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Introduction: Wildfire detection and segmentation play a critical role in
environmental monitoring and disaster prevention. However, existing deep
learning-based segmentation models often struggle to identify wildfire
boundaries accurately due to complex image features and limited annotated
data.

Methods: We propose a novel segmentation network called PPCNet, which
integrates three key modules: a Panoramic Feature Fusion (PFF) module
for multi-scale feature extraction, a Dense Feature Fusion Encoder (DFFE)
to capture contextual details, and a Local Detail Compensation (LDC) loss
function to enhance boundary accuracy. Additionally, we design a pseudo-label
optimization framework to leverage unlabeled data effectively.

Results: Experiments were conducted on multiple wildfire datasets, and
the results show that PPCNet achieves superior performance compared to
state-of-the-art methods. Our model demonstrates significant improvements
in segmentation accuracy and boundary localization, validated through
quantitative metrics and visual comparisons.

Discussion: The integration of PFF, DFFE, and LDC components enables PPCNet
to generalize well across different wildfire scenarios. The use of pseudo-labeling
further enhances performance without requiring additional labeled data, making
it suitable for real-world deployment in wildfire monitoring systems.
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1 Introduction

Forest fires, as a typical frequent and highly damaging global
natural disaster, have shown an obvious increasing trend in
frequency, affected area, and severity in recent years due to
factors such as global climate change and intensified human
activities (Zheng H. et al., 2023; Giannakidou et al., 2024). Forest
fires not only directly destroy large amounts of forest resources,
disrupt the structure and function of ecosystems, and severely
threaten biodiversity, but also aggravate the greenhouse effect
through carbon emissions, alter atmospheric components, and
further intensify climate change (Wang H. et al., 2024). At the
same time, forest fires pose serious negative impacts on human
life, property safety, public health, and economic development.
According to relevant statistical data, the ecological, economic,
and social losses caused by forest fires worldwide continue to rise,
making it urgent to develop effective technical means for early
monitoring and rapid response (Samhitha et al., 2024). Against the
background of interdisciplinary technological development, how to
efficiently and accurately segment and identify forest fires by using
advanced remote sensing methods, especially with high spatial
and temporal resolution data acquisition and intelligent analysis
techniques, has become an important research focus in remote
sensing and intelligent information processing (Yandouzi et al,
2024).

In recent years, with the rapid development and widespread
application of UAV remote sensing technology, it has become
possible to obtain large-scale, high-resolution, and low-cost forest
fire image data. Compared with traditional satellite remote sensing,
UAVs have the advantages of high mobility, flexible imaging, and
rapid response, making them an important information source
for forest fire monitoring (Feng et al, 2025). Meanwhile, Deep
learning, particularly Convolutional Neural Networks (CNNs), has
shown strong performance in image recognition and semantic
segmentation, significantly advancing research on forest fire
detection and segmentation (Lin et al, 2024; Zheng et al,
2024). Unlike image classification and object detection, which
only identify the presence or approximate location of a fire,
image segmentation provides pixel-level delineation of fire and
smoke regions, enabling accurate boundary extraction and dynamic
monitoring. Such fine-grained spatial information is crucial for
assessing fire extent, supporting early warning, and improving
situational awareness in UAV-based forest fire management. Deep
learning-based segmentation models can automatically extract
multi-scale semantic features, enhancing robustness and accuracy
under complex environmental conditions.

Nevertheless, building high-performance and robust forest fire
segmentation models still faces many challenges. On the one
hand, deep learning methods rely heavily on large-scale, high-
quality annotated datasets for supervised training. However, due
to the suddenness, danger, and complex field conditions of forest
fires, the process of precise annotation of forest fire images is
costly, ineflicient, and highly subjective, resulting in a serious
lack of publicly available high-quality forest fire datasets (Zheng
Y. et al,, 2023; Lee et al, 2024). On the other hand, in actual
forest fire scenes, factors such as fire spreading patterns, smoke
distribution, background vegetation types, and lighting conditions
are complex and variable, often accompanied by image occlusion
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and low contrast, which further increases the difficulty of feature
expression, boundary localization, and generalization under small-
sample conditions (Mai et al., 2025). To address these problems,
semi-supervised learning (SSL) has received widespread attention
in image segmentation tasks in recent years as an effective learning
paradigm to alleviate data scarcity and improve model performance
(Yang L. et al, 2025). By jointly utilizing limited labeled and
abundant unlabeled data, SSL can mine the potential information
in unlabeled data, assisting models in learning more robust
and discriminative feature expressions under weak supervision,
thereby reducing dependence on large-scale annotated datasets and
enhancing segmentation performance and model generalization.

In the task of forest fire image segmentation, how to fully
utilize large amounts of unlabeled UAV images and combine them
with semi-supervised learning strategies to improve segmentation
accuracy and boundary recognition ability under complex
environments has become an important research direction.
Although some researchers have attempted to introduce semi-
supervised learning methods into forest fire segmentation tasks (Lai
et al,, 2021; Koottungal et al., 2023), existing methods still have
limitations in feature fusion, multi-scale information modeling,
and consistency constraint design. For example, Sun et al. (2022)
enhanced multi-scale feature representation by introducing an
atrous spatial pyramid pooling (ASPP) module, which effectively
expanded the receptive field but still had deficiencies in preserving
local details and improving the segmentation of fire boundaries
and complex smoke structures. Rudz et al. (2013) designed a
feature extraction and reconstruction framework for forest fire
images based on an autoencoder structure combined with semi-
supervised ideas, which alleviated data scarcity to some extent,
but the weak multi-scale feature fusion ability made it difficult to
cope with complex backgrounds and diverse fire scenes. Toulouse
et al. (2015) introduced color and shape constraints in the
pseudo-label generation process, which improved segmentation
performance and the reliability of pseudo-labels by filtering
high-confidence pseudo-labels and applying image augmentation
strategies. However, there remains room for improvement in
enhancing model consistency and suppressing pseudo-label noise
propagation.

To address the existing problems of insufficient feature
representation, inaccurate boundary segmentation, weak
generalization, and inefficient utilization of semi-supervised
information in current forest fire segmentation tasks, we propose
a semi-supervised segmentation method for UAV remote sensing
forest fire that integrates panoramic feature fusion and pixel-level
contrastive learning. The main contributions of this paper are
summarized as follows:

(1) A panoramic feature fusion (PFF) module is designed to
efficiently integrate multi-level and multi-scale features, fully
capturing global contextual information and local detail
features in forest fire images.

