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Introduction: Fusarium proliferatum is a globally distributed fungal pathogen of
major agricultural significance, responsible for considerable crop losses and the
production of hazardous mycotoxins that endanger food security and human
health. Climate change is expected to modify the geographic distribution of plant
pathogens, allowing their spread into previously unsuitable regions.
Methods: This study employed the Maximum Entropy (MaxEnt) species
distribution modeling approach to evaluate the potential impacts of
climate change on the global distribution of F. proliferatum under different
Representative Concentration Pathway (RCP) emission scenarios. A total of
347 species occurrence records were obtained from the Global Biodiversity
Information Facility (GBIF) and spatially filtered to minimize sampling bias.
Bioclimatic variables, primarily temperature-related factors, were identified
as key environmental determinants through systematic variable selection and
correlation analysis. Model performance was evaluated using the Area Under
the Curve (AUC) metric.
Results: The MaxEnt model demonstrated excellent predictive accuracy (AUC
= 0.844). Current distribution maps revealed high environmental suitability in
tropical and subtropical regions, with moderate suitability in temperate zones.
Future projections for 2050 and 2070 under both moderate (RCP 2.6) and severe
(RCP 8.5) emission scenarios indicated notable poleward range expansion,
particularly into northern Europe, northern Asia, and northern North America.
The most substantial distributional shifts occurred under the severe emission
scenario for 2070, showing extensive expansion of highly suitable environments
into previously marginal regions. Temperature seasonality was identified as the
most influential limiting factor globally.
Discussion: These findings suggest that ongoing climate change will
substantially broaden the geographic range of F. proliferatum, heightening
mycotoxin contamination risks in new agricultural areas and threatening food
security in temperate zones historically unexposed to this pathogen. The
study provides critical insights for developing proactive surveillance, biosecurity
policies, and adaptive management strategies to mitigate the escalating risks
posed by this economically important fungal pathogen under future climatic
conditions.
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1 Introduction

Fusarium proliferatum is a ubiquitous fungal pathogen of
considerable agricultural and economic significance, causing
diseases in maize, wheat, rice, and numerous other crops globally
(Chelkowski et al., 2000; Logrieco et al., 2002). The species
poses a dual threat: direct crop damage through yield losses
and indirect harm through production of hazardous mycotoxins,
particularly fumonisins, which contaminate food and feed sources
and present serious risks to human and animal health (Marasas
et al., 2004; Gelderblom et al., 2008). The fungus exhibits
exceptional adaptability across diverse environmental conditions
and agricultural systems, establishing infections from tropical to
temperate climatic zones (Leslie and Summerell, 2006; Munkvold
and White, 2016). Globally, F. proliferatum infections result in
millions of dollars in annual economic losses through reduced crop
yields, mycotoxin contamination, and associated trade restrictions,
with significant impacts documented across North America,
Europe, Asia, and Africa (Munkvold, 2003; Boutigny et al., 2011).

Climate change represents a major environmental challenge
with profound implications for plant pathogen distributions and
disease epidemiology (Garrett et al., 2006; Elad and Pertot, 2014).
Rising global temperatures, altered precipitation patterns, and
increased frequency of extreme weather events are creating novel
ecological niches that may facilitate the spread and intensification
of fungal diseases (Chakraborty and Newton, 2011; Fones et al.,
2020). These climatic shifts can modify fundamental aspects
of fungal biology—including viability, sporulation, dispersal,
and infection dynamics—potentially leading to geographic range
expansions and disease establishment in previously unaffected
regions (Medina et al., 2017; Xu et al., 2024). For mycotoxigenic
fungi like F. proliferatum, continued climate change may not only
expand pathogen ranges but also increase mycotoxin prevalence in
both traditional and newly vulnerable agricultural areas.

Species distribution modeling has transformed our
understanding of pathogen ecology and disease risk assessment
under environmental change (Elith and Leathwick, 2009; Peterson
et al., 2011). Maximum Entropy modeling (MaxEnt) has emerged
as a particularly powerful approach for forecasting climate change
impacts on plant pathogen distributions, enabling proactive
management strategies and risk assessment (Bebber et al., 2013;
Merow et al., 2013). This methodology has been successfully
applied to delineate climate niches for various fungal pathogens,
providing valuable insights into potential range shifts and
emerging risks. By integrating climate change projections with
species distribution models, researchers can evaluate how modified
environmental conditions may affect pathogen establishment and
spread in coming decades.

Despite the agricultural and public health importance of
F. proliferatum, comprehensive global-scale assessments of its
potential distribution under future climate scenarios remain
lacking. Previous studies have focused primarily on regional
scales or specific crop systems, limiting our understanding
of worldwide distribution dynamics and vulnerability patterns.
Moreover, few studies have explicitly linked projected pathogen
range expansions to mycotoxin contamination risks and food
security implications at the global scale. This knowledge gap is

critical because F. proliferatum’s ability to produce fumonisins
means that geographic expansion represents not merely an
agricultural pest issue, but a direct threat to food safety in regions
with no prior experience managing this pathogen or its associated
mycotoxins. Understanding the global patterns of climate-driven
distribution changes is essential for developing coordinated
international surveillance programs, biosecurity measures, and
adaptive agricultural strategies.

This study addresses these gaps by providing the first
comprehensive global assessment of climate change impacts on
F. proliferatum distribution, explicitly integrating mycotoxin risk
implications. This research advances beyond previous regional-
scale pathogen studies by: (1) providing comprehensive global-
scale assessment of F. proliferatum distribution under climate
change; (2) explicitly linking projected range expansion to
mycotoxin contamination risks and food security implications;
(3) integrating multiple emission scenarios and time horizons to
inform adaptive management strategies; and (4) identifying specific
geographic regions vulnerable to pathogen emergence. Specifically,
we aim to: (1) characterize the current global distribution patterns
and principal environmental determinants of F. proliferatum; (2)
project potential environmental suitability changes under multiple
climate scenarios and time horizons; (3) identify geographic
regions vulnerable to pathogen emergence or intensification;
and (4) provide evidence-based recommendations for disease
management, surveillance strategies, and food safety planning. By
combining extensive occurrence data with high-resolution climate
projections and validated modeling approaches, this research
provides actionable insights for agricultural adaptation and food
security planning in a changing climate.

