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Introduction: Wildfire detection and segmentation play a critical role in

environmental monitoring and disaster prevention. However, existing deep

learning-based segmentation models often struggle to identify wildfire

boundaries accurately due to complex image features and limited annotated

data.

Methods: We propose a novel segmentation network called PPCNet, which

integrates three key modules: a Panoramic Feature Fusion (PFF) module

for multi-scale feature extraction, a Dense Feature Fusion Encoder (DFFE)

to capture contextual details, and a Local Detail Compensation (LDC) loss

function to enhance boundary accuracy. Additionally, we design a pseudo-label

optimization framework to leverage unlabeled data effectively.

Results: Experiments were conducted on multiple wildfire datasets, and

the results show that PPCNet achieves superior performance compared to

state-of-the-art methods. Our model demonstrates significant improvements

in segmentation accuracy and boundary localization, validated through

quantitative metrics and visual comparisons.

Discussion: The integration of PFF, DFFE, and LDC components enables PPCNet

to generalize well across different wildfire scenarios. The use of pseudo-labeling

further enhances performance without requiring additional labeled data, making

it suitable for real-world deployment in wildfire monitoring systems.

KEYWORDS

UAV remote sensing, fire, forest fire segmentation, semi-supervised learning, feature
fusion

Frontiers in Forests and Global Change 01 frontiersin.org

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://www.frontiersin.org/journals/forests-and-global-change#editorial-board
https://doi.org/10.3389/ffgc.2025.1669707
http://crossmark.crossref.org/dialog/?doi=10.3389/ffgc.2025.1669707&domain=pdf&date_stamp=2025-11-17
mailto:haifeng.lin@njfu.edu.cn
https://doi.org/10.3389/ffgc.2025.1669707
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ffgc.2025.1669707/full
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/


gc-08-1669707 November 12, 2025 Time: 16:53 # 2

Ma and Lin 10.3389/ffgc.2025.1669707 

1 Introduction 

Forest fires, as a typical frequent and highly damaging global 
natural disaster, have shown an obvious increasing trend in 
frequency, aected area, and severity in recent years due to 
factors such as global climate change and intensified human 
activities (Zheng H. et al., 2023; Giannakidou et al., 2024). Forest 
fires not only directly destroy large amounts of forest resources, 
disrupt the structure and function of ecosystems, and severely 
threaten biodiversity, but also aggravate the greenhouse eect 
through carbon emissions, alter atmospheric components, and 
further intensify climate change (Wang H. et al., 2024). At the 
same time, forest fires pose serious negative impacts on human 
life, property safety, public health, and economic development. 
According to relevant statistical data, the ecological, economic, 
and social losses caused by forest fires worldwide continue to rise, 
making it urgent to develop eective technical means for early 
monitoring and rapid response (Samhitha et al., 2024). Against the 
background of interdisciplinary technological development, how to 
eÿciently and accurately segment and identify forest fires by using 
advanced remote sensing methods, especially with high spatial 
and temporal resolution data acquisition and intelligent analysis 
techniques, has become an important research focus in remote 
sensing and intelligent information processing (Yandouzi et al., 
2024). 

In recent years, with the rapid development and widespread 
application of UAV remote sensing technology, it has become 
possible to obtain large-scale, high-resolution, and low-cost forest 
fire image data. Compared with traditional satellite remote sensing, 
UAVs have the advantages of high mobility, flexible imaging, and 
rapid response, making them an important information source 
for forest fire monitoring (Feng et al., 2025). Meanwhile, Deep 
learning, particularly Convolutional Neural Networks (CNNs), has 
shown strong performance in image recognition and semantic 
segmentation, significantly advancing research on forest fire 
detection and segmentation (Lin et al., 2024; Zheng et al., 
2024). Unlike image classification and object detection, which 
only identify the presence or approximate location of a fire, 
image segmentation provides pixel-level delineation of fire and 
smoke regions, enabling accurate boundary extraction and dynamic 
monitoring. Such fine-grained spatial information is crucial for 
assessing fire extent, supporting early warning, and improving 
situational awareness in UAV-based forest fire management. Deep 
learning–based segmentation models can automatically extract 
multi-scale semantic features, enhancing robustness and accuracy 
under complex environmental conditions. 

Nevertheless, building high-performance and robust forest fire 
segmentation models still faces many challenges. On the one 
hand, deep learning methods rely heavily on large-scale, high-
quality annotated datasets for supervised training. However, due 
to the suddenness, danger, and complex field conditions of forest 
fires, the process of precise annotation of forest fire images is 
costly, ineÿcient, and highly subjective, resulting in a serious 
lack of publicly available high-quality forest fire datasets (Zheng 
Y. et al., 2023; Lee et al., 2024). On the other hand, in actual 
forest fire scenes, factors such as fire spreading patterns, smoke 
distribution, background vegetation types, and lighting conditions 
are complex and variable, often accompanied by image occlusion 

and low contrast, which further increases the diÿculty of feature 
expression, boundary localization, and generalization under small-
sample conditions (Mai et al., 2025). To address these problems, 
semi-supervised learning (SSL) has received widespread attention 
in image segmentation tasks in recent years as an eective learning 
paradigm to alleviate data scarcity and improve model performance 
(Yang L. et al., 2025). By jointly utilizing limited labeled and 
abundant unlabeled data, SSL can mine the potential information 
in unlabeled data, assisting models in learning more robust 
and discriminative feature expressions under weak supervision, 
thereby reducing dependence on large-scale annotated datasets and 
enhancing segmentation performance and model generalization. 

In the task of forest fire image segmentation, how to fully 
utilize large amounts of unlabeled UAV images and combine them 
with semi-supervised learning strategies to improve segmentation 
accuracy and boundary recognition ability under complex 
environments has become an important research direction. 
Although some researchers have attempted to introduce semi-
supervised learning methods into forest fire segmentation tasks (Lai 
et al., 2021; Koottungal et al., 2023), existing methods still have 
limitations in feature fusion, multi-scale information modeling, 
and consistency constraint design. For example, Sun et al. (2022) 
enhanced multi-scale feature representation by introducing an 
atrous spatial pyramid pooling (ASPP) module, which eectively 
expanded the receptive field but still had deficiencies in preserving 
local details and improving the segmentation of fire boundaries 
and complex smoke structures. Rudz et al. (2013) designed a 
feature extraction and reconstruction framework for forest fire 
images based on an autoencoder structure combined with semi-
supervised ideas, which alleviated data scarcity to some extent, 
but the weak multi-scale feature fusion ability made it diÿcult to 
cope with complex backgrounds and diverse fire scenes. Toulouse 
et al. (2015) introduced color and shape constraints in the 
pseudo-label generation process, which improved segmentation 
performance and the reliability of pseudo-labels by filtering 
high-confidence pseudo-labels and applying image augmentation 
strategies. However, there remains room for improvement in 
enhancing model consistency and suppressing pseudo-label noise 
propagation. 

To address the existing problems of insuÿcient feature 
representation, inaccurate boundary segmentation, weak 
generalization, and ineÿcient utilization of semi-supervised 
information in current forest fire segmentation tasks, we propose 
a semi-supervised segmentation method for UAV remote sensing 
forest fire that integrates panoramic feature fusion and pixel-level 
contrastive learning. The main contributions of this paper are 
summarized as follows: 

(1) A panoramic feature fusion (PFF) module is designed to 
eÿciently integrate multi-level and multi-scale features, fully 
capturing global contextual information and local detail 
features in forest fire images. 