(2) A dual-frequency enhancement (DFE) mechanism is proposed
to jointly extract low-frequency information (background
structure and overall shape) and high-frequency information
(boundary texture and detail changes), effectively enhancing
the model’s sensitivity and expression ability for fire and
smoke boundaries.
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(3) A pixel contrastive loss (PCL) is designed to construct positive
and negative sample pairs based on pixel-level features,
combined with directional constraints and confidence
calibration mechanisms, which enhances the discriminative
ability of the un-supervised branch.

(4) A semi-supervised learning framework is proposed, which
combines supervised cross-entropy loss with unsupervised

to fully exploit the

information in limited labeled data and abundant unlabeled

contrastive loss complementary
data, improving segmentation accuracy.

(5) Extensive experiments on four forest fire remote sensing
datasets show that the pro-posed method achieves superior
segmentation performance, verifying its effective-ness.

2 Related work

In recent years, deep learning-based methods have become the
mainstream approach for forest fire image segmentation, driven by
the rapid development and success of deep learning techniques in
image analysis tasks. However, challenges such as limited labeled
data, complex background environments, and diverse fire shapes
still hinder the performance of segmentation models. To address
these issues, researchers have explored several technical directions
within the deep learning framework. Semi-supervised learning
strategies aim to alleviate the reliance on large-scale labeled datasets
by effectively utilizing both labeled and unlabeled data. Meanwhile,
feature fusion techniques enhance the model’s ability to capture
contextual information and accurately delineate fire boundaries
under complex scenarios. This section provides a systematic review
of representative methods and recent advances in forest fire image
segmentation, covering traditional image processing approaches,
deep learning-based methods, semi-supervised learning strategies,
and feature fusion strategies.

2.1 Traditional image processing
methods for forest fire segmentation

Early research on forest fire detection and segmentation mainly
relied on traditional image processing techniques. Typical methods
include color threshold segmentation (Yang Z. et al., 2025), edge
detection (Wei and Larsen, 2019), and morphological analysis.
These methods usually utilize the distinctive color features of
flames in visible images, such as red, orange, and yellow, to
perform color space conversion and threshold segmentation. Some
methods also use the structural differences between flames and the
background for edge detection and morphological operations. In
addition, certain studies have combined dynamic characteristics
of flames, such as flicker frequency and contour deformation,
to assist in detection and improve timeliness and accuracy. For
instance, Tlig et al. (2020) proposed a multi-scale color image
segmentation method based on the integration of PCA and
Gabor filters, effectively enhancing flame region discrimination.
Hossain et al. (2020) applied local binary patterns (LBP) from
multiple color spaces and artificial neural networks to achieve
joint smoke and flame detection. Zhao et al. (2011) combined
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Fourier descriptors with a dynamic support vector machine (SVM)
to achieve dynamic flame detection based on flickering contour
features. Although these methods offer advantages such as high
computational efficiency and simple implementation, they rely
heavily on low-level explicit features. As a result, they struggle to
achieve accurate flame region segmentation under complex forest
fire scenarios, such as illumination variations, smoke occlusion,
and background interference, especially in terms of fine-grained
boundary and internal structure representation (Darwish Ahmad
et al, 2023). With the increasing demands for accuracy and
real-time performance in practical applications, these traditional
methods show significant limitations, highlighting the need for
more advanced and expressive approaches.

2.2 Deep learning-based forest fire
segmentation

The widespread application of deep learning techniques,
especially CNNs, in image segmentation has improved the
performance of forest fire segmentation methods (Saleh et al,
2024). Classic semantic segmentation architectures such as
U-Net (Wu et al, 2022) and the DeepLab series (Yang, 2024)
have become mainstream technical approaches in forest fire
segmentation due to their powerful multi-scale feature extraction
and spatial information recovery capabilities. U-Net employs
an encoder-decoder architecture with skip connections, enabling
effective feature fusion and spatial detail recovery. Originally
designed for medical image segmentation, U-Net has been widely
extended to forest fire segmentation tasks (Shirvani et al., 2023).
Building upon this, FDE U-Net (Zou et al, 2025) integrates
an ACmix convolutional mixing module and a CBAM attention
mechanism to significantly enhance feature expression for small-
scale fire regions, improving segmentation accuracy. The DeepLab
series introduces atrous convolutions and ASPP modules, which
effectively expand the receptive field and enhance the capture
of multi-scale contextual information (Liu et al, 2024). Liu
et al. (2023) designed a double-attention residual feature fusion
(DARA) module within the DeepLabV3 architecture, further
improving feature discrimination and boundary recognition for
fire regions. Harkat et al. (2022) optimized the DeepLabV3+
framework to construct a real-time forest fire image segmentation
system, achieving a balance between segmentation accuracy and
speed for practical applications. Although deep learning methods
have achieved remarkable results in forest fire segmentation,
their strong reliance on large-scale, high-quality annotated
data has become a bottleneck for their widespread application
in real-world forest fire scenarios. Due to the dangerous,
complex, and subjective nature of forest fire data collection and
annotation, high-quality data resources remain extremely scarce,
underscoring the need to explore new methods for efficient data
utilization.

2.3 Semi-supervised learning strategies

To mitigate limited annotated data, SSL (semi-supervised
learning) has been increasingly adopted in forest fire segmentation
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tasks as an effective strategy to reduce supervision dependence
and improve model generalization (Ouali et al.,, 2020; Desai and
Ghose, 2022; Yang et al.,, 2022). SSL combines limited labeled data
with abundant unlabeled data to mine potential information from
the unlabeled portion, assisting models in learning more robust
feature representations under weak supervision and reducing
the need for large annotated datasets. Current mainstream SSL
strategies include pseudo-label generation (Zhang et al., 2021),
consistency regularization (Wang et al., 2020), region-mixing data
augmentation such as CutMix (Yun et al., 2019) and MixUp
(Carratino et al, 2022), and masked image modeling (MIM)
(Xie et al, 2022). For example, Wang et al. (2022) proposed
the SemiFSNet model, which enhances segmentation performance
and stability on unlabeled forest fire images through consistency
regularization. Other studies (Xin et al, 2024) introduced
perturbation mechanisms at the feature level to encourage models
to learn more robust and discriminative features. Pseudo-label
generation methods (Yan et al, 2024) further select high-
confidence pseudo-labels dynamically, supporting effective training
on unlabeled data and gradually narrowing the performance gap
between supervised and unsupervised data. However, existing
semi-supervised forest fire segmentation methods still face
two main limitations: (1) insufficient exploitation of deep
structural information in unlabeled data, leading to limited feature
expression capability, and (2) a lack of robust feature constraints
tailored to complex forest fire scenarios, such as occlusion,
smoke, and background interference, making models prone to
overfitting or boundary segmentation blur. To overcome these
limitations, this paper proposes a semi-supervised segmentation
framework that combines supervised and unsupervised branches.
In particular, a pixel contrastive loss with directional constraints
is designed for the unsupervised branch, which leverages spatial
structure information and confidence calibration to construct
reliable positive and negative sample pairs, further enhancing
boundary and detail segmentation for forest fires under complex
environments.