2 Materials and methods

2.1 Occurrence data collection and quality
control

Species occurrence data for Fusarium proliferatum were
retrieved from the Global Biodiversity Information Facility (GBIF)
database (GBIF.org, 2023) using the search term “Fusarium
proliferatum” with taxonomic verification. The initial query,
conducted on January 15, 2023, yielded 4,995 occurrence records
spanning from 1950 to 2023. The dataset underwent rigorous
quality control and filtering procedures to ensure spatial accuracy
and minimize modeling biases.

Records were excluded based on the following criteria: (1)
absence of precise geographic coordinates (latitude and longitude);
(2) coordinate uncertainty exceeding 5 km; (3) duplicate entries
at identical coordinates that could artificially inflate presence
probabilities in specific locations (Boria et al., 2014). Records
from both agricultural and non-agricultural hosts were retained
to capture the full ecological niche of the species across diverse
environmental contexts. To reduce geographic autocorrelation and
sampling bias, spatial thinning was applied using a 5-km radius
threshold, retaining only one occurrence record per 5 km × 5 km
grid cell (Aiello-Lammens et al., 2015). This procedure resulted in
a final dataset of 347 spatially independent, high-quality occurrence
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records suitable for species distribution modeling. The analyzed
occurrence data were exported and saved in comma-separated
values (CSV) format for subsequent analysis (Figure 1).

Data limitations and potential biases: We acknowledge
several inherent limitations in GBIF occurrence data. First,
geographic sampling is uneven, with greater representation
from developed regions (North America, Europe) compared to
developing countries where the pathogen may also be present.
This sampling bias could lead to underestimation of the species’
climatic niche breadth, particularly in undersampled tropical and
subtropical regions of Africa, Asia, and South America. Second,
GBIF records represent documented observations rather than
systematic surveys, potentially overrepresenting easily accessible
agricultural areas and underrepresenting wild or non-agricultural
hosts. Third, occurrence data reflect the realized niche (where
the species currently exists under the influence of biotic
interactions, dispersal limitations, and human activities) rather
than the fundamental niche (the full range of conditions the
species could potentially tolerate). Despite these limitations,
GBIF represents the most comprehensive global occurrence
database available, and our spatial filtering procedures help
mitigate some biases by reducing clustering effects in heavily
sampled regions.

2.2 Bioclimatic variables and variable
selection

Environmental data were obtained from the WorldClim
database version 2.1, providing global climate layers at
approximately 1 km spatial resolution (Fick and Hijmans, 2017).
The complete set of 19 standard bioclimatic variables was initially
considered for model development (Supplementary Table S1
provides a complete list of all 19 bioclimatic variables with their
descriptions and units). These variables encompass annual trends
(e.g., mean annual temperature, annual precipitation), seasonality
(e.g., temperature and precipitation variability), and extreme
environmental conditions (e.g., temperature of the warmest and
coldest months).

Prior to model construction, we conducted comprehensive
correlation analysis to identify and eliminate collinearity among
predictor variables, following established best practices for species
distribution modeling (Dormann et al., 2013). Variables exhibiting
Pearson correlation coefficients exceeding |0.8| were considered
highly correlated, and subsequent selection prioritized biological
relevance and contribution to model performance (Merow et al.,
2013).

Preliminary MaxEnt models incorporating all 19 variables
revealed that temperature-related variables contributed over 85%
of the model’s explanatory power, while precipitation variables
showed minimal individual contributions (<5% combined).
Additionally, correlation analysis demonstrated strong collinearity
among several precipitation variables (bio_12, bio_13, bio_14,
bio_16, bio_17, bio_18, bio_19; r > 0.85).

Biological rationale for temperature focus: Temperature
represents a fundamental constraint on fungal physiology,
directly limiting enzymatic processes, growth rates, sporulation

capacity, and survival during dormant periods (Medina et al.,
2017). Field and laboratory studies consistently demonstrate
that temperature thresholds define the geographic limits of F.
proliferatum establishment, whereas the species can persist across
wide precipitation ranges through endophytic associations, seed
contamination, and adaptation to variable moisture conditions
(Leslie and Summerell, 2006; Munkvold and White, 2016).
This biological context, combined with the strong collinearity
among precipitation variables and their minimal contribution
in preliminary models, justified our focus on temperature-
related predictors.

Based on these combined statistical and biological
considerations, five temperature-related variables were selected as
the final predictors: annual mean temperature (bio_1), temperature
seasonality (bio_4), minimum temperature of the coldest month
(bio_6), mean temperature of the warmest quarter (bio_10), and
mean temperature of the coldest quarter (bio_11). These variables
exhibited low intercorrelation (r < 0.7) while capturing distinct
aspects of the thermal environment critical to fungal ecology.

2.3 Future climate scenarios

Future climate projections were derived from the MRI-CGCM3
(Meteorological Research Institute Coupled Global Climate Model
version 3) general circulation model, accessed through the
WorldClim database (Fick and Hijmans, 2017). Climate data were
obtained for two time periods (2050: 2041-2060; 2070: 2061-2080)
under two Representative Concentration Pathways: RCP 2.6 and
RCP 8.5 (van Vuuren et al., 2011).

We selected RCP 2.6 and RCP 8.5 to represent the extreme
bounds of plausible climate futures: RCP 2.6 represents a stringent
mitigation scenario with peak greenhouse gas concentrations
followed by decline, whereas RCP 8.5 represents a high-emission
scenario with continued increases throughout the twenty-first
century (Moss et al., 2010). This approach allows assessment
of species distribution under best-case and worst-case scenarios,
providing critical information for risk assessment and adaptive
management planning. The bracketing approach we employed
captures the range of potential outcomes for policy-relevant
decision making.

The MRI-CGCM3 model was selected for several reasons: (1)
its demonstrated strong performance in reproducing historical
climate patterns, particularly for temperature variables globally
(Yukimoto et al., 2012); (2) its availability within the WorldClim
framework at the required spatial resolution for species distribution
modeling applications; and (3) its successful application in previous
plant pathogen distribution studies. We acknowledge that using
a single GCM represents a limitation of this study, as multi-
model ensembles are generally preferred to account for inter-
model uncertainty in climate projections (Araújo and New, 2007).
However, the MRI-CGCM3 model is considered representative of
the CMIP5 ensemble for global temperature projections, and our
focus on extreme emission scenarios helps bound the range of
potential distribution changes. Future studies should incorporate
multiple GCMs to provide more robust uncertainty estimates in
projected distributions.
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FIGURE 1

The total records used for modeling of Fusarium proliferatum distribution.