(2) A dual-frequency enhancement (DFE) mechanism is proposed 
to jointly extract low-frequency information (background 
structure and overall shape) and high-frequency information 
(boundary texture and detail changes), eectively enhancing 
the model’s sensitivity and expression ability for fire and 
smoke boundaries. 
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(3) A pixel contrastive loss (PCL) is designed to construct positive 
and negative sample pairs based on pixel-level features, 
combined with directional constraints and confidence 
calibration mechanisms, which enhances the discriminative 
ability of the un-supervised branch. 

(4) A semi-supervised learning framework is proposed, which 
combines supervised cross-entropy loss with unsupervised 
contrastive loss to fully exploit the complementary 
information in limited labeled data and abundant unlabeled 
data, improving segmentation accuracy. 

(5) Extensive experiments on four forest fire remote sensing 
datasets show that the pro-posed method achieves superior 
segmentation performance, verifying its eective-ness. 

2 Related work 

In recent years, deep learning-based methods have become the 
mainstream approach for forest fire image segmentation, driven by 
the rapid development and success of deep learning techniques in 
image analysis tasks. However, challenges such as limited labeled 
data, complex background environments, and diverse fire shapes 
still hinder the performance of segmentation models. To address 
these issues, researchers have explored several technical directions 
within the deep learning framework. Semi-supervised learning 
strategies aim to alleviate the reliance on large-scale labeled datasets 
by eectively utilizing both labeled and unlabeled data. Meanwhile, 
feature fusion techniques enhance the model’s ability to capture 
contextual information and accurately delineate fire boundaries 
under complex scenarios. This section provides a systematic review 
of representative methods and recent advances in forest fire image 
segmentation, covering traditional image processing approaches, 
deep learning-based methods, semi-supervised learning strategies, 
and feature fusion strategies. 

2.1 Traditional image processing 
methods for forest fire segmentation 

Early research on forest fire detection and segmentation mainly 
relied on traditional image processing techniques. Typical methods 
include color threshold segmentation (Yang Z. et al., 2025), edge 
detection (Wei and Larsen, 2019), and morphological analysis. 
These methods usually utilize the distinctive color features of 
flames in visible images, such as red, orange, and yellow, to 
perform color space conversion and threshold segmentation. Some 
methods also use the structural dierences between flames and the 
background for edge detection and morphological operations. In 
addition, certain studies have combined dynamic characteristics 
of flames, such as flicker frequency and contour deformation, 
to assist in detection and improve timeliness and accuracy. For 
instance, Tlig et al. (2020) proposed a multi-scale color image 
segmentation method based on the integration of PCA and 
Gabor filters, eectively enhancing flame region discrimination. 
Hossain et al. (2020) applied local binary patterns (LBP) from 
multiple color spaces and artificial neural networks to achieve 
joint smoke and flame detection. Zhao et al. (2011) combined 

Fourier descriptors with a dynamic support vector machine (SVM) 
to achieve dynamic flame detection based on flickering contour 
features. Although these methods oer advantages such as high 
computational eÿciency and simple implementation, they rely 
heavily on low-level explicit features. As a result, they struggle to 
achieve accurate flame region segmentation under complex forest 
fire scenarios, such as illumination variations, smoke occlusion, 
and background interference, especially in terms of fine-grained 
boundary and internal structure representation (Darwish Ahmad 
et al., 2023). With the increasing demands for accuracy and 
real-time performance in practical applications, these traditional 
methods show significant limitations, highlighting the need for 
more advanced and expressive approaches. 

2.2 Deep learning-based forest fire 
segmentation 

The widespread application of deep learning techniques, 
especially CNNs, in image segmentation has improved the 
performance of forest fire segmentation methods (Saleh et al., 
2024). Classic semantic segmentation architectures such as 
U-Net (Wu et al., 2022) and the DeepLab series (Yang, 2024) 
have become mainstream technical approaches in forest fire 
segmentation due to their powerful multi-scale feature extraction 
and spatial information recovery capabilities. U-Net employs 
an encoder-decoder architecture with skip connections, enabling 
eective feature fusion and spatial detail recovery. Originally 
designed for medical image segmentation, U-Net has been widely 
extended to forest fire segmentation tasks (Shirvani et al., 2023). 
Building upon this, FDE U-Net (Zou et al., 2025) integrates 
an ACmix convolutional mixing module and a CBAM attention 
mechanism to significantly enhance feature expression for small-
scale fire regions, improving segmentation accuracy. The DeepLab 
series introduces atrous convolutions and ASPP modules, which 
eectively expand the receptive field and enhance the capture 
of multi-scale contextual information (Liu et al., 2024). Liu 
et al. (2023) designed a double-attention residual feature fusion 
(DARA) module within the DeepLabV3 architecture, further 
improving feature discrimination and boundary recognition for 
fire regions. Harkat et al. (2022) optimized the DeepLabV3+ 
framework to construct a real-time forest fire image segmentation 
system, achieving a balance between segmentation accuracy and 
speed for practical applications. Although deep learning methods 
have achieved remarkable results in forest fire segmentation, 
their strong reliance on large-scale, high-quality annotated 
data has become a bottleneck for their widespread application 
in real-world forest fire scenarios. Due to the dangerous, 
complex, and subjective nature of forest fire data collection and 
annotation, high-quality data resources remain extremely scarce, 
underscoring the need to explore new methods for eÿcient data 
utilization. 

2.3 Semi-supervised learning strategies 

To mitigate limited annotated data, SSL (semi-supervised 
learning) has been increasingly adopted in forest fire segmentation 
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tasks as an eective strategy to reduce supervision dependence 
and improve model generalization (Ouali et al., 2020; Desai and 
Ghose, 2022; Yang et al., 2022). SSL combines limited labeled data 
with abundant unlabeled data to mine potential information from 
the unlabeled portion, assisting models in learning more robust 
feature representations under weak supervision and reducing 
the need for large annotated datasets. Current mainstream SSL 
strategies include pseudo-label generation (Zhang et al., 2021), 
consistency regularization (Wang et al., 2020), region-mixing data 
augmentation such as CutMix (Yun et al., 2019) and MixUp 
(Carratino et al., 2022), and masked image modeling (MIM) 
(Xie et al., 2022). For example, Wang et al. (2022) proposed 
the SemiFSNet model, which enhances segmentation performance 
and stability on unlabeled forest fire images through consistency 
regularization. Other studies (Xin et al., 2024) introduced 
perturbation mechanisms at the feature level to encourage models 
to learn more robust and discriminative features. Pseudo-label 
generation methods (Yan et al., 2024) further select high-
confidence pseudo-labels dynamically, supporting eective training 
on unlabeled data and gradually narrowing the performance gap 
between supervised and unsupervised data. However, existing 
semi-supervised forest fire segmentation methods still face 
two main limitations: (1) insuÿcient exploitation of deep 
structural information in unlabeled data, leading to limited feature 
expression capability, and (2) a lack of robust feature constraints 
tailored to complex forest fire scenarios, such as occlusion, 
smoke, and background interference, making models prone to 
overfitting or boundary segmentation blur. To overcome these 
limitations, this paper proposes a semi-supervised segmentation 
framework that combines supervised and unsupervised branches. 
In particular, a pixel contrastive loss with directional constraints 
is designed for the unsupervised branch, which leverages spatial 
structure information and confidence calibration to construct 
reliable positive and negative sample pairs, further enhancing 
boundary and detail segmentation for forest fires under complex 
environments. 