2.4 Feature fusion strategies

Feature fusion is a key technical approach for improving
2020).
Representative methods such as skip connections in U-Net
2015) and the ASPP module in the
DeepLab series (Liu et al., 2022) effectively integrate local and

segmentation accuracy and robustness (Shang et al,
(Ronneberger et al,

global information through architectural design. In recent years,
researchers have explored advanced feature fusion strategies,
including attention mechanisms, feature pyramid structures, and
multi-modal information fusion. For example, the CBAM module
(Chen et al., 2023) jointly applies channel and spatial attention
to enhance the expression of key regions related to forest fires.
Li et al. (2022) designed a multi-feature fusion framework that
incorporates color and texture information, significantly improving
model robustness and discrimination under complex backgrounds.
Zhang et al. (2023) proposed a repeated deep-shallow feature
fusion strategy to enrich overall semantic information and improve
segmentation accuracy and boundary detail preservation. Although
these methods demonstrate the importance of feature fusion
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in forest fire segmentation, most existing work remains limited
to single-scale or local-level information integration, lacking
systematic modeling of global forest fire image information. To
address this, this paper introduces a panoramic feature fusion
module that systematically integrates deep and shallow features at
different levels and scales from a macro and global perspective.
This enables comprehensive capture of contextual semantic
information and local details in forest fire images, significantly
enhancing segmentation performance and boundary expression
under complex environments.

3 Methodology

3.1 Overall architecture

To address the challenges of forest fire image segmentation,
including the difficulty of data acquisition, complex environmental
interference, and insufficient boundary expression, we propose
a semi-supervised forest fire segmentation method based on
UAV remote sensing, named PPCNet (Panoramic Feature
Fusion and Pixel Contrastive Learning Network). The proposed
PPCNet aims to comprehensively improve the segmentation
accuracy and robustness of the model in complex forest
fire scenarios by integrating multi-level deep features and
introducing pixel-level consistency constraints. By exploiting
limited labeled and large-scale unlabeled data, PPCNet improves
model performance.

The overall structure of PPCNet is shown in Figure 1. The
model adopts a dual-branch framework consisting of a supervised
branch and an unsupervised branch. Both branches share the same
encoder network but adopt different optimization strategies to
work collaboratively. In the supervised branch, labeled wildfire
images are first processed by the encoder to extract multi-scale
and multi-level deep features. To enhance the representation of
complex object boundaries and local details, a Dual-Frequency
Feature Enhancement (DFFE) module is introduced after the
encoder. By jointly utilizing low-frequency structural information
and high-frequency edge and texture information, the module
optimizes the feature representation. The enhanced feature map
is then fed into the classifier to generate the final segmentation
prediction. This branch is optimized using a cross-entropy loss to
ensure stable and reliable segmentation performance on labeled
data. In the unsupervised branch, for unlabeled wildfire images,
a dual random cropping strategy is adopted to generate two
sub-images with partially overlapping regions. This design not
only increases data diversity but also provides the basis for
pixel-level contrastive learning. The two sub-images are passed
through the encoder and feature enhancement modules to obtain
their respective high-dimensional feature maps. Based on the
spatial correspondence, the overlapping regions in the two
feature maps are extracted, and pseudo-labels are generated by
the classifier. Using this information, pixel-level positive and
negative sample pairs are constructed. On this basis, the proposed
Pixel Contrastive Loss (PCL) is introduced, which incorporates
directional constraints and confidence calibration mechanisms.
This loss guides the model to learn discriminative and structurally
consistent feature representations from unlabeled data, further
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FIGURE 1
Overall structure of the proposed PPCNet.

improving the model’s ability to accurately capture wildfire target
boundaries and fine details.

3.2 Basic feature extraction module

High-quality feature extraction is the foundation for achieving
accurate image segmentation. In this study, we adopt the ResNet50
network as the backbone for the basic feature extraction of
PPCNet. ResNet introduces residual connections to effectively
alleviate problems such as gradient vanishing and network
degradation in deep neural networks, providing strong feature
representation capabilities and stable network performance. In
particular, ResNet50 offers an optimal balance between feature
richness and computational efficiency, making it well-suited for
wildfire image segmentation, where flame targets often exhibit
blurred boundaries, scale variation, and strong interference from
smoke and vegetation. Its hierarchical feature maps naturally
align with the design of the PFF and DFFE modules, facilitating
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the integration of spatial, semantic, and frequency-domain
information for more precise fire region delineation. Specifically,
the input image x is first processed through a7 x 7 convolutional
layer with a stride of 2, followed by a max-pooling layer, which
reduces the spatial resolution while extracting low-level features.
The resulting feature map is denoted as Fy. Subsequently, the
feature map Fy passes through four stages of residual blocks
to progressively extract multi-level deep features. The structure
of each stage is as follows: The first stage contains 3 residual
blocks, and its output is denoted as F;, which mainly captures
basic texture and edge information from the image. The second
stage contains 4 residual blocks, and its output is denoted as F,
extracting richer intermediate features and structural information.
The third stage consists of 6 residual blocks, generating the feature
map F3, which captures high-level semantic information of the
image. The final stage contains 3 residual blocks, followed by
a global average pooling layer, producing the final deep feature
map F4 with rich global semantic information and strong feature
expression capabilities. Throughout the feature extraction process,
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the multi-level feature maps F), F», F3, and F; retain rich
hierarchical information from low-level edges and textures to high-
level semantics and global structures. These feature maps are then
fed into the PFF module to further integrate multi-scale, multi-
level information.

In the supervised branch, PPCNet receives explicit guidance
from pixel-level annotations of forest fire regions. Each labeled
image is paired with a binary mask, where fire pixels are marked as
1 and background pixels as 0. The model learns to align its pixel-
wise predictions with these annotations through the supervised
cross-entropy loss, thereby establishing a direct mapping between
visual features and fire occurrence regions. This explicit supervision
enables the network to accurately learn the spatial distribution
and boundaries of fire areas, while the PFF and DFFE modules
further refine boundary and texture representations to enhance
segmentation precision under complex backgrounds.