2.4 Data processing and preparation

All environmental data layers (current and future climate) were
processed using ArcGIS Desktop version 10.8.1 (ESRI, 2022). The
original bioclimatic raster files in GeoTIFF format were converted
to ASCII grid format to ensure compatibility with MaxEnt software.
All layers were verified to maintain identical spatial extent (global
coverage), spatial resolution (30 arc-s, approximately 1 km at the
equator), coordinate reference system (WGS84), and cell alignment
to enable direct comparison and accurate model projections across
current and future scenarios.

2.5 Species distribution modeling

Species distribution modeling was performed using Maximum
Entropy (MaxEnt) software version 3.4.4 as a standalone Java
application (Phillips et al., 2006; Phillips and Dudík, 2008).
MaxEnt was selected for its demonstrated robust performance
with presence-only data and its capacity to model complex, non-
linear relationships between environmental variables and species
occurrence (Elith et al., 2011).

Model parameterization followed systematic tuning procedures
to optimize predictive performance and avoid overfitting. We
evaluated combinations of regularization multipliers (0.5, 1.0, 1.5,
2.0, 2.5, 3.0, 4.0) and feature class combinations (L, LQ, H, LQH,
LQHP, LQHPT, where L = linear, Q = quadratic, H = hinge, P
= product, T = threshold) using a model selection framework.
For each parameter combination, models were evaluated using
the corrected Akaike Information Criterion (AICc) and predictive
performance metrics from cross-validation (Warren and Seifert,
2011; Radosavljevic and Anderson, 2014).

The optimal model employed a regularization multiplier of 1.5
with linear, quadratic, and hinge features (LQH), which provided

the best balance between model complexity and predictive accuracy
based on AICc values and omission rates. This configuration was
selected from among 49 candidate models evaluated during the
tuning process.

The modeling strategy utilized k-fold cross-validation with k =
5, allocating data randomly into five subsets. For each fold, 80% of
occurrence records were used for model training and the remaining
20% were reserved for independent model testing and validation
(Fielding and Bell, 1997). This procedure was replicated five
times with different random partitions to ensure model robustness
and provide estimates of prediction uncertainty. Ten thousand
background points were randomly selected from the study area to
characterize available environmental conditions, following MaxEnt
default recommendations for presence-only modeling.

Final model projections represent the mean environmental
suitability across all five cross-validation replicates, with variability
among replicates used to assess prediction uncertainty. Models
were projected onto current and future climate layers using
the “cloglog” output format, which provides estimates of
environmental suitability as probabilities of presence ranging from
0 (unsuitable) to 1 (highly suitable).

2.6 Model validation

Model performance was evaluated using multiple validation
metrics to assess both discrimination ability and predictive
accuracy. The Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) was calculated to evaluate the
model’s ability to distinguish between suitable and unsuitable
environments across all threshold values (Hanley and McNeil,
1982). The True Skill Statistic (TSS) was computed to provide
a threshold-dependent measure of model performance that
incorporates both sensitivity (true positive rate) and specificity
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(true negative rate) independent of prevalence (Allouche et al.,
2006). TSS values range from −1 to +1, with values >0.4 indicating
good model performance and values >0.8 indicating excellent
predictive accuracy (Landis and Koch, 1977).

For TSS calculation, the threshold was determined using the
maximum training sensitivity plus specificity approach, which
identifies the probability threshold that maximizes the sum of
correctly predicted presences and absences. Validation metrics
were calculated independently for each of the five cross-validation
folds, and results are reported as mean ± standard deviation to
characterize model stability and prediction uncertainty.

2.7 Environmental envelope analysis and
limiting factor mapping

Complementary analyses were conducted using DIVA-GIS
version 7.5 (Hijmans et al., 2012) to provide additional ecological
insights into the climatic niche and environmental constraints of
Fusarium proliferatum.

Environmental Envelope Analysis: The bioclimatic envelope
(or “bioclim”) approach was applied as an independent exploratory
analysis to visualize the species’ climatic niche space. This analysis
utilized all 19 WorldClim bioclimatic variables to define the
multidimensional environmental space occupied by occurrence
records. The envelope was constructed by determining the
minimum and maximum values of each bioclimatic variable
at all occurrence locations, thereby delineating the observed
environmental boundaries of the species (Booth et al., 2014).

For visualization purposes, we present the two-dimensional
niche space defined by annual mean temperature (bio_1) and
annual precipitation (bio_12), as these represent the primary axes
of climatic variation globally. Occurrence records were classified as
either falling within the envelope across all 19 variables (indicating
typical climatic conditions; shown as green points) or falling
outside the envelope for one or more variables (indicating marginal
or atypical conditions; shown as red points). This analysis provides
insights into niche breadth and potential marginal populations.

It is important to note that this envelope analysis is independent
of the MaxEnt species distribution model and serves a different
purpose: the MaxEnt model identifies optimal conditions and
their spatial distribution using the five selected predictor variables,
whereas the envelope analysis explores the full observed climatic
tolerances across all available bioclimatic dimensions.

Limiting Factor Analysis: Limiting factor mapping was
performed using the five temperature-related variables employed
in the MaxEnt model (bio_1, bio_4, bio_6, bio_10, bio_11).
For each grid cell in the study area, DIVA-GIS identifies which
environmental variable is most limiting—i.e., which variable’s
value is closest to the edge of the species’ observed tolerance
range (furthest from the optimal value). This analysis reveals
spatial patterns in environmental constraints, showing which
temperature factors most strongly limit species distribution in
different geographic regions (Hijmans et al., 2012).

The limiting factor is determined by calculating the
Mahalanobis distance between each environmental variable’s
value at a given location and the mean value of that variable across

all occurrence points, standardized by the variance. The variable
with the maximum standardized distance is identified as the
limiting factor for that location. This approach highlights regions
where specific thermal constraints prevent species establishment
or reduce environmental suitability.