2.4 Feature fusion strategies 

Feature fusion is a key technical approach for improving 
segmentation accuracy and robustness (Shang et al., 2020). 
Representative methods such as skip connections in U-Net 
(Ronneberger et al., 2015) and the ASPP module in the 
DeepLab series (Liu et al., 2022) eectively integrate local and 
global information through architectural design. In recent years, 
researchers have explored advanced feature fusion strategies, 
including attention mechanisms, feature pyramid structures, and 
multi-modal information fusion. For example, the CBAM module 
(Chen et al., 2023) jointly applies channel and spatial attention 
to enhance the expression of key regions related to forest fires. 
Li et al. (2022) designed a multi-feature fusion framework that 
incorporates color and texture information, significantly improving 
model robustness and discrimination under complex backgrounds. 
Zhang et al. (2023) proposed a repeated deep-shallow feature 
fusion strategy to enrich overall semantic information and improve 
segmentation accuracy and boundary detail preservation. Although 
these methods demonstrate the importance of feature fusion 

in forest fire segmentation, most existing work remains limited 
to single-scale or local-level information integration, lacking 
systematic modeling of global forest fire image information. To 
address this, this paper introduces a panoramic feature fusion 
module that systematically integrates deep and shallow features at 
dierent levels and scales from a macro and global perspective. 
This enables comprehensive capture of contextual semantic 
information and local details in forest fire images, significantly 
enhancing segmentation performance and boundary expression 
under complex environments. 

3 Methodology 

3.1 Overall architecture 

To address the challenges of forest fire image segmentation, 
including the diÿculty of data acquisition, complex environmental 
interference, and insuÿcient boundary expression, we propose 
a semi-supervised forest fire segmentation method based on 
UAV remote sensing, named PPCNet (Panoramic Feature 
Fusion and Pixel Contrastive Learning Network). The proposed 
PPCNet aims to comprehensively improve the segmentation 
accuracy and robustness of the model in complex forest 
fire scenarios by integrating multi-level deep features and 
introducing pixel-level consistency constraints. By exploiting 
limited labeled and large-scale unlabeled data, PPCNet improves 
model performance. 

The overall structure of PPCNet is shown in Figure 1. The 
model adopts a dual-branch framework consisting of a supervised 
branch and an unsupervised branch. Both branches share the same 
encoder network but adopt dierent optimization strategies to 
work collaboratively. In the supervised branch, labeled wildfire 
images are first processed by the encoder to extract multi-scale 
and multi-level deep features. To enhance the representation of 
complex object boundaries and local details, a Dual-Frequency 
Feature Enhancement (DFFE) module is introduced after the 
encoder. By jointly utilizing low-frequency structural information 
and high-frequency edge and texture information, the module 
optimizes the feature representation. The enhanced feature map 
is then fed into the classifier to generate the final segmentation 
prediction. This branch is optimized using a cross-entropy loss to 
ensure stable and reliable segmentation performance on labeled 
data. In the unsupervised branch, for unlabeled wildfire images, 
a dual random cropping strategy is adopted to generate two 
sub-images with partially overlapping regions. This design not 
only increases data diversity but also provides the basis for 
pixel-level contrastive learning. The two sub-images are passed 
through the encoder and feature enhancement modules to obtain 
their respective high-dimensional feature maps. Based on the 
spatial correspondence, the overlapping regions in the two 
feature maps are extracted, and pseudo-labels are generated by 
the classifier. Using this information, pixel-level positive and 
negative sample pairs are constructed. On this basis, the proposed 
Pixel Contrastive Loss (PCL) is introduced, which incorporates 
directional constraints and confidence calibration mechanisms. 
This loss guides the model to learn discriminative and structurally 
consistent feature representations from unlabeled data, further 
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FIGURE 1 

Overall structure of the proposed PPCNet. 

improving the model’s ability to accurately capture wildfire target 
boundaries and fine details. 

3.2 Basic feature extraction module 

High-quality feature extraction is the foundation for achieving 
accurate image segmentation. In this study, we adopt the ResNet50 
network as the backbone for the basic feature extraction of 
PPCNet. ResNet introduces residual connections to eectively 
alleviate problems such as gradient vanishing and network 
degradation in deep neural networks, providing strong feature 
representation capabilities and stable network performance. In 
particular, ResNet50 oers an optimal balance between feature 
richness and computational eÿciency, making it well-suited for 
wildfire image segmentation, where flame targets often exhibit 
blurred boundaries, scale variation, and strong interference from 
smoke and vegetation. Its hierarchical feature maps naturally 
align with the design of the PFF and DFFE modules, facilitating 

the integration of spatial, semantic, and frequency-domain 
information for more precise fire region delineation. Specifically, 
the input image x is first processed through a 7 × 7 convolutional 
layer with a stride of 2, followed by a max-pooling layer, which 
reduces the spatial resolution while extracting low-level features. 
The resulting feature map is denoted as F0. Subsequently, the 
feature map F0 passes through four stages of residual blocks 
to progressively extract multi-level deep features. The structure 
of each stage is as follows: The first stage contains 3 residual 
blocks, and its output is denoted as F1, which mainly captures 
basic texture and edge information from the image. The second 
stage contains 4 residual blocks, and its output is denoted as F2, 
extracting richer intermediate features and structural information. 
The third stage consists of 6 residual blocks, generating the feature 
map F3, which captures high-level semantic information of the 
image. The final stage contains 3 residual blocks, followed by 
a global average pooling layer, producing the final deep feature 
map F4 with rich global semantic information and strong feature 
expression capabilities. Throughout the feature extraction process, 
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the multi-level feature maps F1, F2, F3, and F4 retain rich 
hierarchical information from low-level edges and textures to high-
level semantics and global structures. These feature maps are then 
fed into the PFF module to further integrate multi-scale, multi-
level information. 

In the supervised branch, PPCNet receives explicit guidance 
from pixel-level annotations of forest fire regions. Each labeled 
image is paired with a binary mask, where fire pixels are marked as 
1 and background pixels as 0. The model learns to align its pixel-
wise predictions with these annotations through the supervised 
cross-entropy loss, thereby establishing a direct mapping between 
visual features and fire occurrence regions. This explicit supervision 
enables the network to accurately learn the spatial distribution 
and boundaries of fire areas, while the PFF and DFFE modules 
further refine boundary and texture representations to enhance 
segmentation precision under complex backgrounds. 

3.3 Panoramic feature fusion module 

In the process of feature extraction using CNN, deep 
features with higher semantic information are gradually obtained 
through multiple layers of convolution. For wildfire image 
segmentation tasks, high-level semantic features, such as the 
overall shape of fire spots and their relationship with the 
background, are essential for accurate segmentation. However, 
shallow-level features obtained in the early layers of the network, 
including edge, color, and precise location information, also play 
a critical role in determining segmentation accuracy. In practical 
wildfire image segmentation tasks, complex environments such 
as occlusions, varying backgrounds, and smoke interference often 
occur. Meanwhile, the shape and location of fire spots are important 
segmentation targets. Simply relying on deeper convolution layers 
to extract high-level features may cause the network to lose 
important shallow features, such as edges, color contrast, and 
position information, which leads to blurred boundaries or 
inaccurate segmentation results. To address this issue, we propose a 
PFF module to eectively combine features extracted from dierent 
stages of the network, aiming to obtain more comprehensive and 
representative feature information. As shown in Figure 2, within 
the PFF module, features from dierent layers are progressively 
fused through a two-stage fusion structure called the PFF block. 

