

OPEN ACCESS

EDITED BY Chao Wang, Capital University of Economics and Business, China

REVIEWED BY Miriam San-José, Charles Darwin Foundation, Ecuador China University of Geosciences Wuhan, China

*CORRESPONDENCE Andrianto Ansari □ andrianto.ansari@mail.ugm.ac.id

RECEIVED 19 June 2025 ACCEPTED 30 October 2025 PUBLISHED 19 November 2025

Widada J, Subejo, Widiyatno, Akhda NT, Muttagin AS, Sawitri, Salim I, Ardiansyah F, Satriagasa MC, Rakino SA, Bangun NPSB and Ansari A (2025) Integrating cutting-edge technology, nature based solutions, and circular bioeconomy for upland restoration toward regenerative landscapes. Front, For, Glob, Change 8:1650285. doi: 10.3389/ffgc.2025.1650285

COPYRIGHT

© 2025 Widada, Subejo, Widiyatno, Akhda, Muttaqin, Sawitri, Salim, Ardiansyah, Satriagasa, Rakino, Bangun and Ansari. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these

Integrating cutting-edge technology, nature based solutions, and circular bioeconomy for upland restoration toward regenerative landscapes

Jaka Widada¹, Subejo², Widiyatno³, Najmu Tsaqib Akhda², Andi Syahid Muttaqin⁴, Sawitri³, Ishadiyanto Salim², Figri Ardiansyah³, Muhammad Chrisna Satriagasa³, Sunarno A. Rakino⁵, Natalia Permata Sari Br Bangun⁵ and Andrianto Ansari6*

¹Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia, ²Department of Agricultural Socio-Economics, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia, ³Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia, ⁴Department of Soil Science, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia, ⁵Indonesia Asahan Aluminium (INALUM) Ltd., Asahan, Indonesia, ⁶Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia

Tropical uplands provide essential ecological functions and socio-economic benefits, but they are rapidly degrading due to deforestation and unsustainable agriculture. This leads directly to severe soil erosion and biodiversity loss. Critically, current restoration efforts are often small-scale, ecologically inefficient, and poorly integrated with local socio-economic needs, resulting in fragmented and ultimately unsustainable outcomes. Conventional reforestation efforts often fall short due to high costs, low seedling survival, and limited community involvement. This perspective presents an integrated framework for upland restoration that combines cutting-edge technology, nature-based solutions, and circular bioeconomy principles. Unmanned aerial vehicles (UAVs) or drones offer a scalable and precise method for distributing seedballs and monitoring ecological progress in challenging terrain, greatly reducing labor and time. Complementary to this, the use of arbuscular mycorrhizal fungi (AMF) improves plant establishment by enhancing nutrient uptake, water absorption, and microbial diversity, particularly in degraded soils. These innovations are unified under a circular bioeconomy model, which promotes the use of biodegradable inputs, local biomass, and species with ecological and economic value. The synergy of these elements results in a modular, adaptive, and community-based system that enhances ecological function while generating rural employment and reducing dependence on external inputs. The model is applicable across diverse restoration contexts and aligns with broader sustainability goals. Through integrating technology, biology, and circular systems thinking, this framework offer adaptive and innovative approaches to restoration for supporting global agendas such as the UN Decade on Ecosystem Restoration and the Sustainable Development Goals.

upland, tropical, restoration, drone, mycorrhiza, circular bioeconomy

1 Introduction

Tropical uplands serve as ecological keystones, regulating watershed functions, housing biodiversity hotspots, and sustaining the livelihoods of millions (Lebel and Daniel, 2009; Castillo-Figueroa, 2021). However, these regions are undergoing rapid degradation where unsustainable practices like slash-and-burn agriculture, deforestation, illegal mining, and monoculture plantations have severely undermined soil health, forest cover, and ecosystem services (Mahala, 2019; Nyssen et al., 2009). In Indonesia alone, Millions of hectares of upland forests have been converted or degraded over the last three decades, and this destruction has caused cascading effects like landslides, water shortages, and increased greenhouse gas emissions in regions such as Toba Lake [MoEF (Ministry of Environment and Forestry of Indonesia), UNCCD (United Nations Convention to Combat Desertification), 2015; Saragih and Sunito, 2001]. The degraded condition of these landscapes impairs natural regeneration, posing a major obstacle to national and regional climate and sustainability goals. In response to these challenges, reforestation has become a central strategy in landscape rehabilitation programs (Indrajaya et al., 2022; Stanturf et al., 2024; Gigendhiran et al., 2025). Although reforestation and land rehabilitation programs have been implemented across several areas using conventional restoration methods, their success rates vary considerably. Conventional restoration methods are often characterized by high labor costs, difficult terrain access, low seedling survival, and heavy reliance on synthetic inputs such as fertilizers and plastic seedling containers (Castro et al., 2024; Southworth and Nagendra, 2009). These limitations, combined with a lack of community engagement and post-planting support, often result in reforested areas failing to establish into self-sustaining ecosystems (Kemppinen et al., 2020; Southworth and Nagendra, 2009). As a result, increasing demand for innovative, system-based solutions that enhance the efficiency, ecological integrity, and socio-economic relevance of restoration efforts arises from multiple stakeholders, including governments seeking scalable climate solutions, local communities aiming to restore livelihoods and ecosystem services, and industries pursuing low-carbon and sustainable sourcing strategies.