3 Results

3.1 Model performance and variable
importance

The species distribution model for Fusarium proliferatum
demonstrated high predictive accuracy across multiple validation
metrics. The mean Area Under the Curve (AUC) value was
0.844 ± 0.021 (range: 0.820–0.867 across five cross-validation
folds; Figure 2a), indicating excellent model ability to discriminate
between suitable and unsuitable environments. The mean True
Skill Statistic (TSS) value of 0.68 ± 0.048 (range: 0.62–0.73)
confirmed the model’s robustness, demonstrating strong agreement
between predicted and observed distributions and accounting for
both sensitivity (mean = 0.82 ± 0.03) and specificity (mean = 0.86
± 0.04).

Five temperature-related bioclimatic variables were identified
as major factors influencing the distribution of Fusarium
proliferatum: annual mean temperature (bio_1), temperature
seasonality (bio_4), minimum temperature of the coldest month
(bio_6), mean temperature of the warmest quarter (bio_10), and
mean temperature of the coldest quarter (bio_11). The jackknife
analysis (Figure 2c) indicated that annual mean temperature
(bio_1) significantly enhanced the model’s predictive capability,
exhibiting the highest regularized training gain when utilized
independently and the most considerable reduction in gain when
omitted from the model.

The species response curve for annual mean temperature
(bio_1) revealed distinct thermal preferences for Fusarium
proliferatum (Figure 2b). Important clarification: The x-axis values
in the response curve represent standardized environmental values
used internally by MaxEnt, not actual temperature in degrees
Celsius. When interpreted in the context of the actual occurrence
data, the response curve indicates that F. proliferatum shows
optimal environmental suitability in regions with annual mean
temperatures between 15 and 25 ◦C, with probability of presence
decreasing substantially below 10 ◦C and above 28 ◦C. This
pattern reflects the species’ preference for warm temperate to
subtropical thermal conditions, consistent with its known ecology
as a pathogen primarily affecting crops in tropical and warm
temperate regions (Leslie and Summerell, 2006; Munkvold and
White, 2016). The gradual decline in environmental suitability
at very high temperatures (>28 ◦C) suggests potential thermal
stress limits, and the sharp decline at lower temperatures (<10 ◦C)
indicates cold limitation of fungal growth and reproduction.

The environmental envelope analysis identified the two-
dimensional climatic niche space occupied by Fusarium
proliferatum, determined by annual mean temperature (bio_1)
and annual precipitation (bio_12) (Figure 3). Of the 347 total
occurrence records, 311 observations (89.6%) were situated
within the species’ environmental envelope when accounting
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FIGURE 2

Model performance and variable importance: (a) ROC curve showing the AUC value; (b) Response curve of bio_1 (annual mean temperature); (c)
Jackknife test analysis of selected variables.

for all 19 bioclimatic factors, whereas 224 records (64.5%) were
located within the envelope considering only the temperature-
precipitation bivariate space. The envelope test revealed that green
dots, signifying occurrence records within the environmental
envelope of all 19 bioclimatic parameters, were primarily clustered
in the central region of the temperature-precipitation space
(Figure 3). This central clustering indicates that the majority of
documented occurrences represent typical climatic conditions
for the species. Red dots, representing occurrence records that
lie outside the envelope of one or more of the 19 bioclimatic
variables, exhibited a more dispersed distribution pattern, with
notable occurrences extending toward the periphery of the climatic
niche limits. These peripheral records may represent marginal
populations or indicate broader climatic tolerance than captured
by the central tendency of the dataset.

3.2 Current global distribution of Fusarium
proliferatum

The MaxEnt species distribution model accurately forecasted
the present global distribution of Fusarium proliferatum,
highlighting specific patterns of environmental suitability across

several geographical regions (Figure 4). The model output reveals
a distinct gradient of suitability classes, with areas of very high
environmental suitability primarily located in tropical and
subtropical regions including South America, Central America,
sub-Saharan Africa, Southeast Asia, and portions of South Asia.
The eastern portions of Europe, particularly in temperate zones,
exhibit moderate environmental suitability, suggesting favorable
environmental circumstances for pathogen presence in these
areas. The Atlantic coastal areas of South America, especially
Brazil, Argentina, and Uruguay, show exceptional environmental
suitability, and the southern portions of Australia also present
highly favorable circumstances.

Regions of high and medium environmental suitability
encompass transitional zones, including segments of the
southeastern United States, Mediterranean Europe, and parts
of eastern Asia, indicating areas conducive to pathogen survival
and moderate disease pressure under present climatic conditions.
Northern regions including Scandinavia, northern Russia, northern
Canada, and Alaska currently exhibit low to unsuitable conditions.
Arid regions such as the Sahara Desert, Arabian Peninsula, and
central Australia show consistently low environmental suitability
due to extreme environmental conditions.

Current mycotoxin risk distribution: The present distribution
pattern indicates that mycotoxin contamination risk is

Frontiers in Forests and Global Change 06 frontiersin.org

https://doi.org/10.3389/ffgc.2025.1673494
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Tagyan et al. 10.3389/ffgc.2025.1673494

FIGURE 3

Two-dimensional niche analysis (the envelope test) of bio_1 (annual mean temperature) and bio_12 (annual precipitation). Green dots represent
records that occur within the envelope for this test and for all the bioclimatic variables; red dots indicate records that occur outside the envelope
either for this test or, if within the envelope for this test, outside the envelope for any other bioclimatic variables.

FIGURE 4

The current predicted distribution of Fusarium proliferatum.

concentrated in tropical and subtropical agricultural regions
where maize, rice, and other susceptible crops are extensively
cultivated. High-risk areas include major grain-producing regions
of Brazil, Argentina, sub-Saharan Africa, India, Southeast Asia,

and southern China. Temperate regions of Europe, northern
North America, and northern Asia currently experience limited
risk, providing a baseline against which future changes can
be assessed.
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3.3 Future projections of Fusarium
proliferatum distribution

3.3.1 RCP 2.6 projection for 2050
Under the moderate mitigation scenario (RCP 2.6) anticipated

for 2050, modeling of Fusarium proliferatum distribution indicated
clear patterns of environmental suitability expansion across several
global regions (Figures 5a, 6a). The species exhibited potential
for modest proliferation into traditionally inhospitable northern
latitudes, particularly in northern Europe, northern Asia, and
certain regions of northern North America. Zones of medium
to high environmental suitability were primarily concentrated
in temperate countries, with notable potential for expansion
in Eastern Europe, Central Asia, and portions of the northern
United States.