Specifically, four feature maps are extracted from dierent 
stages of the ResNet50 backbone, denoted as F1, F2, F3, and F4. 
These feature maps are fed into the PFF module, where dierent-
level features are gradually fused to obtain rich panoramic features. 
For any two adjacent feature maps Fn and Fn−1 (1 ≤ n ≥ 4), 
the PFF Block performs a series of operations to fuse them and 
generate the updated feature map F 

n−1. First, to extract shared 
characteristics from dierent levels, the higher-level feature Fn is 
upsampled to match the spatial size of Fn−1, and then the two 
feature maps are concatenated along the channel dimension: 

F 
= Concat 

 
F↑ 

n , Fn−1 

 
(1) 

where Concat (·) denotes channel-wise concatenation, and F↑ 
n

indicates the upsampled version of Fn. 
Next, to capture the channel-wise information of the 

concatenated feature map, F is passed through an average pooling 

layer (AvgPool), a convolutional layer (Conv), and a Sigmoid 
activation function to obtain channel attention weights: 

w  = Sigmoid(Conv(AvgPool(F  ))) (2) 

The channel weights w are then used to recalibrate the 
concatenated feature map F , enhancing important features while 
suppressing less informative ones: 

F  = Conv1 × 1 × 1(w  ⊗ F) (3) 

where ⊗ denotes element-wise multiplication and Conv1 × 1 × 1 is 
a 1 × 1 × 1 convolution. 

To further extract and fuse local structure information from 
dierent layers, the input features Fn and Fn−1 are separately passed 
through a 1 × 1 × 1 convolution and a Sigmoid activation to 
obtain local information weights: 

w  = Sigmoid(Conv1 × 1 × 1(Fn) ⊗ Conv1 × 1 × 1(Fn−1)) (4) 

where ⊗ represents element-wise addition. 
Finally, the local weights w are used to recalibrate the feature 

map F , producing the updated fused feature F 
n−1: 

F 
n−1 = w  ⊗ F  (5) 

Through this two-step fusion process, the PFF block gradually 
integrates low-level details and high-level semantic information, 
ensuring that both boundary and contextual features are retained. 

After three rounds of such fusion, the updated feature 
maps F 

3, F 
2 and F 

1 are obtained. Finally, the upsampled high-
level feature map F↑ 

4 and the fused features from dierent 
stages are concatenated to generate the final panoramic feature 
representation: 

F = Concat 
h 

F ↑ 
4 , F

 
3, F

 
2, F

 
1 

i 
(6) 

This comprehensive feature F eectively combines global semantic 
information with local structural details, significantly enhancing 
the model’s ability to accurately distinguish flame regions, 
boundaries, and background areas in complex wildfire scenes. 

3.4 Dual-frequency feature 
enhancement module 

In computer vision, an image can be divided into high-
frequency and low-frequency components, which reflect dierent 
types of information. High-frequency components mainly contain 
edge, texture, and fine details of the image. For wildfire images, 
these details, especially the flame edges and texture information, 
are crucial for accurate segmentation. By enhancing high-frequency 
components, the model can better capture flame contours and 
fine structures, thus reducing false positives and missed detections 
in segmentation tasks. However, high-frequency components 
may also contain noise, and directly enhancing them could 
amplify noise and negatively aect the segmentation results. 
Therefore, while enhancing high-frequency information, it is 
also important to incorporate low-frequency components to help 
suppress noise. Low-frequency components reflect the overall 
structure and background information of the image, which 
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FIGURE 2 

Structure of the panoramic feature fusion module. The diagram includes (a) the overall PFF (Panoramic Feature Fusion) structure with hierarchical 
feature fusion stages, and (b) the internal structure of a PFF block showing upsampling, concatenation, attention weighting, and local recalibration 
processes. 

is very helpful for distinguishing the background areas and 
understanding the global context in wildfire scenes. By keeping 
low-frequency information, the model can better separate flames 
from complex backgrounds, thus improving segmentation stability. 
The combination of high-frequency and low-frequency features 
provides multi-scale information for the model, which is beneficial 
for improving segmentation accuracy. In this work, we propose a 
DFFE module, which separates the feature maps extracted by the 
encoder into high-frequency and low-frequency parts for further 
feature enhancement. The structure of the DFFE module is shown 
in Figure 3. 

First, given an input feature map F, we apply a linear 
transformation to reduce the number of channels, and obtain a new 
feature map F̃. Then, a wavelet transform is used to decompose the 
feature map into low-frequency and high-frequency components. 
Specifically, for the 2D feature map F̃, a one-dimensional wavelet 
transform is first applied to each row: 

Flow_h = h ∗ F̃ (7) 

Fhigh_h = g ∗ F̃ (8) 

Here, h and g are low-pass and high-pass filters, respectively, and ∗ 

represents the convolution operation. 
Next, another one-dimensional wavelet transform is applied to 

each column of Flow_h and Fhigh_h to further decompose the feature 
map: gFHL = g ∗ FT 

low_h (9) 

gFLH = h ∗ FT 
high_h (10) 

FIGURE 3 

Structure of the dual-frequency feature enhancement module. 

gFHH = g ∗ FT 
high_h (11) 

fFLL = h ∗ FT 
low_h (12) 

In this work, we use Haar wavelets for decomposition, where 
the low-pass filter is h = [1, 1] / 

√ 
2 and the high-pass filter is 
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g = [1, −1]/ 
√

2. Among the decomposed features, gFHL captures 
vertical edge and texture details, gFLH focuses on horizontal 
edges and textures, and gFHH reflects diagonal edges and texture 
information. These three components together represent the high-
frequency details of the feature map, which are useful for expressing 
flame boundaries and fine structures. 

We concatenate the three high-frequency features along the 
channel dimension to form an enhanced high-frequency feature 
map: fFH = Concat 

� g FHL, gFLH , gFHH 
 

(13) 

After that, we apply two 3 × 1 × 1 convolution layers 
to further refine these high-frequency features and obtain clearer 
boundary features fF 

H . At the same time, the low-frequency 
feature fFLL is processed with a 3 × 3 convolution and a linear 
transformation to generate key and value features, which are then 
concatenated to form global context information G. To ensure 
boundary information is preserved in this process, we also add the 
boundary features fF 

H to the value part. 
Finally, we introduce a multi-path attention mechanism 

based on the original input feature F. Specifically, queries Q 
are generated from F, and used together with K (key) and V 
(value) to extract dierent levels of contextual information. The 
first path captures spatial dependencies, helping to distinguish 
flames from the background. The second path focuses on 
the channel-level semantic representation, enhancing multi-scale 
feature fusion. The third path highlights boundary information 
in the value features to ensure that flame contours are 
better preserved. 