3.3 Panoramic feature fusion module

In the process of feature extraction using CNN, deep
features with higher semantic information are gradually obtained
through multiple layers of convolution. For wildfire image
segmentation tasks, high-level semantic features, such as the
overall shape of fire spots and their relationship with the
background, are essential for accurate segmentation. However,
shallow-level features obtained in the early layers of the network,
including edge, color, and precise location information, also play
a critical role in determining segmentation accuracy. In practical
wildfire image segmentation tasks, complex environments such
as occlusions, varying backgrounds, and smoke interference often
occur. Meanwhile, the shape and location of fire spots are important
segmentation targets. Simply relying on deeper convolution layers
to extract high-level features may cause the network to lose
important shallow features, such as edges, color contrast, and
position information, which leads to blurred boundaries or
inaccurate segmentation results. To address this issue, we propose a
PFF module to effectively combine features extracted from different
stages of the network, aiming to obtain more comprehensive and
representative feature information. As shown in , within
the PFF module, features from different layers are progressively
fused through a two-stage fusion structure called the PFF block.

Specifically, four feature maps are extracted from different
stages of the ResNet50 backbone, denoted as Fj, F,, F3, and Fjy.
These feature maps are fed into the PFF module, where different-
level features are gradually fused to obtain rich panoramic features.
For any two adjacent feature maps F, and F,_; (1 < n > 4),
the PFF Block performs a series of operations to fuse them and
generate the updated feature map F,_,. First, to extract shared
characteristics from different levels, the higher-level feature F,, is
upsampled to match the spatial size of F,_j, and then the two
feature maps are concatenated along the channel dimension:

F' = Concat (F,T,F,,,l) (1)

where Concat (-) denotes channel-wise concatenation, and F,I
indicates the upsampled version of F,,.

Next, to capture the channel-wise information of the
concatenated feature map, F’ is passed through an average pooling
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layer (AvgPool), a convolutional layer (Conv), and a Sigmoid
activation function to obtain channel attention weights:

w = Sigmoid(Conv(AvgPool(F"))) ()

The channel weights w' are then used to recalibrate the
concatenated feature map F', enhancing important features while
suppressing less informative ones:

F’" = Convi x 1 x 1(W ® F) 3)

where ® denotes element-wise multiplication and Conv; x 1 x 1 is
al x 1 x 1 convolution.

To further extract and fuse local structure information from
different layers, the input features F,, and F,,_; are separately passed
through a1 x 1 x 1 convolution and a Sigmoid activation to
obtain local information weights:

w’ = Sigmoid(Convy x 1 x 1(Fy) ® Convy x 1 x 1(F—1))  (4)

where ® represents element-wise addition.
Finally, the local weights w” are used to recalibrate the feature
map F”, producing the updated fused feature F,,_:
F/ — W// ® F// (5)

n—1

Through this two-step fusion process, the PFF block gradually
integrates low-level details and high-level semantic information,
ensuring that both boundary and contextual features are retained.

After three rounds of such fusion, the updated feature
maps Fj;, F), and F| are obtained. Finally, the upsampled high-
level feature map FI and the fused features from different
stages are concatenated to generate the final panoramic feature
representation:

F = Concat ([FI,FS,FQ,FQ]) (©)

This comprehensive feature F effectively combines global semantic
information with local structural details, significantly enhancing
the model’s ability to accurately distinguish flame regions,
boundaries, and background areas in complex wildfire scenes.

3.4 Dual-frequency feature
enhancement module

In computer vision, an image can be divided into high-
frequency and low-frequency components, which reflect different
types of information. High-frequency components mainly contain
edge, texture, and fine details of the image. For wildfire images,
these details, especially the flame edges and texture information,
are crucial for accurate segmentation. By enhancing high-frequency
components, the model can better capture flame contours and
fine structures, thus reducing false positives and missed detections
in segmentation tasks. However, high-frequency components
may also contain noise, and directly enhancing them could
amplify noise and negatively affect the segmentation results.
Therefore, while enhancing high-frequency information, it is
also important to incorporate low-frequency components to help
suppress noise. Low-frequency components reflect the overall
structure and background information of the image, which
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Structure of the panoramic feature fusion module. The diagram includes (a) the overall PFF (Panoramic Feature Fusion) structure with hierarchical
feature fusion stages, and (b) the internal structure of a PFF block showing upsampling, concatenation, attention weighting, and local recalibration

processes.

is very helpful for distinguishing the background areas and
understanding the global context in wildfire scenes. By keeping
low-frequency information, the model can better separate flames
from complex backgrounds, thus improving segmentation stability.
The combination of high-frequency and low-frequency features
provides multi-scale information for the model, which is beneficial
for improving segmentation accuracy. In this work, we propose a
DFFE module, which separates the feature maps extracted by the
encoder into high-frequency and low-frequency parts for further
feature enhancement. The structure of the DFFE module is shown
in Figure 3.

First, given an input feature map F, we apply a linear
transformation to reduce the number of channels, and obtain a new
feature map F. Then, a wavelet transform is used to decompose the
feature map into low-frequency and high-frequency components.
Specifically, for the 2D feature map F, a one-dimensional wavelet
transform is first applied to each row:

Fiow n = h*F )

Fuighn = &°F ®)
Here, h and g are low-pass and high-pass filters, respectively, and *
represents the convolution operation.

Next, another one-dimensional wavelet transform is applied to
each column of Fjg,, j, and Fgp, j, to further decompose the feature

map:
o * T
Fur = ¢ Flowfh ©)
T _ 1xpT
Fiy = WPy, , (10)
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FIGURE 3
Structure of the dual-frequency feature enhancement module.

T
FHH = g*Fhigh_h (11)

FiL = W'F, , (12)

In this work, we use Haar wavelets for decomposition, where
[1,1] /4/2 and the high-pass filter is

the low-pass filter is h
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g = [1,-11/ V2. Among the decomposed features, FrL captures
vertical edge and texture details, I’T_L; focuses on horizontal
edges and textures, and Frpy reflects diagonal edges and texture
information. These three components together represent the high-
frequency details of the feature map, which are useful for expressing
flame boundaries and fine structures.

We concatenate the three high-frequency features along the
channel dimension to form an enhanced high-frequency feature
map:

Fy = Concat ([Fur, Fru, Frn ) (13)

After that, we apply two 3 x 1 x 1 convolution layers
to further refine these high-frequency features and obtain clearer
boundary features Fj;. At the same time, the low-frequency
feature Fy; is processed with a 3 x 3 convolution and a linear
transformation to generate key and value features, which are then
concatenated to form global context information G. To ensure
boundary information is preserved in this process, we also add the
boundary features l:"; to the value part.

Finally, we introduce a multi-path attention mechanism
based on the original input feature F. Specifically, queries Q
are generated from F, and used together with K (key) and V
(value) to extract different levels of contextual information. The
first path captures spatial dependencies, helping to distinguish
flames from the background. The second path focuses on
the channel-level semantic representation, enhancing multi-scale
feature fusion. The third path highlights boundary information
in the value features to ensure that flame contours are
better preserved.