Tropical and subtropical regions exhibited consistent
environmental suitability patterns, with areas of high suitability
persisting throughout portions of Central America, northern South
America, sub-Saharan Africa, and Southeast Asia. The Arctic
regions and extreme northern territories remained predominantly
unsuitable for species establishment, and arid areas in North
Africa, the Middle East, and central Australia exhibited persistently
low suitability potential. This moderate scenario suggests that
aggressive climate mitigation could constrain the magnitude
of poleward expansion, maintaining many northern regions as
marginal rather than optimal environments.

Mycotoxin risk implications: Under this scenario, fumonisin
contamination risk begins to extend into southern portions of
northern Europe and parts of the northern United States and
southern Canada, requiring initial development of monitoring
capacity in these regions.

3.3.2 RCP 8.5 projection for 2050
The high-emission scenario (RCP 8.5) for 2050 anticipated

more substantial distributional changes for Fusarium
proliferatum compared to the moderate RCP 2.6 scenario.
Zones of high environmental suitability markedly expanded
in temperate climates, especially in northern Europe,
northern Asia, and the northern tier of North America. The
species showed increased colonization potential in areas
previously identified as having lower suitability ratings,
including portions of Eastern Europe, northern China, and
the northern Great Plains of North America (Figures 5b,
6b).

Tropical regions retained their elevated environmental
suitability rating, with certain locations exhibiting enhanced
favorable conditions. However, some equatorial regions
showed variable patterns, with certain areas potentially
experiencing reduced favorability due to anticipated
temperature extremes. The expansion under RCP 8.5 by
2050 was notably more pronounced than under RCP 2.6,
with larger geographic areas transitioning from unsuitable
or low environmental suitability to moderate and high
suitability categories.

Mycotoxin risk implications: The more aggressive expansion
under RCP 8.5 introduces fumonisin risk to extensive temperate
agricultural zones, including major wheat and maize producing

regions of northern Europe and northern Asia that currently lack
monitoring infrastructure.

3.3.3 RCP 2.6 projection for 2070
Long-term forecasts for 2070 under the RCP 2.6 scenario

suggested a sustained but moderate increase in suitable
environments for Fusarium proliferatum. The species exhibited
enduring colonization capability in northern latitudes,
transforming formerly marginal regions into more stable
medium and high suitability zones. European regions showed
notable consistency in sustaining favorable conditions, and
certain areas of northern Asia and North America displayed
a gradual expansion of suitable environments (Figures 5c,
6c).

Tropical and subtropical regions maintained relatively
stable environmental suitability patterns compared to the
2050 projections, indicating the stabilization of favorable
conditions in these locations. Desert regions and polar
territories largely remained unsuitable, with minimal
alterations in environmental suitability categories. The
progression from 2050 to 2070 under RCP 2.6 showed
continued but measured expansion, suggesting that sustained
climate mitigation efforts could limit the rate and extent of
poleward spread.

Mycotoxin risk implications: By 2070 under moderate
mitigation, fumonisin monitoring becomes necessary across most
of temperate Europe and southern portions of northern Asia and
North America, requiring established regulatory frameworks and
testing capacity.

3.3.4 RCP 8.5 projection for 2070
The RCP 8.5 scenario for 2070 forecasted substantial

distributional alterations for Fusarium proliferatum, representing
the most dramatic projected changes among all scenarios
examined. Highly favorable environments expanded extensively
into formerly marginal and unsuitable areas. Temperate zones in
the Northern Hemisphere exhibited significant enhancements in
environmental suitability, particularly in Scandinavia, northern
Russia, northern Canada, and Alaska (Figures 5d, 6d).

The species exhibited markedly increased establishment
potential across extensive portions of the Eurasian continent,
with significant expansion into higher latitude locations previously
deemed unsuitable or marginally appropriate. Large areas that
were classified as unsuitable or low environmental suitability under
current conditions transitioned to high suitability by 2070 under
this scenario. Tropical regions retained their high environmental
suitability rating; however, several areas showed changes in
suitability intensity.

The anticipated alterations under RCP 8.5 by 2070
represent the most substantial potential range expansion,
with the species demonstrating capacity to establish itself in
areas considerably outside its current climatic envelope. This
scenario projects transformation of vast regions of the Northern
Hemisphere from completely unsuitable to highly suitable for F.
proliferatum establishment.

Mycotoxin risk implications: Under the high-emission
scenario by 2070, fumonisin contamination becomes a significant
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FIGURE 5

Predicted future distribution of environmental suitability of Fusarium proliferatum: (a) RCP 2.6 for 2050; (b) RCP 8.5 for 2050; (c) RCP 2.6 for 2070; (d)
RCP 8.5 for 2070.

FIGURE 6

Calibration maps showing the change in range of Fusarium proliferatum: (a) RCP 2.6 for 2050; (b) RCP 8.5 for 2050; (c) RCP 2.6 for 2070; (d) RCP 8.5
for 2070.

concern across virtually all temperate agricultural regions
globally, including areas as far north as Scandinavia and
southern Alaska. This represents a fundamental transformation
in global mycotoxin risk geography, requiring extensive
development of monitoring, regulatory, and management
infrastructure in regions with no historical experience with
this pathogen.

3.3.5 Comparative analysis across scenarios and
time periods

Comparison across all projection scenarios reveals both
consistent patterns and scenario-dependent divergences. Under
both emission scenarios, tropical and subtropical regions (Central
America, northern South America, sub-Saharan Africa, Southeast
Asia) maintain consistently high environmental suitability across

Frontiers in Forests and Global Change 09 frontiersin.org

https://doi.org/10.3389/ffgc.2025.1673494
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Tagyan et al. 10.3389/ffgc.2025.1673494

all time periods, indicating climatic stability for pathogen
persistence in these traditionally affected areas. In contrast,
temperate regions—particularly northern Europe, northern Asia,
and northern North America—show marked scenario-dependent
expansion patterns.

Under the moderate mitigation scenario (RCP 2.6), range
expansion is evident but relatively constrained, with most
newly suitable areas remaining in the medium environmental
suitability category even by 2070. The expansion rate under
RCP 2.6 is approximately 40–50% slower than under RCP 8.5,
with substantially smaller areas reaching high environmental
suitability status.