3.5 Pixel contrastive loss 

To eectively utilize both the limited labeled data and 
abundant unlabeled data, this paper designs a dual-branch 
optimization framework consisting of a supervised branch and 
an unsupervised branch. The supervised branch employs a 
standard cross-entropy loss for pixel-level supervised learning, 
while the unsupervised branch introduces a Pixel Contrastive 
Loss (PCL) to enhance feature discriminability and consistency 
on unlabeled data through directional constraints and positive-
negative sample selection. 

In the supervised branch, the labeled wildfire image xl is first 
processed through the feature extraction, panoramic feature fusion, 
and dual-frequency feature enhancement modules to obtain the 
enhanced feature map FEl . The final prediction result is generated 
through the classifier C(·) as follows: 

pl = C(FEl ) (14) 

The dierence between the predicted result and the ground truth yl 
is measured using the standard cross-entropy loss: 

LCE = − 
1 

N 

NX
i = 1

CX 

c = 1 

yli,c log 
� 
pli,c 

 
(15) 

where N represents the total number of pixels, C is the number 
of categories, yli,c denotes the probability that the ith pixel belongs 
to category c, and pli,c represents the predicted probability for the 
same pixel and category. 

In the unsupervised branch, the unlabeled wildfire image xu 

undergoes two independent random crops to generate two sub-
images xu1 and xu2, which contain overlapping regions denoted as 
xo. These sub-images are passed through the feature extraction and 
panoramic feature fusion modules to obtain feature maps: 

Fu1 = E (xu1) (16) 

Fu2 = E (xu2) (17) 

The overlapping regions in the feature maps are denoted 
as Ou1 and Ou2, respectively. For the same spatial position in 
Ou1 and Ou2, the corresponding features are considered positive 
sample pairs, while features from dierent objects are treated as 
negative sample pairs. 

To enhance feature alignment, a directional contrastive loss 
LDC is introduced, which uses confidence-guided positive-negative 
sample selection to promote alignment between low-confidence 
and high-confidence features while suppressing noisy feature 
propagation. Specifically, the maximum category probability of 
each feature is used as the confidence measure, encouraging 
features with lower confidence to align with those with higher 
confidence: 

li dc (Ou1, Ou2) = 

− 
1
N 

X 

h,w 

M h,w 
d · log 

exp 


s 
 

O h,w 
u1 , O h,w 

u2 

 
/τ 
 

exp 


s 
 

O h,w 
u1 , O h,w 

u2 

 
/τ 
 

+ P 
On∈FNeg 

exp 
 

s 
 

O h,w 
u1 , On 

 
/τ 
 

(18) 

where s (·, ·) denotes the cosine similarity, τ is a temperature 
coeÿcient, h, w indicate spatial positions, FNeg represents the set 
of negative samples, and the directional mask Mh,w 

d is defined as: 

M h,w 
d = 1 

n 
max C 

 
F h,w 

u1 

 
< maxC 

 
F h,w 

u2 

o 
(19) 

indicating that only locations where the confidence of Ou2 exceeds 
that of Ou1 are considered for contrastive learning. 

To further reduce errors from incorrect pseudo-labels 
in negative sample selection, pseudo-labels predicted by the 
unsupervised branch are utilized. The category probability of each 
feature is calculated as: 

y 
ui = arg max C(Fui) (20) 

For a feature Oh,w 
u1 with pseudo-label y 

u1 and a negative sample 
On with pseudo-label yn, the negative sample mask is defined as: 

M h,w 
n,1 = 1 

 
y  u1 =yn (21) 

Incorporating this mask, the updated directional contrastive loss is 
expressed as: 

l i,ns 
dc (Ou1, Ou2) = 

− 
1
N 

X 

h,w 

M h,w 
d · log 

exp 


s 
 

O h,w 
u1 ; O h,w 

u2 

 
/τ 
 

exp 


s 
 

O h,w 
u1 , O h,w 

u2 

 
/τ 
 

+ P 
On∈FNeg 

M h,w 
n,1 exp 


s 
 

O h,w 
u1 , On 

 
/τ 
 

(22) 
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Furthermore, to mitigate the impact of low-confidence positive 
sample pairs, a confidence threshold τ is applied to filter them out. 
The final form of the directional contrastive loss becomes: 

l i,ns,pf 
dc (Ou1, Ou2) = 

− 
1
N 

X 

h,w 

M h,w 
d,pf · log 

exp 


s 
 

O h,w 
u1 ; O h,w 

u2 

 
/τ 
 

exp 


s 
 

O h,w 
u1 ; O h,w 

u2 

 
/τ 
 

+ P 
On∈FNeg 

M h,w 
n,1 exp 

 
s 


O h,w 
u1 , On 

 
/τ 
 

(23) 

where the composite mask Mh,w 
d,pf combines both directional and 

confidence constraints: 

M h,w 
d,pf = M h,w 

d · 1{max C 
 

F h,w 
u2 

 
= γ} (24) 

Finally, the overall pixel contrastive loss for a batch of size B is 
formulated as: 

LDC = 
1
B 

BX 

i = 1 

(li,ns,pf 
dc (Ou1, Ou2) + l i,ns,pf 

dc (Ou2, Ou1)) (25) 

The final total loss function for the model is defined as: 

L = LCE + λLDC (26) 

where λ is a balancing hyperparameter that controls the 
contribution of the unsupervised loss. 

4 Experiments and results 

4.1 Datasets 

To comprehensively evaluate the eectiveness and applicability 
of the PPCNet model, we conduct comparative and ablation 
experiments on four publicly available remote sensing forest fire 
datasets (Flame, Corsican, D-Fire, and M4SFWD). The Flame 
dataset was collected by Northern Arizona University and other 
institutions using UAVs in the pine forest areas of Arizona, USA, 
and contains 2003 images. This dataset eectively addresses the 
lack of forest fire recognition data under harsh environmental 
conditions such as haze and smoke, providing high practical 
application value. The Corsican dataset was organized by the 
Environmental Science Laboratory of the University of Corsica 
in France and consists of 1,136 real forest fire images. The 
dataset features diverse background environments, rich vegetation 
types, and significant variations in the scale of forest fire 
targets within the images, making it highly challenging for 
segmentation tasks. The D-Fire dataset was compiled by the 
Venancio research team in Brazil. The images were sourced 
from the internet, legally simulated fire experiments at the Belo 
Horizonte Technology Park in Brazil, surveillance equipment 
from the Federal University of Minas Gerais (UFMG), and 
the Serra do Rola-Moça State Park in Belo Horizonte. The 
dataset contains a total of 21,527 images. To ensure data quality, 
9869 images with clearly visible forest fire targets were selected 
for experiments. The M4SFWD dataset is a synthetic dataset 
specifically designed for remote sensing forest fire detection 

tasks. It contains 3974 images covering various fire patterns, 
scene backgrounds, and imaging conditions, providing an eective 
benchmark for evaluating model adaptability and generalization 
performance under diverse scenarios. 

Representative image samples from the four datasets are 
shown in Figure 4. Overall, the datasets cover both real 
and synthetic data, diverse scenes, and complex environments, 
providing a comprehensive and systematic platform for validating 
the performance of the proposed PPCNet. 