In light of these persistent constraints, restoration practitioners and researchers are increasingly turning to the integration of cutting-edge technologies, nature-based solutions, and circular economic thinking to overcome operational, ecological, and economic barriers. Emerging technologies such as unmanned aerial vehicles (UAVs)—commonly referred to as drones—offer a promising tool for reforestation, enabling rapid, precise, and lowimpact delivery of seeds or seedlings across remote and degraded terrains (Castro et al., 2024, 2023). Unlike traditional planting, drone-based systems can access areas otherwise unreachable by human labor and apply uniform planting patterns that improve spatial coverage and reduce soil disturbance (Castro et al., 2023; Fortes, 2017). At the same time, nature-based solutions particularly the use of arbuscular mycorrhizal fungi (AMF) are gaining momentum as critical allies in restoring soil health and plant resilience (Pozo and Azcón-Aguilar, 2007; Morte and Andrino, 2013; Rasmussen and Rasmussen, 2014). AMF, through their symbiotic relationships with plant roots, enhance nutrient uptake, water absorption, and resistance to environmental stressors (Morte and Andrino, 2013; Teste et al., 2009). Their application during the early stages of reforestation significantly increases the survival rate and performance of seedlings, especially in nutrient-poor and moisture-limited environments typical of degraded uplands (Rasmussen and Rasmussen, 2014; Badano and de Oca, 2022).

In light of these persistent constraints, restoration practitioners and researchers are increasingly turning to the integration of cutting-edge technologies, nature-based solutions, and circular economic thinking to overcome operational, ecological, and economic barriers. The circular bioeconomy provides the systemsthinking foundation that unites these approaches (Tan and Lamers, 2021; Carus and Dammer, 2018). Rather than following a linear input-output model, the circular bioeconomy emphasizes the use of renewable biological resources, waste minimization, and feedback loops that continuously recycle materials and nutrients (Ansari et al., 2023; Holden et al., 2023). In the context of reforestation, this involves using biodegradable seed carriers such as seedballs made from local organic waste, cultivating native microbial inoculants, and promoting plant species that provide multifunctional biomass for energy, compost, or forage. This model supports restoration not only as a short-term ecological intervention but also as a long-term, regenerative, and economically integrated practice. Through combining drone-based precision planting, microbial symbiosis, and circular resource flows, restoration can be redesigned from a fragmented, resourceintensive effort into a regenerative and community-driven system that rebuilds both ecosystems and livelihoods. Revenue from these activities can be reinvested to cover maintenance, training, and equipment renewal, ensuring financial and operational continuity. While classical restoration seeks to return ecosystems to their original pre-disturbance states, our framework prioritizes the recovery of ecological functionality, microbial diversity, and socio-economic resilience in degraded tropical uplands. The integration of drone-assisted seed deployment, arbuscular mycorrhizal fungi inoculation, and circular bioeconomy principles therefore supports a regenerative rehabilitation pathway—one that enhances ecosystem processes and community wellbeing simultaneously. This approach differs from mitigation, which merely offsets degradation impacts, by emphasizing self-sustaining landscape recovery through the coupling of ecological and socioeconomic systems.

2 The integration of cutting-edge technology, nature-based solutions, and circular bioeconomy

Integrating cutting-edge technology, nature-based solutions, and circular bioeconomy into restoration is not simply a matter of combining tools—it represents a new design philosophy that redefines how ecological recovery is conceptualized and implemented. Each of these domains addresses distinct functional needs within a restoration system, and their integration produces synergies that significantly improve both the efficiency and