Under the high emission scenario (RCP 8.5), expansion is
substantially more pronounced, with large areas transitioning from
unsuitable or low environmental suitability to high suitability
categories, particularly by 2070. Critical regions showing dramatic
increases in environmental suitability only under RCP 8.5 include:
Scandinavia and northern Russia (becoming highly suitable by
2070); northern Canada and Alaska (shifting from unsuitable to
moderate-high environmental suitability); northern China and
Mongolia (transitioning to consistently suitable); and northern
portions of the United Kingdom and Ireland (becoming highly
suitable). The difference between scenarios becomes increasingly
pronounced over time, with the 2070 projections showing far
greater divergence than the 2050 projections.

Regions showing relative stability regardless of scenario
include: polar and Arctic zones (remaining unsuitable due to
extreme cold even under high emissions); major desert regions
(Sahara, Arabian Peninsula, central Australian deserts; remaining
unsuitable due to aridity); and high-elevation mountain systems
(Himalayas, Andes, Rockies; constrained by elevation-driven
temperature limitations).

Mycotoxin risk synthesis: These distribution changes
translate directly into mycotoxin contamination risk patterns.
Newly suitable temperate regions in Europe, Asia, and North
America represent major grain-producing areas with no historical
experience of fumonisin contamination management. The
potential establishment of F. proliferatum in these regions threatens
food safety systems unprepared for mycotoxin monitoring
and mitigation. Furthermore, the projected intensification of
environmental suitability in currently affected tropical regions
suggests potential increases in contamination severity and
frequency in already vulnerable food systems. The scenario-
dependent differences underscore that climate mitigation efforts
could substantially reduce the geographic scope of emerging
mycotoxin risks, providing additional public health justification
for aggressive emission reduction policies.

3.4 Limiting factor analysis

The limiting factor analysis identified specific geographical
patterns in the importance of the five temperature-related
bioclimatic factors throughout the global distribution of Fusarium
proliferatum (Figure 7). Temperature seasonality (bio_4) emerged
as the primary limiting factor across vast regions, particularly
affecting large areas of North America, central and northern

Europe, central Asia, and substantial parts of Australia and
New Zealand. This variable exhibited the most extensive spatial
influence, signifying that annual temperature variability serves
as the principal limitation on species distribution in temperate
areas. The predominance of temperature seasonality as a
limiting factor indicates that regions experiencing high seasonal
temperature fluctuations present challenging conditions for year-
round pathogen survival and establishment.

Annual mean temperature (bio_1) exhibited significant
limiting influence in several locations, especially in northern North
America, sections of northern Europe, and various sites in Asia,
indicating its essential function in establishing the fundamental
thermal limits for species distribution in these areas. This pattern
is particularly evident at high latitudes where absolute temperature
values fall below the species’ thermal tolerance threshold.

The remaining temperature variables demonstrated more
localized but substantial limiting effects across various geographical
locations. The mean temperature of the warmest quarter (bio_10)
was particularly influential in some sections of South America,
especially in tropical and subtropical zones, as well as in other
locations throughout Africa and Asia, suggesting that extreme
summer temperatures in these regions may exceed optimal
conditions. The minimum temperature of the coldest month
(bio_6) emerged as a limiting factor in some high-latitude
and mountainous regions, where winter cold extremes prevent
pathogen survival or severely limit overwintering success. The
mean temperature of the coldest quarter (bio_11) exhibited
influence in particular areas of South America, Africa, and portions
of Asia, indicating that sustained winter cold periods constrain
establishment in these regions.

The spatial distribution of these limiting factors demonstrates
that temperature seasonality (bio_4) represents the most
widespread constraint on F. proliferatum distribution globally,
followed by the more localized but significant impacts of the
other temperature variables. As global warming reduces seasonal
temperature variation in many regions, the primary limiting factor
currently preventing establishment in temperate zones may be
progressively weakened, facilitating poleward expansion.

4 Discussion

The MaxEnt model achieved high predictive accuracy (AUC =
0.844 ± 0.021; TSS = 0.68 ± 0.048), exceeding standard thresholds
for reliable species distribution modeling (Allouche et al., 2006)
and aligning with performance metrics reported for other fungal
pathogen studies. This strong performance validates the approach
for assessing climate-driven distribution changes and supports the
reliability of our future projections. The consistency of validation
metrics across all five cross-validation folds (AUC range: 0.820–
0.867; TSS range: 0.62–0.73) demonstrates model stability and
indicates that results are not dependent on specific data partitions.
The dominance of temperature-related variables in determining
F. proliferatum distribution corresponds with established fungal
ecology principles, where thermal conditions fundamentally
constrain metabolic processes, growth rates, sporulation capacity,
and survival (Medina et al., 2017). The high sensitivity (0.82 ±
0.03) and specificity (0.86 ± 0.04) values indicate that the model
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FIGURE 7

Limiting factor map of the selected bioclimatic variables throughout the species range.

effectively identifies both suitable and unsuitable environments,
minimizing both false positives and false negatives—a critical
requirement for informing management decisions and resource
allocation for surveillance programs.

Our findings align with and extend previous research on
climate-driven pathogen range shifts. The projected poleward
expansion of F. proliferatum parallels patterns documented for
other fungal pathogens, including Fusarium graminearum in wheat
(Skelsey and Newton, 2015), Phytophthora infestans in potato
(Raymundo et al., 2018), and various rust pathogens (Bebber
et al., 2013). However, our study advances beyond these regional-
scale assessments by providing the first comprehensive global
projection for F. proliferatum specifically, with explicit integration
of mycotoxin risk implications. Bebber et al. (2013) demonstrated
that crop pests and pathogens have moved poleward at an
average rate of 2.7 km per year over the past 50 years, a trend
our models predict will accelerate under continued warming.
Our projections of extensive colonization in Scandinavia and
northern Russia under RCP 8.5 by 2070 are consistent with
similar predictions for other temperate-adapted fungal pathogens
(Delgado-Baquerizo et al., 2020). The magnitude of projected
expansion under high-emission scenarios—with some regions
transitioning from completely unsuitable to highly suitable within
50 years—underscores the potential rapidity of climate-driven
distribution changes.