3.5 Pixel contrastive loss

To effectively utilize both the limited labeled data and
abundant unlabeled data, this paper designs a dual-branch
optimization framework consisting of a supervised branch and
an unsupervised branch. The supervised branch employs a
standard cross-entropy loss for pixel-level supervised learning,
while the unsupervised branch introduces a Pixel Contrastive
Loss (PCL) to enhance feature discriminability and consistency
on unlabeled data through directional constraints and positive-
negative sample selection.

In the supervised branch, the labeled wildfire image x; is first
processed through the feature extraction, panoramic feature fusion,
and dual-frequency feature enhancement modules to obtain the
enhanced feature map Ff,. The final prediction result is generated
through the classifier C(-) as follows:

pi = C(Fg) (14)

The difference between the predicted result and the ground truth y;
is measured using the standard cross-entropy loss:

1 N C
N Z Z Vi, Jog (Pli,c) (15)

i=lc=1

Lcg =

where N represents the total number of pixels, C is the number
of categories, y;, . denotes the probability that the i pixel belongs
to category ¢, and py; . represents the predicted probability for the
same pixel and category.
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In the unsupervised branch, the unlabeled wildfire image x,
undergoes two independent random crops to generate two sub-
images x,1 and x,, which contain overlapping regions denoted as
Xo. These sub-images are passed through the feature extraction and
panoramic feature fusion modules to obtain feature maps:

Fy = & (xu1) (16)

Fp = & (xp) 17)

The overlapping regions in the feature maps are denoted
as Oy and Oy, respectively. For the same spatial position in
Oy1 and Oy, the corresponding features are considered positive
sample pairs, while features from different objects are treated as
negative sample pairs.

To enhance feature alignment, a directional contrastive loss
Lpc is introduced, which uses confidence-guided positive-negative
sample selection to promote alignment between low-confidence
and high-confidence features while suppressing noisy feature
propagation. Specifically, the maximum category probability of
each feature is used as the confidence measure, encouraging
features with lower confidence to align with those with higher
confidence:

Ziic (Ou1, Ow2) =

e exp (s (0" 013") /1)
N h’ZWMd " log exp (5 (Oﬁ’lw, Oﬁ’;’) /'E) +
ZOneFNcg exp (5 (OZ’lwa On) / t)

where s(-,-) denotes the cosine similarity, t is a temperature

(18)

coeflicient, h, w indicate spatial positions, Fneg represents the set

of negative samples, and the directional mask MZ’W is defined as:
MY =1 {maxC (Fh’w) < maxC (Fh’w)} (19)
d - ul u2

indicating that only locations where the confidence of O,;, exceeds
that of O, are considered for contrastive learning.

To further reduce errors from incorrect pseudo-labels
in negative sample selection, pseudo-labels predicted by the
unsupervised branch are utilized. The category probability of each
feature is calculated as:

v, = arg max C(Fy;) (20)

For a feature OZ‘IW with pseudo-label y/; and a negative sample
O,, with pseudo-label y,,, the negative sample mask is defined as:

MY = 1{y #yn @1

Incorporating this mask, the updated directional contrastive loss is
expressed as: '
l:km (O, Ow2) =

exp (s (Oﬁ’lw; OZ‘ZW) / ‘IZ)
exp (s (Oﬁ’lw, Oﬁ’zw> / 't) +
ZO”EFNeg Mzzllmexp (S (OZ1W7 On) /T)

1
N Z MZ’W -log (22)
h,w
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Furthermore, to mitigate the impact of low-confidence positive
sample pairs, a confidence threshold t is applied to filter them out.
The final form of the directional contrastive loss becomes:

l " Pf (Oula Ou2)

exp (s (OZ’IW; Oh’w) /T)
exp (s (Oulw, Oh W) /T)
20, €Frg MZ:I eXp( ( i )/I)

h,w
ZMdpf log (23)

where the composite mask MZ’;} combines both directional and
confidence constraints:

h h
M) gf = M " 1{max C (Fu’zw) =y} (24)
Finally, the overall pixel contrastive loss for a batch of size B is
formulated as:

B
1 . .
Loc = 5 2 G (0, 00) + 1 (0. 0m)  25)

i=1
The final total loss function for the model is defined as:

L = Lceg+ NCpc (26)

where N is a balancing hyperparameter that controls the
contribution of the unsupervised loss.

4 Experiments and results

4.1 Datasets

To comprehensively evaluate the effectiveness and applicability
of the PPCNet model, we conduct comparative and ablation
experiments on four publicly available remote sensing forest fire
datasets (Flame, Corsican, D-Fire, and M4SFWD). The Flame
dataset was collected by Northern Arizona University and other
institutions using UAVs in the pine forest areas of Arizona, USA,
and contains 2003 images. This dataset effectively addresses the
lack of forest fire recognition data under harsh environmental
conditions such as haze and smoke, providing high practical
application value. The Corsican dataset was organized by the
Environmental Science Laboratory of the University of Corsica
in France and consists of 1,136 real forest fire images. The
dataset features diverse background environments, rich vegetation
types, and significant variations in the scale of forest fire
targets within the images, making it highly challenging for
segmentation tasks. The D-Fire dataset was compiled by the
Venancio research team in Brazil. The images were sourced
from the internet, legally simulated fire experiments at the Belo
Horizonte Technology Park in Brazil, surveillance equipment
from the Federal University of Minas Gerais (UFMG), and
the Serra do Rola-Moga State Park in Belo Horizonte. The
dataset contains a total of 21,527 images. To ensure data quality,
9869 images with clearly visible forest fire targets were selected
for experiments. The M4SFWD dataset is a synthetic dataset
specifically designed for remote sensing forest fire detection
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tasks. It contains 3974 images covering various fire patterns,
scene backgrounds, and imaging conditions, providing an effective
benchmark for evaluating model adaptability and generalization
performance under diverse scenarios.

Representative image samples from the four datasets are
shown in Figure 4. Overall, the datasets cover both real
and synthetic data, diverse scenes, and complex environments,
providing a comprehensive and systematic platform for validating
the performance of the proposed PPCNet.

4.2 Experiment setup

In this study, ResNet50 is adopted as the backbone network.
All labeled and unlabeled images are resized to 224 = 224 and
normalized. The optimizer is set to SGD with a learning rate
of 0.01, weight decay of 0.0001, and momentum of 0.9. The
batch size is set to 14, and the model is trained for 60 epochs.
Random horizontal flipping is applied to both the supervised and
unsupervised branches for data augmentation. The temperature
coefficient T for contrastive loss is set to 0.1, the loss weight X
for the unsupervised branch is set to 0.5, and the positive sample
filtering threshold y is set to 0.75. All experiments are performed on
a workstation with Ubuntu 18.04 and an NVIDIA RTX 3090 GPU.