4.2 Experiment setup 

In this study, ResNet50 is adopted as the backbone network. 
All labeled and unlabeled images are resized to 224 = 224 and 
normalized. The optimizer is set to SGD with a learning rate 
of 0.01, weight decay of 0.0001, and momentum of 0.9. The 
batch size is set to 14, and the model is trained for 60 epochs. 
Random horizontal flipping is applied to both the supervised and 
unsupervised branches for data augmentation. The temperature 
coeÿcient τ for contrastive loss is set to 0.1, the loss weight λ 
for the unsupervised branch is set to 0.5, and the positive sample 
filtering threshold γ is set to 0.75. All experiments are performed on 
a workstation with Ubuntu 18.04 and an NVIDIA RTX 3090 GPU. 

To evaluate the segmentation performance, Precision and IoU 
(Intersection over Union) of the fire region are used as the main 
metrics. The mathematical definitions of these metrics are given as 
follows: 

Precision = 
TP 

TP + FP 
(27) 

IoU = 
TP 

TP + FP + FN 
(28) 

where TP, FP, and FN represent the number of true positive, false 
positive, and false negative pixels in the fire region, respectively. 
Precision is calculated as the ratio of correctly predicted fire pixels 
to all predicted fire pixels. IoU is computed as the ratio of the 
intersection area between the predicted fire region and the ground 
truth to their union area. Since the segmentation task only contains 
two categories (background and fire), IoU of the fire region is 

FIGURE 4 

Sample images from the Flame, Corsican, D-Fire and M4SFWD 
datasets. 
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adopted as the primary indicator to measure the model’s accuracy 
in locating the fire area. 

4.3 Comparison with other methods 

To comprehensively verify the performance advantages of 
the PPCNet model for forest fire image segmentation, five 
representative semi-supervised semantic segmentation methods 
are selected for comparison, including CAC (Lai et al., 2021), ST++ 
(Yang et al., 2022), CCT (Ouali et al., 2020), ALS4GAN (Desai and 
Ghose, 2022), and Allspark (Wang H. et al., 2024). These methods 
are widely recognized in semi-supervised image segmentation 
and have been extensively applied in complex scenarios such as 
remote sensing, providing strong reference value. The experiments 
are conducted on four publicly available aerial remote sensing 
forest fire datasets. The same data splitting strategy and evaluation 
metrics are adopted to ensure the fairness and comparability of 
the experimental results. Specifically, the training sets are divided 
into dierent proportions of labeled and unlabeled data (8:2, 7:3, 
and 5:5) to simulate real-world scenarios with varying degrees of 
annotated data availability, thereby further testing the stability and 
robustness of the models under dierent data conditions. 

4.3.1 Results and visualization analysis on the 
Flame dataset 

The Flame dataset mainly consists of images captured by UAVs 
at high altitudes. These images present typical challenges such as 
small fire targets, complex backgrounds, and severe occlusions, 
making the segmentation task highly diÿcult. In the experiment, 
the dataset is divided into training and testing sets with a ratio 
of 8:2. Within the training set, dierent labeled and unlabeled 
data proportions (8:2, 7:3, and 5:5) are further configured. The 
results are shown in Table 1. The results demonstrate that the 
PPCNet consistently outperforms all comparison methods across 
all three labeled and unlabeled data ratios in terms of both Precision 
and IoU. Notably, under the most challenging condition with 
50% unlabeled data (5:5 split), the IoU of PPCNet reaches 71.6%, 
which is 1.1% higher than the second-best method, ALS4GAN. 
This fully validates the advantage of the proposed model in 
scenarios with limited labeled data and strong reliance on semi-
supervised learning. Specifically, ALS4GAN and Allspark also show 
strong performance on this dataset, especially as the proportion of 
unlabeled data increases, reflecting their certain semi-supervised 
learning capabilities. In contrast, CAC and CCT exhibit relatively 
weaker overall performance, with significantly lower IoU values 
under the 8:2 labeled-unlabeled ratio, indicating limitations in their 
feature representation for small targets and complex backgrounds. 

The visual comparison results shown in Figure 5 further 
illustrate the segmentation performance dierences among 
dierent models. It can be clearly observed that although most 
semi-supervised methods can roughly locate the fire regions, 
PPCNet achieves more accurate and complete segmentation results 
in terms of fire boundary details and texture structure. This is 
mainly attributed to the PFF and DFFE modules integrated into 
PPCNet, which eectively capture the detailed features of small-
scale fire targets and, through multi-scale information integration 
and frequency-domain feature enhancement, significantly improve 

the model’s segmentation performance under complex scene 
conditions. 

4.3.2 Results and visualization analysis on the 
Corsican dataset 

The Corsican dataset contains a large number of real forest fire 
images captured in natural environments under various weather 
conditions, lighting variations, and flame shapes. Fire targets 
in this dataset are generally large, with complex backgrounds, 
providing both high application value and significant challenges. 
The experimental setup follows that of the Flame dataset, with an 
8:2 training-test split. Within the training set, labeled and unlabeled 
data are divided in proportions of 8:2, 7:3, and 5:5. The detailed 
results are shown in Table 2. 

The results clearly show that PPCNet achieves the best 
performance across all labeled-unlabeled data proportions in both 
Precision and IoU metrics. Particularly under the most challenging 
5:5 split with 50% unlabeled data, PPCNet achieves an IoU of 
85.6% and Precision of 92.1%, highlighting its outstanding stability 
and robustness under dierent levels of labeled data availability. 
Furthermore, ALS4GAN and ST++ demonstrate competitive 
performance, with ST++ even outperforming ALS4GAN in IoU 
under 7:3 and 5:5 splits, indicating its advantage in semi-supervised 
learning. CCT and Allspark deliver moderate performance, while 
CAC consistently performs the weakest. 

The visualization results shown in Figure 6 further illustrate 
that the PFF module eectively combines shallow (e.g., edges, 
colors, positions) and deep (e.g., semantic, scene context) features, 
which is particularly beneficial for segmenting large-scale, diverse, 
and complex fire targets in this dataset. The shallow features 
assist in precise boundary localization, while the deep features 
enhance scene semantic understanding, working together to 
significantly improve the model’s overall expressive capability. 
Additionally, the DFFE module leverages high and low-frequency 
information to accurately capture fire boundaries and texture 
details. The incorporation of low-frequency information eectively 
suppresses background noise from lighting and weather variations, 
further enhancing segmentation robustness in complex scenes. 
These designs together contribute to the superior comprehensive 
performance of PPCNet on the Corsican dataset, demonstrating its 
strong potential for real-world forest fire segmentation tasks. 

4.3.3 Results and visualization analysis on the 
D-Fire dataset 

The D-Fire dataset covers a wide variety of real forest fire 
scenes, accounting for day-night lighting variations and dierent 
fire development stages, making it particularly challenging. The 
experiments adopt the same labeled-unlabeled data splits of 8:2, 
7:3, and 5:5. Table 3 summarizes the results of all models under 
dierent conditions. As shown, PPCNet consistently outperforms 
all other models in both Precision and IoU across all data 
splits, demonstrating strong overall advantages. Notably, under 
the most challenging 5:5 split, PPCNet achieves an IoU of 75.3%, 
which is 0.8% and 3.2% higher than ALS4GAN and Allspark, 
respectively, further verifying its robustness and stability under 
limited labeled data and high reliance on unsupervised learning. 
Compared with the Corsican dataset, the overall IoU results on 
the D-Fire dataset are lower, reflecting additional challenges posed 
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TABLE 1 Experimental results on the Flame dataset. 