Our emphasis on temperature seasonality as the primary
limiting factor extends findings from regional studies and has
important implications: as climate change reduces seasonal
temperature variation in many regions, previously unsuitable areas
may rapidly become viable for F. proliferatum establishment.
The buffering effect of reduced seasonality may be particularly
important in continental interiors, where historical temperature
extremes have prevented pathogen survival but where climate

change is projected to moderate both summer and winter
temperature extremes.

Unique to our study is the explicit integration of mycotoxin
risk assessment with distribution modeling. Previous climate-
pathogen studies have largely focused on disease presence/absence
or severity, without addressing the food safety implications of
toxigenic species. Given that fumonisin contamination can occur
at subclinical infection levels—where visible disease symptoms
are absent but mycotoxin accumulation proceeds—the health
and economic consequences of F. proliferatum expansion may
exceed those of pathogens causing only visible crop damage.
Regions may experience mycotoxin contamination problems
before recognizing significant disease pressure, potentially resulting
in delayed response and greater population exposure.

The environmental envelope analysis demonstrated that 89.6%
of occurrence records fell within the species’ climatic envelope
across all 19 bioclimatic parameters, indicating robust model
alignment with observed distribution patterns. The high percentage
of correctly predicted occurrences exceeds performance standards
documented in other plant pathogen studies, suggesting that the
selected bioclimatic variables successfully capture the essential
niche requirements of F. proliferatum. The clustering of occurrence
records within the central region of the temperature-precipitation
space illustrates the species’ preference for moderate climatic
conditions, whereas the scattered distribution of marginal records
suggests either genuine niche breadth or potential areas of model
uncertainty requiring field validation (Merow et al., 2013).

The implications of our findings extend beyond mere
range expansion, addressing critical issues related to mycotoxin
contamination and food security. Rising temperatures are expected
to facilitate proliferation of mycotoxigenic fungi adapted to warmer
conditions, posing significant threats to human and animal health
(Xu et al., 2024). The expansion of F. proliferatum into novel
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agricultural regions, especially in temperate zones where fumonisin
contamination has traditionally been minimal or absent, presents
serious risks to crop production and food safety. This concern is
amplified by the identification of numerous newly suitable regions
that align with major grain-producing areas in North America,
Europe, and Asia, where increased mycotoxin contamination could
result in substantial economic and health consequences (Marasas
et al., 2004). The economic burden extends beyond direct crop
losses to include costs associated with testing, grain segregation,
rejection of contaminated shipments, trade disruptions, and
potential health care expenses related to mycotoxin exposure.

The temperature-driven expansion patterns identified in our
study illustrate broader trends wherein cooler or temperate
settings are increasingly vulnerable to fungal infestation as
temperatures rise. Altered precipitation patterns and increased
frequency of extreme weather events are creating novel ecological
niches that may facilitate the spread of Fusarium infections
(Fones et al., 2020). Our limiting factor analysis indicated
that temperature seasonality is the predominant constraint on
species distribution, implying that areas experiencing diminished
seasonal temperature variation due to climate change may become
increasingly vulnerable to F. proliferatum establishment. This
discovery has significant ramifications for disease surveillance
and management strategies, as traditional temperate agricultural
systems may require substantial adaptation to address emerging
pathogen threats for which they have no historical experience or
established management protocols.

The anticipated range extension of F. proliferatum under
climate change scenarios has considerable implications for
global food security and agricultural sustainability. Researchers
have issued increasingly frequent warnings regarding global
warming and its association with mycotoxin-producing fungi
in diverse geographical areas worldwide (Medina et al., 2017).
The introduction of this pathogen into new regions may
destabilize existing agricultural systems and necessitate significant
modifications in crop management strategies, breeding programs,
and food safety regulations. The economic ramifications are
particularly alarming, as F. proliferatum can cause substantial
yield reductions and simultaneously contaminate crops with
harmful mycotoxins, posing a dual threat to productivity and
food safety (Munkvold, 2003). Moreover, expansion into regions
with minimal expertise in managing Fusarium diseases may
create knowledge deficiencies that could intensify the impacts
of pathogen establishment, as farmers, extension services, and
regulatory agencies lack experience with appropriate management
practices, symptom recognition, and mycotoxin testing protocols.

Several limitations of this study warrant consideration when
interpreting our projections. Our reliance on GBIF data introduces
potential geographic and ecological biases. Sampling intensity is
substantially higher in developed regions (North America, Europe)
compared to tropical and subtropical areas of Africa, Asia, and
South America where the pathogen is likely underreported. This
uneven sampling may lead to underestimation of the species’
climatic tolerance breadth, particularly at the warm end of the
temperature gradient. Additionally, GBIF records predominantly
represent agricultural contexts, potentially missing occurrences
in wild or non-crop hosts that could provide important niche

information. Field validation of model predictions, particularly in
undersampled regions and in areas projected to become newly
suitable, represents a critical next step for confirming model
accuracy and refining projections. Systematic surveys in tropical
Africa, Southeast Asia, and South America would be particularly
valuable for capturing the full range of climatic conditions tolerated
by the species.

Our decision to focus exclusively on temperature variables
is statistically and biologically justified but may not capture the
full complexity of moisture-related constraints in some regions.
Future modeling efforts should explore whether incorporating
precipitation variables in region-specific models provides
additional predictive value, particularly for arid and semi-
arid agricultural zones where water availability may interact
with temperature to determine infection outcomes. Similarly, soil
characteristics, host plant phenology, and agricultural management
practices represent additional factors that could refine distribution
predictions beyond the climate-only approach employed here.

Our use of a single GCM (MRI-CGCM3) limits quantification
of inter-model uncertainty. Multi-model ensemble approaches
incorporating diverse GCMs would provide more robust
uncertainty estimates and identify areas of high projection
agreement vs. disagreement among climate models. Similarly, our
focus on two extreme emission scenarios (RCP 2.6 and 8.5) brackets
the range of possible futures but omits intermediate pathways
(RCP 4.5, RCP 6.0) that may prove more realistic given current
emission trajectories and policy commitments. Future assessments
should incorporate multiple GCMs and emission scenarios to
provide more comprehensive uncertainty characterization.