To evaluate the segmentation performance, Precision and IoU
(Intersection over Union) of the fire region are used as the main
metrics. The mathematical definitions of these metrics are given as
follows:

. TP
Precision = ———— (27)
TP + FP
IoU 7TP (28)
(4] =
TP + FP + FN

where TP, FP, and FN represent the number of true positive, false
positive, and false negative pixels in the fire region, respectively.
Precision is calculated as the ratio of correctly predicted fire pixels
to all predicted fire pixels. IoU is computed as the ratio of the
intersection area between the predicted fire region and the ground
truth to their union area. Since the segmentation task only contains
two categories (background and fire), IoU of the fire region is

D-Fire M4SFWD

Flame Corsican
»F

FIGURE 4
Sample images from the Flame, Corsican, D-Fire and M4SFWD
datasets.
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adopted as the primary indicator to measure the model’s accuracy
in locating the fire area.

4.3 Comparison with other methods

To comprehensively verify the performance advantages of
the PPCNet model for forest fire image segmentation, five
representative semi-supervised semantic segmentation methods
are selected for comparison, including CAC ( ), ST++
( ), CCT ( ), ALS4GAN (

), and Allspark ( ). These methods
are widely recognized in semi-supervised image segmentation
and have been extensively applied in complex scenarios such as
remote sensing, providing strong reference value. The experiments
are conducted on four publicly available aerial remote sensing
forest fire datasets. The same data splitting strategy and evaluation
metrics are adopted to ensure the fairness and comparability of
the experimental results. Specifically, the training sets are divided
into different proportions of labeled and unlabeled data (8:2, 7:3,
and 5:5) to simulate real-world scenarios with varying degrees of
annotated data availability, thereby further testing the stability and
robustness of the models under different data conditions.

4.3.1 Results and visualization analysis on the
Flame dataset

The Flame dataset mainly consists of images captured by UAVs
at high altitudes. These images present typical challenges such as
small fire targets, complex backgrounds, and severe occlusions,
making the segmentation task highly difficult. In the experiment,
the dataset is divided into training and testing sets with a ratio
of 8:2. Within the training set, different labeled and unlabeled
data proportions (8:2, 7:3, and 5:5) are further configured. The
. The results demonstrate that the
PPCNet consistently outperforms all comparison methods across

results are shown in

all three labeled and unlabeled data ratios in terms of both Precision
and IoU. Notably, under the most challenging condition with
50% unlabeled data (5:5 split), the IoU of PPCNet reaches 71.6%,
which is 1.1% higher than the second-best method, ALS4GAN.
This fully validates the advantage of the proposed model in
scenarios with limited labeled data and strong reliance on semi-
supervised learning. Specifically, ALS4GAN and Allspark also show
strong performance on this dataset, especially as the proportion of
unlabeled data increases, reflecting their certain semi-supervised
learning capabilities. In contrast, CAC and CCT exhibit relatively
weaker overall performance, with significantly lower IoU values
under the 8:2 labeled-unlabeled ratio, indicating limitations in their
feature representation for small targets and complex backgrounds.
further
illustrate the segmentation performance differences among

The visual comparison results shown in

different models. It can be clearly observed that although most
semi-supervised methods can roughly locate the fire regions,
PPCNet achieves more accurate and complete segmentation results
in terms of fire boundary details and texture structure. This is
mainly attributed to the PFF and DFFE modules integrated into
PPCNet, which effectively capture the detailed features of small-
scale fire targets and, through multi-scale information integration
and frequency-domain feature enhancement, significantly improve
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the model’s segmentation performance under complex scene
conditions.

4.3.2 Results and visualization analysis on the
Corsican dataset

The Corsican dataset contains a large number of real forest fire
images captured in natural environments under various weather
conditions, lighting variations, and flame shapes. Fire targets
in this dataset are generally large, with complex backgrounds,
providing both high application value and significant challenges.
The experimental setup follows that of the Flame dataset, with an
8:2 training-test split. Within the training set, labeled and unlabeled
data are divided in proportions of 8:2, 7:3, and 5:5. The detailed
results are shown in .

The results clearly show that PPCNet achieves the best
performance across all labeled-unlabeled data proportions in both
Precision and IoU metrics. Particularly under the most challenging
5:5 split with 50% unlabeled data, PPCNet achieves an IoU of
85.6% and Precision of 92.1%, highlighting its outstanding stability
and robustness under different levels of labeled data availability.
Furthermore, ALS4GAN and ST++ demonstrate competitive
performance, with ST++ even outperforming ALS4GAN in IoU
under 7:3 and 5:5 splits, indicating its advantage in semi-supervised
learning. CCT and Allspark deliver moderate performance, while
CAC consistently performs the weakest.

The visualization results shown in further illustrate
that the PFF module effectively combines shallow (e.g., edges,
colors, positions) and deep (e.g., semantic, scene context) features,
which is particularly beneficial for segmenting large-scale, diverse,
and complex fire targets in this dataset. The shallow features
assist in precise boundary localization, while the deep features
enhance scene semantic understanding, working together to
significantly improve the model’s overall expressive capability.
Additionally, the DFFE module leverages high and low-frequency
information to accurately capture fire boundaries and texture
details. The incorporation of low-frequency information effectively
suppresses background noise from lighting and weather variations,
further enhancing segmentation robustness in complex scenes.
These designs together contribute to the superior comprehensive
performance of PPCNet on the Corsican dataset, demonstrating its
strong potential for real-world forest fire segmentation tasks.

4.3.3 Results and visualization analysis on the
D-Fire dataset

The D-Fire dataset covers a wide variety of real forest fire
scenes, accounting for day-night lighting variations and different
fire development stages, making it particularly challenging. The
experiments adopt the same labeled-unlabeled data splits of 8:2,
7:3, and 5:5.
different conditions. As shown, PPCNet consistently outperforms

summarizes the results of all models under

all other models in both Precision and IoU across all data
splits, demonstrating strong overall advantages. Notably, under
the most challenging 5:5 split, PPCNet achieves an IoU of 75.3%,
which is 0.8% and 3.2% higher than ALS4GAN and Allspark,
respectively, further verifying its robustness and stability under
limited labeled data and high reliance on unsupervised learning.
Compared with the Corsican dataset, the overall IoU results on
the D-Fire dataset are lower, reflecting additional challenges posed
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TABLE 1 Experimental results on the Flame dataset.

Precision

CAC ( ) 76.9% 62.5% 79.1% 65.4% 80.7% 67.7%

ST++ ( ) 75.5% 60.6% 80.6% 67.6% 80.8% 67.9%

CCT ( ) 76.0% 61.3% 78.1% 64.1% 81.2% 68.4%
ALS4GAN ( ) 77.5% 63.3% 79.3% 65.7% 82.7% 70.5%
Allspark ( ) 77.1% 62.7% 78.7% 64.8% 82.2% 69.7%
PPCNet 79.3% 65.8% 81.0% 68.1% 83.4% 71.6%

Bold values indicate the best performance.