Model 8:2 7:3 5:5 

Precision IoU Precision IoU Precision IoU 

CAC (Lai et al., 2021) 76.9% 62.5% 79.1% 65.4% 80.7% 67.7% 

ST++ (Yang et al., 2022) 75.5% 60.6% 80.6% 67.6% 80.8% 67.9% 

CCT (Ouali et al., 2020) 76.0% 61.3% 78.1% 64.1% 81.2% 68.4% 

ALS4GAN (Desai and Ghose, 2022) 77.5% 63.3% 79.3% 65.7% 82.7% 70.5% 

Allspark (Wang H. et al., 2024) 77.1% 62.7% 78.7% 64.8% 82.2% 69.7% 

PPCNet 79.3% 65.8% 81.0% 68.1% 83.4% 71.6% 

Bold values indicate the best performance. 

FIGURE 5 

The visual comparisons of segmentation results on the Flame dataset. 

TABLE 2 Experimental results on the Corsican dataset. 

Model 8:2 7:3 5:5 

Precision IoU Precision IoU Precision IoU 

CAC (Lai et al., 2021) 82.7% 70.5% 86.3% 75.9% 86.5% 76.2% 

ST++ (Yang et al., 2022) 77.4% 63.1% 88.1% 78.6% 87.6% 77.1% 

CCT (Ouali et al., 2020) 81.2% 68.3% 82.5% 70.4% 86.0% 75.3% 

ALS4GAN (Desai and Ghose, 2022) 83.2% 71.2% 87.7% 75.6% 86.8% 77.4% 

Allspark (Wang H. et al., 2024) 82.0% 69.4% 82.4% 70.9% 86.5% 76.2% 

PPCNet 89.4% 80.4% 90.1% 82.4% 92.1% 85.6% 

Bold values indicate the best performance. 
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FIGURE 6 

The visual comparisons of segmentation results on the Corsican dataset. 

by lighting variations and fire development stages. Despite this, 
PPCNet maintains its performance lead, indirectly confirming 
the eectiveness of the PFF and DFFE modules in complex, 
variable environments. ALS4GAN shows noticeable improvement 
with high proportions of unlabeled data (5:5 split), suggesting its 
semi-supervised strategy oers some advantages under challenging 
conditions. However, ST++, CCT, and CAC exhibit relatively 
lower IoU values, particularly under 8:2 and 7:3 splits, indicating 
insuÿcient adaptability to lighting and fire stage variations. 

The visual comparison results in Figure 7 reveal that even under 
varying lighting conditions and dierent fire development stages, 
PPCNet accurately locates fire regions and provides significantly 
better boundary delineation and texture detail preservation than 
other methods. This superior performance mainly results from 
the PFF module’s eective multi-level feature integration and 
the DFFE module’s combined enhancement of frequency-domain 
information, giving the model stronger adaptability to complex 
environments and boundary expression capabilities. 

4.3.4 Results and visualization analysis on the 
M4SFWD dataset 

The M4SFWD dataset is a synthetic dataset designed to 
simulate forest fire scenarios under complex terrain, weather, 
and lighting conditions. It incorporates multi-scale and 

varying numbers of fire targets, providing a comprehensive 
evaluation of model performance under complex, realistic 
conditions. Table 4 presents the results of all models under 
three labeled-unlabeled data splits. Overall, the IoU values on 
the M4SFWD dataset are lower than those on the Corsican 
dataset but higher than those on the D-Fire dataset, indicating 
that the simulated complex environments present challenges, 
though not as severe as real-world lighting variations. PPCNet 
achieves the best performance in both Precision and IoU 
across all splits. Especially under the 5:5 split, PPCNet reaches 
an IoU of 78.1%, 2.2% higher than the second-best model, 
Allspark. Notably, the Precision scores are relatively high for all 
models, reflecting strong performance in coarse segmentation 
of large fire targets. However, the IoU results reveal that 
fine-grained segmentation and background discrimination 
remain challenging. Allspark and ALS4GAN perform similarly 
on this dataset, showing good stability with increasing 
proportions of unlabeled data. In contrast, ST++, CCT, and 
CAC lag behind in IoU, further confirming the comprehensive 
advantage of PPCNet in handling complex, realistic forest 
fire scenarios. 

Visualization results in Figure 8 show that PPCNet eectively 
preserves flame boundaries, textures, and overall contours under 
dierent terrain, weather, and lighting conditions. The model 
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TABLE 3 Experimental results on the D-Fire dataset. 

Model 8:2 7:3 5:5 

Precision IoU Precision IoU Precision IoU 

CAC (Lai et al., 2021) 79.1% 65.4% 80.7% 67.7% 76.9% 73.4% 

ST++ (Yang et al., 2022) 80.6% 67.6% 80.8% 67.9% 75.5% 70.8% 

CCT (Ouali et al., 2020) 78.1% 64.1% 81.2% 68.4% 76.0% 71.6% 

ALS4GAN (Desai and Ghose, 2022) 79.3% 65.7% 82.7% 70.5% 77.5% 74.5% 

Allspark (Wang H. et al., 2024) 78.7% 64.8% 82.2% 69.7% 77.1% 72.1% 

PPCNet 81.0% 68.1% 83.4% 71.6% 79.3% 75.3% 

Bold values indicate the best performance. 

FIGURE 7 

The visual comparisons of segmentation results on the D-Fire dataset. 

achieves significantly better segmentation accuracy and region 

continuity compared to other methods, further validating the 

eectiveness of its multi-scale and frequency-domain joint 
enhancement strategy. 

However, a closer inspection of the misclassified samples across 
all datasets reveals several consistent patterns. Most errors occur 

in scenes with highly complex backgrounds, such as vegetation, 
soil, or sunlight reflections that share similar spectral characteristics 
with flame regions. Low-visibility conditions, including dense 

smoke, haze, and nighttime illumination, also lead to boundary 

blurring and lower confidence in fire localization. In addition, 

small-scale or partially occluded flames tend to be merged 

with non-fire regions, producing fragmented boundaries. These 

observations indicate that PPCNet’s remaining errors are mainly 

caused by visual ambiguity rather than deficiencies in feature 

representation. The PFF and DFFE modules already alleviate 

these problems by enhancing texture and boundary cues, yet 
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TABLE 4 Experimental results on the M4SFWD dataset. 

Model 8:2 7:3 5:5 

Precision IoU Precision IoU Precision IoU 

CAC (Lai et al., 2021) 79.7% 66.3% 83.9% 72.3% 86.0% 75.4% 

ST++ (Yang et al., 2022) 81.2% 68.4% 80.7% 67.7% 84.0% 72.5% 

CCT (Ouali et al., 2020) 80.4% 67.2% 81.3% 68.6% 84.4% 73.2% 

ALS4GAN (Desai and Ghose, 2022) 80.7% 67.7% 83.9% 72.3% 85.6% 74.8% 

Allspark (Wang H. et al., 2024) 81.6% 68.9% 82.7% 70.5% 86.3% 75.9% 

PPCNet 82.0% 69.4% 84.8% 73.7% 87.1% 78.1% 

Bold values indicate the best performance. 

FIGURE 8 

The visual comparisons of segmentation results on the M4SFWD dataset. 

extremely challenging lighting and visibility conditions remain 
diÿcult cases for all models. 