Our models assume niche conservatism—that species-
environment relationships remain constant under future climates.
However, F. proliferatum may exhibit evolutionary adaptation or
phenotypic plasticity in response to novel conditions, potentially
expanding its realized niche beyond current thermal tolerances.
Furthermore, our abiotic models do not incorporate biotic
factors including host plant distributions, competition with other
microorganisms, soil microbiome interactions, or agricultural
management practices, all of which could substantially influence
establishment success in newly suitable regions. The actual
realized distribution will depend on complex interactions between
climate suitability, host availability, dispersal opportunities, and
competitive dynamics that are not captured in climate-only models.

We assume dispersal is unlimited, meaning the pathogen
can reach all climatically suitable areas. For a cosmopolitan
crop pathogen frequently dispersed through agricultural trade,
contaminated seed, and movement of plant materials, this
assumption is more reasonable than for geographically restricted
species. However, biosecurity measures, phytosanitary regulations,
and geographic barriers could slow or prevent colonization of
some suitable areas. Conversely, human-mediated long-distance
dispersal through global agricultural trade networks may enable
more rapid colonization than would occur through natural
dispersal alone, potentially resulting in establishment that outpaces
climate envelope expansion.

Despite these limitations, our modeling framework provides
valuable first-order estimates of climate-driven distribution
changes and identifies priority regions for enhanced surveillance
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and risk management. The consistent patterns observed across
emission scenarios and time periods, combined with strong
model performance metrics and alignment with observed patterns
for other fungal pathogens, support the robustness of our
general conclusions regarding poleward range expansion under
climate warming.

5 Conclusions and recommendations

This study provides the first comprehensive global assessment
of climate change impacts on Fusarium proliferatum distribution
and associated mycotoxin contamination risks. The central finding
is unambiguous: climate warming will substantially expand
the geographic range of this mycotoxin-producing pathogen,
particularly into temperate regions of the Northern Hemisphere
that currently experience minimal fumonisin contamination.
Under high emission scenarios, vast areas of northern Europe,
northern Asia, and northern North America are projected
to transition from unsuitable to highly suitable for pathogen
establishment by 2070, introducing fumonisin contamination risks
to major grain-producing regions with no historical experience
managing this specific mycotoxin threat.

The projected poleward expansion has profound food security
implications. Newly vulnerable temperate regions include major
agricultural zones currently producing significant proportions of
global wheat, maize, and other staple crops. The establishment
of F. proliferatum in these areas would require development of
entirely new monitoring systems, regulatory frameworks, and
mitigation strategies for fumonisin contamination—capabilities
that take years to establish and substantial financial investment
to maintain. Simultaneously, projected intensification in currently
affected tropical regions threatens to increase contamination
frequency and severity in food systems already struggling with
mycotoxin management, potentially exacerbating food insecurity
in vulnerable populations.

Based on our findings, we propose the following evidence-
based recommendations for stakeholders. First, proactive
surveillance programs should be established for systematic
monitoring of F. proliferatum and fumonisin contamination in
regions projected to become newly suitable, particularly northern
Europe, northern Asia, and northern North America. Early
detection systems should be implemented before widespread
establishment occurs, enabling rapid response and containment
efforts. Surveillance should target both agricultural production
systems and potential reservoir hosts in natural ecosystems that
could serve as sources for agricultural infections.

Second, biosecurity and phytosanitary measures must be
strengthened to prevent introduction of contaminated material
into newly vulnerable regions. Seed certification programs and
quarantine protocols should be enhanced, and international
coordination of phytosanitary standards should explicitly address
climate-driven range expansion of mycotoxigenic fungi. Border
inspection procedures may need to be intensified for imports from
regions where F. proliferatum is endemic, particularly for seed
stocks, grain shipments, and planting materials that could serve as
introduction pathways.

Third, adaptive crop management strategies should be
developed and disseminated, including region-specific best
management practices for fumonisin mitigation such as resistant
cultivar deployment, optimized irrigation and fertilization
strategies to minimize plant stress, crop rotation sequences that
reduce inoculum buildup, and biocontrol approaches using
antagonistic microorganisms. Investment in developing these
tools before pathogen establishment is substantially more cost-
effective than reactive management after widespread colonization.
Extension services in newly vulnerable regions should receive
training in disease recognition, management options, and
mycotoxin risk communication to farmers.

Fourth, regulatory framework development is essential
in temperate regions currently lacking fumonisin monitoring
requirements. Proactive development of regulatory standards,
testing protocols, and enforcement capacity is critical. Regulatory
limits should be science-based, considering both acute toxicity
risks and chronic exposure scenarios, with particular attention to
protecting vulnerable populations including infants, children, and
immunocompromised individuals.

Fifth, research priorities for future work should focus on field
validation of model predictions in projected expansion zones,
providing empirical confirmation of colonization patterns and
enabling model refinement. Multi-model ensemble approaches
should be employed to refine uncertainty estimates. Integration
of host plant distributions, agricultural practice variables, and soil
characteristics would enable more mechanistic understanding of
establishment requirements. Assessment of climate change impacts
on fumonisin production levels is critical since temperature and
moisture conditions affect not only where the pathogen can exist
but also how much mycotoxin it produces. Economic modeling
comparing prevention costs vs. reactive management costs would
provide valuable information for policy decisions regarding
resource allocation for surveillance and prevention programs.

Sixth, climate change mitigation represents a crucial strategy for
limiting pathogen range expansion. Our projections demonstrate
that aggressive emission reduction (RCP 2.6 scenario) could
substantially limit the magnitude of pathogen range expansion
compared to high-emission trajectories (RCP 8.5). This finding
adds agricultural biosecurity and food safety to the portfolio of
climate mitigation co-benefits, strengthening the case for urgent
action on greenhouse gas emissions.

Temperature seasonality currently represents the primary
climatic barrier preventing F. proliferatum establishment in
temperate regions. Climate change is progressively dismantling
this natural constraint, enabling colonization of vast previously
inhospitable areas. The agricultural and public health consequences
of this expansion necessitate immediate proactive planning
and coordinated international response. The choice facing
policymakers, agricultural managers, and public health authorities
is clear: invest now in surveillance, prevention, and adaptive
capacity, or face substantially higher costs from reactive
management of established mycotoxin contamination in the
coming decades. Our models provide the geographic and
temporal framework for prioritizing these investments, identifying
specific regions where early intervention will be most critical
and cost-effective.
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