Image * '

ALS4GAN

Allspark

PCCNet

FIGURE 5
The visual comparisons of segmentation results on the Flame dataset.

TABLE 2 Experimental results on the Corsican dataset.

Precision Precision Precision
CAC ( ) 82.7% 70.5% 86.3% 75.9% 86.5% 76.2%
ST++ ( ) 77.4% 63.1% 88.1% 78.6% 87.6% 77.1%
CCT ( ) 81.2% 68.3% 82.5% 70.4% 86.0% 75.3%
ALS4GAN ( ) 83.2% 71.2% 87.7% 75.6% 86.8% 77.4%
Allspark ( ) 82.0% 69.4% 82.4% 70.9% 86.5% 76.2%
PPCNet 89.4% 80.4% 90.1% 82.4% 92.1% 85.6%

Bold values indicate the best performance.
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FIGURE 6
The visual comparisons of segmentation results on the Corsican dataset

by lighting variations and fire development stages. Despite this,
PPCNet maintains its performance lead, indirectly confirming
the effectiveness of the PFF and DFFE modules in complex,
variable environments. ALS4GAN shows noticeable improvement
with high proportions of unlabeled data (5:5 split), suggesting its
semi-supervised strategy offers some advantages under challenging
conditions. However, ST++, CCT, and CAC exhibit relatively
lower IoU values, particularly under 8:2 and 7:3 splits, indicating
insufficient adaptability to lighting and fire stage variations.

The visual comparison results in reveal that even under
varying lighting conditions and different fire development stages,
PPCNet accurately locates fire regions and provides significantly
better boundary delineation and texture detail preservation than
other methods. This superior performance mainly results from
the PFF module’s effective multi-level feature integration and
the DFFE module’s combined enhancement of frequency-domain
information, giving the model stronger adaptability to complex
environments and boundary expression capabilities.

4.3.4 Results and visualization analysis on the
M4SFWD dataset

The M4SFWD dataset is a synthetic dataset designed to
simulate forest fire scenarios under complex terrain, weather,

and lighting conditions. It incorporates multi-scale and
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varying numbers of fire targets, providing a comprehensive
evaluation of model performance under complex, realistic
conditions. presents the results of all models under
three labeled-unlabeled data splits. Overall, the IoU values on
the M4SFWD dataset are lower than those on the Corsican
dataset but higher than those on the D-Fire dataset, indicating
that the simulated complex environments present challenges,
though not as severe as real-world lighting variations. PPCNet
achieves the best performance in both Precision and IoU
across all splits. Especially under the 5:5 split, PPCNet reaches
an IoU of 78.1%, 2.2% higher than the second-best model,
Allspark. Notably, the Precision scores are relatively high for all
models, reflecting strong performance in coarse segmentation
of large fire targets. However, the IoU results reveal that
fine-grained segmentation and background discrimination
remain challenging. Allspark and ALS4GAN perform similarly
this dataset, stability ~with

proportions of unlabeled data. In contrast, ST++, CCT, and

on showing good increasing
CAC lag behind in IoU, further confirming the comprehensive
advantage of PPCNet in handling complex, realistic forest
fire scenarios.
Visualization results in show that PPCNet effectively
preserves flame boundaries, textures, and overall contours under

different terrain, weather, and lighting conditions. The model
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TABLE 3 Experimental results on the D-Fire dataset.

10.3389/ffgc.2025.1669707

CAC ( ) 79.1% 65.4%

ST++ ( ) 80.6% 67.6%

CCT ( ) 78.1% 64.1%
ALS4GAN ( ) 79.3% 65.7%
Allspark ( ) 78.7% 64.8%
PPCNet 81.0% 68.1%

Bold values indicate the best performance.

Image

CAC

CCT

ALS4GAN

PPCNet

FIGURE 7
The visual comparisons of segmentation results on the D-Fire dataset.

achieves significantly better segmentation accuracy and region
continuity compared to other methods, further validating the
effectiveness of its multi-scale and frequency-domain joint
enhancement strategy.

However, a closer inspection of the misclassified samples across
all datasets reveals several consistent patterns. Most errors occur
in scenes with highly complex backgrounds, such as vegetation,
soil, or sunlight reflections that share similar spectral characteristics
with flame regions. Low-visibility conditions, including dense
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80.7% 67.7% 76.9% 73.4%
80.8% 67.9% 75.5% 70.8%
81.2% 68.4% 76.0% 71.6%
82.7% 70.5% 77.5% 74.5%
82.2% 69.7% 77.1% 72.1%
83.4% 71.6% 79.3% 75.3%

smoke, haze, and nighttime illumination, also lead to boundary
blurring and lower confidence in fire localization. In addition,
small-scale or partially occluded flames tend to be merged
with non-fire regions, producing fragmented boundaries. These
observations indicate that PPCNet’s remaining errors are mainly
caused by visual ambiguity rather than deficiencies in feature
representation. The PFF and DFFE modules already alleviate

these problems by enhancing texture and boundary cues, yet
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TABLE 4 Experimental results on the M4SFWD dataset.

10.3389/ffgc.2025.1669707

CAC ( ) 79.7% 66.3%

ST++ ( ) 81.2% 68.4%

CCT ( ) 80.4% 67.2%
ALS4GAN ( ) 80.7% 67.7%
Allspark ( ) 81.6% 68.9%
PPCNet 82.0% 69.4%

Bold values indicate the best performance.

Image

ST++

CCT

ALS4GAN

Allspark

FIGURE 8

The visual comparisons of segmentation results on the MASFWD dataset.

extremely challenging lighting and visibility conditions remain
difficult cases for all models.

4.4 Ablation experiments

To further verify each core module in PPCNet, this study
conducts ablation experiments focusing on the Panoramic Feature
Fusion (PFF) module, the Dual-Frequency Feature Enhancement
(DFFE) module, and the Pixel Contrastive Loss (Lpc). These
experiments comprehensively analyze the contribution of each
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83.9% 72.3% 86.0% 75.4%
80.7% 67.7% 84.0% 72.5%
81.3% 68.6% 84.4% 73.2%
83.9% 72.3% 85.6% 74.8%
82.7% 70.5% 86.3% 75.9%
84.8% 73.7% 87.1% 78.1%

SESREEN -

component to segmentation performance. The Baseline model,
used as a reference, adopts a conventional ASPP module for multi-
scale feature fusion, and applies standard cross-entropy loss for
the unlabeled data branch. Subsequently, PFF, DFFE, and Lpc are
individually or jointly introduced to replace the corresponding
structures, and the impact of each module on model performance
is evaluated. All ablation experiments adopt an 8:2 ratio of labeled
to unlabeled data. The results are presented in

The ablation study confirms the effectiveness of each core
component within PCCNet. Among them, the PFF module
contributes the most consistent and significant performance


https://doi.org/10.3389/ffgc.2025.1669707
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/

Ma and Lin

10.3389/ffgc.2025.1669707

TABLE 5 Ablation results of different module combinations.

