as fuel availability, aridity, 
and meteorological conditions conducive to fire ignition and spread 
(Burgan et al., 1998). This assumption allows for a focused evaluation 
of the index’s performance in identifying fire occurrences within these 
critical zones. Overall, the accuracy of the fire risk model, determined 
by the percentage of correctly classified fire points, is generally high, 
indicating the effectiveness of the fire hazard index in predicting fire 
occurrences. However, periods characterized by highly variable 
weather conditions or significant shifts in fuel moisture can lead to 
reduced accuracy. These fluctuations underscore the importance of 
ongoing model refinement and validation to enhance predictive 
capability, particularly under dynamic environmental conditions.

The entire procedure for calculating the SFRI involves generating 
a raster surface from weather parameters, including temperature (T), 
relative humidity (RH), and wind speed (WS). This process entails 
calculating various components, such as the wind speed component, 
fuel moisture index, moisture content, fuel moisture function, Initial 
Spread Index, and fire weather index. Ultimately, the static fire hazard 
index is integrated to produce the SFRI in a Python environment, with 
sample output illustrated in Figure 4. These fire risk maps are uploaded 
daily to the website https://tabigat.gov.kz/ throughout the fire season 
in the region. A snapshot of the fire risk map is displayed in Figure 5. 
This map demonstrates the spatial distribution of fire risk across 
Kazakhstan, categorized into five hazard levels: very low, low, 
moderate, high, and very high, based on the calculated SFRI.

4 Conclusion

This study demonstrates the development and application of a 
Spatiotemporal Fire Risk Index (SFRI) for Kazakhstan, combining 
static and dynamic factors to provide a comprehensive fire risk 
assessment. The static component, derived from a Random Forest 
model trained on terrain attributes, land cover, and historical fire data, 
represents the inherent fire susceptibility of the landscape. The 
dynamic component, a modified Canadian Fire Weather Index (FWI) 
incorporating satellite-derived Normalized Difference Vegetation 
Index (NDVI) and interpolated weather data, captures the influence 
of real-time meteorological conditions and fuel availability on fire risk. 
The integration of these components through an additive model 
allows for a more nuanced and accurate representation of fire hazard, 
accounting for both long-term landscape vulnerability and short-term 
weather-driven fluctuations.

TABLE 2  Fire hazard classes.

S. No. Hazard class Pixel values

1 Very low <4

2 Low 4–5

3 Moderate 5–6

4 High 6–8

5 Very high >8

https://doi.org/10.3389/ffgc.2025.1680856
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Validation of the SFRI against observed fire occurrences from 
MODIS active fire detection datasets indicates a generally high 
accuracy, exceeding 80% during the 2023 fire season. The binary 
classification approach, focusing on the index’s ability to identify 
fires within moderate to very high-risk zones, underscores its 
effectiveness in predicting fire occurrences in areas with elevated 
fire potential due to fuel availability, aridity, and conducive 
meteorological conditions. The contingency table analysis, 

illustrating the distribution of fire incidents across discretized risk 
categories, confirms a positive correlation between predicted risk 
level and observed fire incidence, with a concentration of fire 
events within the higher risk classes.

While the overall accuracy is promising, periods of highly variable 
weather or significant shifts in fuel moisture can influence the index’s 
predictive capability. Further research and model refinement, 
including the exploration of alternative fuel moisture indices and 

FIGURE 3 (Continued)
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advanced spatial interpolation techniques for meteorological data, 
may enhance the model’s robustness and adaptability to dynamic 
environmental conditions. The incorporation of real-time or near 
real-time fuel moisture data, derived from remote sensing or field 
observations, could further improve the accuracy of the dynamic 

component of the index. This SFRI is currently operational and 
accessible online during the fire season, providing valuable real-time 
information for fire management agencies in Kazakhstan. This 
resource enables more effective resource allocation, targeted 
prevention efforts, and proactive fire suppression strategies.

FIGURE 3

Fire risk maps overlaid with the corresponding day fire points (selected images).
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FIGURE 5

Snapshot of the fire risk map on 24th May, 2025 from the tabigat website (https://tabigat.gov.kz/).

TABLE 3  Fire point distribution across fire danger classes and accuracies (selected).

Date Very low Low Moderate High Very high Accuracy (%)

Jun-02 1 2 27 210 56 98.99

Jun-10 6 7 28 70 33 90.97

Jul-04 4 3 43 105 36 96.34

Jul-18 6 1 21 136 20 96.20

Jul-26 0 5 19 65 6 94.74

Aug-02 9 2 95 304 73 97.72

Aug-13 5 10 26 28 43 86.61

Aug-31 3 12 15 68 0 84.69

Sep-06 3 7 7 35 0 80.76

Sep-18 8 3 10 68 0 87.64

Sep-30 8 4 9 43 4 82.35

FIGURE 4

Daily Spatiotemporal Fire Risk Index (SFRI) outputs in python environment.
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5 Future work

The Spatiotemporal Fire Risk Index (SFRI) will be enhanced in the 
future by incorporating more advanced and dynamic data sources, as 
well as machine learning techniques, to increase the accuracy of 
predictions and the practical utility of the index. One crucial area for 
our future work is dynamic fuel moisture. We plan to utilize data from 
the Sentinel-2 and Landsat 9 satellites, which offer superior spatial and 
temporal resolutions compared to the MODIS data used in this study. 
From these datasets, we  will develop more precise dynamic fuel 
moisture content (FMC) indices, such as the Normalized Difference 
Moisture Index (NDMI) or other specialized indices. This advancement 
will enable near-real-time monitoring of live fuel moisture, providing 
a clearer picture of the landscape’s flammability compared to the static 
vegetation index. Additionally, we will explore the integration of more 
weather data, including real-time wind speed and direction, into the 
model to enhance our understanding of fire behavior and spread.
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