4.4 Ablation experiments 

To further verify each core module in PPCNet, this study 
conducts ablation experiments focusing on the Panoramic Feature 
Fusion (PFF) module, the Dual-Frequency Feature Enhancement 
(DFFE) module, and the Pixel Contrastive Loss (LDC). These 
experiments comprehensively analyze the contribution of each 

component to segmentation performance. The Baseline model, 
used as a reference, adopts a conventional ASPP module for multi-
scale feature fusion, and applies standard cross-entropy loss for 
the unlabeled data branch. Subsequently, PFF, DFFE, and LDC are 
individually or jointly introduced to replace the corresponding 
structures, and the impact of each module on model performance 
is evaluated. All ablation experiments adopt an 8:2 ratio of labeled 
to unlabeled data. The results are presented in Table 5. 

The ablation study confirms the eectiveness of each core 
component within PCCNet. Among them, the PFF module 
contributes the most consistent and significant performance 
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TABLE 5 Ablation results of different module combinations. 

Strategy Flame Corsican D-Fire M4SFWD 

Precision IoU Precision IoU Precision IoU Precision IoU 

Baseline 76.4% 61.8% 85.9% 75.3% 77.5% 63.2% 79.2% 65.6% 

Baseline+PFF 77.8% 63.7% 87.5% 77.8% 79.2% 65.6% 81.3% 68.5% 

Baseline+DFEE 78.0% 63.9% 87.6% 78.0% 79.4% 65.8% 80.8% 67.8% 

Baseline+LDC 76.8% 62.4% 86.6% 76.3% 77.7% 63.5% 80.0% 66.7% 

Baseline+PFF+DFEE 78.5% 64.6% 88.1% 78.7% 80.4% 67.2% 81.7% 69.0% 

Baseline+PFF+LDC 78.0% 63.9% 87.8% 78.2% 79.9% 66.5% 81.5% 68.8% 

Baseline+DFEE+LDC 78.2% 64.2% 88.3% 79.1% 80.2% 66.9% 81.1% 68.2% 

Full PPCNet 79.3% 65.8% 89.4% 80.4% 81.0% 68.1% 82.0% 69.4% 

Bold values indicate the best performance. 

FIGURE 9 

Segmentation results on three different wildfire image samples. (a–c) Represent three input wildfire samples respectively. 

FIGURE 10 

The variation curves of training loss on the D-Fire dataset. 
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FIGURE 11 

The variation curves of training loss on the Corsican dataset. 

improvement across all datasets. Taking the Flame dataset as an 
example, Precision increases by 1.4% and IoU by 1.9%. Similar 
improvements are observed on Corsican, D-Fire, and M4SFWD 
datasets, where PFF helps the model better integrate multi-scale 
contextual information and local details, especially under complex 
backgrounds and large scale variations. The DFFE module also 
provides stable performance gains. By combining high- and low-
frequency information, it eectively enhances the model’s ability to 
capture fire contours, edges, and texture details while preserving 
global structure. Across the four datasets, DFFE brings Precision 
improvements of around 1.6% to 1.9% and IoU gains of up to 
2.7%, alleviating common issues such as blurred boundaries and 
missing details. In contrast, the LDC shows limited improvement 
when used alone. However, its combination with PFF and DFFE 
produces clear synergistic eects. On the D-Fire dataset, the 
complete combination of all three modules results in a 3.5% 
Precision gain and a 4.9% IoU improvement, much higher than 
the individual contributions of each module. This demonstrates 
that LDC enhances feature discrimination by enforcing pixel-
wise contrastive learning, which becomes particularly beneficial 
when combined with improved feature extraction and fusion 
mechanisms. Overall, when all three components are integrated 
into the full PPCNet framework, the model achieves the best 
results across all datasets. On the most challenging M4SFWD 
dataset, the complete model reaches 82.0% Precision and 69.4% 
IoU, outperforming the Baseline by 2.8 and 3.8%, respectively. 
These results comprehensively validate the collaborative advantage 
of the proposed modules and the robustness of PPCNet under 
various complex forest fire scenarios. 

The visual results of the ablation experiment on the D-Fire 
dataset under the 8:2 data split, shown in Figure 9, further illustrate 
the eectiveness of each module. In particular, the red-box areas 
highlight how the PFF module simulates a “panoramic view” to 
comprehensively observe the scene and mitigate the impact of 

complex terrain, lighting variations, and occlusions. For example, 
as shown in Figure 9c, although a firefighter’s leg partially occludes a 
fire region, PFF eectively analyzes the overall fire spread and infers 
the presence of occluded fire areas. The DFFE module enhances the 
extraction of fire texture and detail features, as evident in Figure 9b, 
where incorporating DFFE results in significantly finer and more 
detailed segmentation outcomes. 

4.5 Convergence analysis 

To further verify the training stability and optimization 
eÿciency of PPCNet, a convergence analysis was conducted 
by comparing it with five representative semi-supervised 
segmentation methods, namely CAC, ST++, CCT, ALS4GAN, 
and Allspark, on the D-Fire dataset. In this experiment, the ratio 
of labeled to unlabeled data was set to 5:5. All models were trained 
under identical parameter configurations and data conditions, and 
the variation curves of training loss were recorded throughout 
the process, as shown in Figure 10. From the overall trend, it 
can be observed that PPCNet maintains a consistently lower 
loss value throughout the entire training process and achieves 
significantly faster convergence compared to other methods. 
Specifically, within the first 20 epochs, the loss value of PPCNet 
rapidly decreases to approximately 0.18, which is notably lower 
than that of CAC (approximately 0.27), Allspark (approximately 
0.34), and ALS4GAN (approximately 0.37) over the same period. 
In contrast, both ST++ and CCT exhibit relatively slower declines 
in loss and more substantial fluctuations during the early training 
stages, indicating inferior stability. 

To further verify the generalization and stability of PPCNet 
under dierent data conditions, an additional convergence analysis 
was conducted on the Corsican dataset. As shown in Figure 11, 
PPCNet exhibits a similarly smooth and rapid convergence trend. 
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5 Conclusion 

In this study, a semi-supervised segmentation method for 
forest fire images based on UAV remote sensing, named 
PPCNet, is proposed to address the limited labeled data, 
complex environmental interference, and insuÿcient boundary 
representation in forest fire segmentation tasks. The proposed 
method introduces several innovative components, including 
a Panoramic Feature Fusion (PFF) module, a Dual-Frequency 
Feature Enhancement (DFFE) module, and a Pixel Contrastive 
Loss (LDC). Through the eective integration of multi-scale, 
cross-level, and multi-frequency information, the model enhances 
its feature representation capability under complex forest fire 
scenarios. Extensive comparative experiments demonstrate that 
PPCNet achieves superior segmentation performance on four 
representative UAV remote sensing forest fire datasets: FLAME, 
Corsican, D-Fire, and M4SFWD. 

In future work, we plan to further enhance and extend this 
research in the following directions. First, we will explore the 
incorporation of advanced structures such as Transformers and 
self-attention mechanisms to improve the ability to detect distant 
and weak fire targets. Second, we will investigate information fusion 
strategies based on multi-modal remote sensing data, including 
infrared, thermal, and multispectral images, to enrich input 
information and improve segmentation robustness under multi-
source data conditions. Finally, we aim to construct a large-scale, 
multi-scenario, and multi-temporal UAV remote sensing forest 
fire dataset to promote the practical application and engineering 
deployment of semi-supervised forest fire segmentation methods 
in real-world scenarios. 
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