Baseline 76.4% 61.8% 85.9% 75.3% 77.5% 63.2% 79.2% 65.6%
Baseline+PFF 77.8% 63.7% 87.5% 77.8% 79.2% 65.6% 81.3% 68.5%
Baseline+DFEE 78.0% 63.9% 87.6% 78.0% 79.4% 65.8% 80.8% 67.8%
Baseline+Lpc 76.8% 62.4% 86.6% 76.3% 77.7% 63.5% 80.0% 66.7%
Baseline+PFF+DFEE 78.5% 64.6% 88.1% 78.7% 80.4% 67.2% 81.7% 69.0%
Baseline+PFF+Lpc 78.0% 63.9% 87.8% 78.2% 79.9% 66.5% 81.5% 68.8%
Baseline+DFEE+Lpc 78.2% 64.2% 88.3% 79.1% 80.2% 66.9% 81.1% 68.2%
Full PPCNet 79.3% 65.8% 89.4% 80.4% 81.0% 68.1% 82.0% 69.4%
Bold values indicate the best performance.
Baseline Baseline+PFF Baseline+DFFE Baselme+LDc Full PPCNet

FAFaF s
w2 |2

Segmentation results on three different wildfire image samples. (a—c) Represent three input wildfire samples respectively.
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FIGURE 10
The variation curves of training loss on the D-Fire dataset.
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FIGURE 11
The variation curves of training loss on the Corsican dataset.

improvement across all datasets. Taking the Flame dataset as an
example, Precision increases by 1.4% and IoU by 1.9%. Similar
improvements are observed on Corsican, D-Fire, and M4SFWD
datasets, where PFF helps the model better integrate multi-scale
contextual information and local details, especially under complex
backgrounds and large scale variations. The DFFE module also
provides stable performance gains. By combining high- and low-
frequency information, it effectively enhances the model’s ability to
capture fire contours, edges, and texture details while preserving
global structure. Across the four datasets, DFFE brings Precision
improvements of around 1.6% to 1.9% and IoU gains of up to
2.7%, alleviating common issues such as blurred boundaries and
missing details. In contrast, the Lpc shows limited improvement
when used alone. However, its combination with PFF and DFFE
produces clear synergistic effects. On the D-Fire dataset, the
complete combination of all three modules results in a 3.5%
Precision gain and a 4.9% IoU improvement, much higher than
the individual contributions of each module. This demonstrates
that Lpc enhances feature discrimination by enforcing pixel-
wise contrastive learning, which becomes particularly beneficial
when combined with improved feature extraction and fusion
mechanisms. Overall, when all three components are integrated
into the full PPCNet framework, the model achieves the best
results across all datasets. On the most challenging M4SFWD
dataset, the complete model reaches 82.0% Precision and 69.4%
IoU, outperforming the Baseline by 2.8 and 3.8%, respectively.
These results comprehensively validate the collaborative advantage
of the proposed modules and the robustness of PPCNet under
various complex forest fire scenarios.

The visual results of the ablation experiment on the D-Fire
dataset under the 8:2 data split, shown in Figure 9, further illustrate
the effectiveness of each module. In particular, the red-box areas
highlight how the PFF module simulates a “panoramic view” to
comprehensively observe the scene and mitigate the impact of
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complex terrain, lighting variations, and occlusions. For example,
as shown in Figure 9¢, although a firefighter’s leg partially occludes a
fire region, PFF effectively analyzes the overall fire spread and infers
the presence of occluded fire areas. The DFFE module enhances the
extraction of fire texture and detail features, as evident in Figure 9b,
where incorporating DFFE results in significantly finer and more
detailed segmentation outcomes.

4.5 Convergence analysis

To further verify the training stability and optimization
efficiency of PPCNet, a convergence analysis was conducted
by comparing it with five representative semi-supervised
segmentation methods, namely CAC, ST++, CCT, ALS4GAN,
and Allspark, on the D-Fire dataset. In this experiment, the ratio
of labeled to unlabeled data was set to 5:5. All models were trained
under identical parameter configurations and data conditions, and
the variation curves of training loss were recorded throughout
the process, as shown in Figure 10. From the overall trend, it
can be observed that PPCNet maintains a consistently lower
loss value throughout the entire training process and achieves
significantly faster convergence compared to other methods.
Specifically, within the first 20 epochs, the loss value of PPCNet
rapidly decreases to approximately 0.18, which is notably lower
than that of CAC (approximately 0.27), Allspark (approximately
0.34), and ALS4GAN (approximately 0.37) over the same period.
In contrast, both ST++ and CCT exhibit relatively slower declines
in loss and more substantial fluctuations during the early training
stages, indicating inferior stability.

To further verify the generalization and stability of PPCNet
under different data conditions, an additional convergence analysis
was conducted on the Corsican dataset. As shown in Figure 11,
PPCNet exhibits a similarly smooth and rapid convergence trend.
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5 Conclusion

In this study, a semi-supervised segmentation method for
forest fire images based on UAV remote sensing, named
PPCNet, is proposed to address the limited labeled data,
complex environmental interference, and insufficient boundary
representation in forest fire segmentation tasks. The proposed
method introduces several innovative components, including
a Panoramic Feature Fusion (PFF) module, a Dual-Frequency
Feature Enhancement (DFFE) module, and a Pixel Contrastive
Loss (Lpc). Through the effective integration of multi-scale,
cross-level, and multi-frequency information, the model enhances
its feature representation capability under complex forest fire
scenarios. Extensive comparative experiments demonstrate that
PPCNet achieves superior segmentation performance on four
representative UAV remote sensing forest fire datasets: FLAME,
Corsican, D-Fire, and M4SFWD.

In future work, we plan to further enhance and extend this
research in the following directions. First, we will explore the
incorporation of advanced structures such as Transformers and
self-attention mechanisms to improve the ability to detect distant
and weak fire targets. Second, we will investigate information fusion
strategies based on multi-modal remote sensing data, including
infrared, thermal, and multispectral images, to enrich input
information and improve segmentation robustness under multi-
source data conditions. Finally, we aim to construct a large-scale,
multi-scenario, and multi-temporal UAV remote sensing forest
fire dataset to promote the practical application and engineering
deployment of semi-supervised forest fire segmentation methods
in real-world scenarios.
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