resilience of interventions. UAV technology provides spatial precision and scalability, Nature-based solutions strengthens ecological resilience through biological symbiosis, and the circular bioeconomy links both within a regenerative socio-economic cycle. The integration of these elements directly supports essential restoration processes such as mapping, pelleting, route planning, seedling establishment, and monitoring. Drone-based planting, as an application of cutting-edge technology, functions primarily as a spatial delivery and monitoring platform (Castro et al., 2021). Its most strategic advantage lies in its ability to scale reforestation operations rapidly and precisely in terrain that is otherwise inaccessible or logistically constrained (Castro et al., 2023; Robinson et al., 2022). Unlike manual planting, drones enable uniform seed dispersal, reduced labor costs, and minimal site disturbance (Southworth and Nagendra, 2009; Castro et al., 2023; Robinson et al., 2022). Their integration with geospatial mapping and remote sensing technologies also allows for continuous postplanting monitoring, which is essential for adaptive management in restoration projects (Mohan et al., 2021; Stamatopoulos et al., 2024). The ability to overlay planting designs with soil, slope, and vegetation data further enhances restoration planning and evaluation, ensuring that interventions are site-specific and performance-driven (Castro et al., 2021; Robinson et al., 2022; Mohan et al., 2021). Drone systems also facilitate automated route planning to maximize coverage and efficiency, while their payload configurations allow for the targeted pelleting of seeds. In addition, drones provide real-time data to update planting protocols dynamically in response to environmental feedback, improving responsiveness and long-term monitoring. While UAVs offer scalable planting solutions, their operation in remote uplands may be limited by battery charging infrastructure. Solar-based or hybrid field units could help address this constraint. The "precision" of UAV seeding mainly refers to spatial control rather than exact seed placement, as terrain roughness, vegetation cover, and litter can reduce seed-soil contact and establishment.

Nature-based solutions, in contrast, work at the biological interface between plants and their environment (Gafur et al., 2025). The incorporation of arbuscular mycorrhizal fungi (AMF) into planting systems exemplifies the use of ecological processes to support restoration (Pozo and Azcón-Aguilar, 2007; Gafur et al., 2025; Markovchick et al., 2023). AMF inoculation enhances nutrient acquisition and water absorption, particularly in phosphorus-deficient and drought-prone soils common to degraded upland environments (Pozo and Azcón-Aguilar, 2007; Chaudhury et al., 2024; Smith et al., 2011). Strainhost compatibility strongly influences restoration outcomes; for instance, Glomus intraradices and Rhizophagus irregularis show high adaptability with tropical upland species such as Calliandra calothyrsus and Albizia chinensis (Chaudhury et al., 2024; Smith et al., 2011; Berta et al., 2002), enhancing nutrient acquisition and early survival. This biological strategy strengthens plant-soil feedbacks, improves root development, and fosters belowground biodiversity (Morte and Andrino, 2013; Chaudhury et al., 2024). With increasing early seedling vigor and survival, AMF inoculation complements the spatial efficiency of drone planting through critical physiological resilience. Importantly, this symbiosis also contributes to long-term soil restoration through the buildup of organic matter and the re-establishment of microbial networks (Pozo and Azcón-Aguilar, 2007; Morte and Andrino, 2013; Rasmussen and Rasmussen, 2014; Berta et al., 2002). When deployed together, drones ensure that AMF-enriched propagules are distributed precisely where they are needed, bridging ecological and technological domains. Seed establishment is also affected by post-dispersal factors such as predation, desiccation, or limited burial. Improving seedball design with biodegradable coatings or water-retentive materials may enhance protection and germination under such conditions.

What binds these tools into a sustainable system is the application of circular bioeconomy principles. This framework reframes restoration not as a one-way input-output system, but as a regenerative cycle in which resources are reused, waste is minimized, and value is created at multiple stages (D'Amato et al., 2020; Priyadarshini and Abhilash, 2020). Seedballs used in drone deployment, for example, can be made from locally available biodegradable materials such as clay, compost, and charcoal dust-byproducts of agricultural and domestic activities. AMF inoculum, rather than being imported, can be cultivated using local substrates, reducing costs and preserving native microbial ecotypes. Fast-growing, multipurpose species like Calliandra calothyrsus Meisn. can be selected not just for ecological function but for economic utility-providing fodder, green manure, and fuelwood after canopy closure (Binayao et al., 2021; de Luna et al., 2020). In doing so, restored landscapes begin to yield functional biomass that supports local needs while maintaining ecological integrity. Moreover, value-added components such as community-based seedball workshops, biofertilizer production, and drone service cooperatives become part of the circular economy, transforming restoration into a livelihood-generating sector.

Together, these three elements form a coherent, self-reinforcing model. Drones serve as precision tools for initial deployment and long-term monitoring; AMF enhances the biological viability and environmental fit of planted species; and the circular bioeconomy ensures that material flows remain local, renewable, and economically beneficial. More than a collection of tools, this integration represents a paradigm in which restoration is viewed not as an ecological repair job, but as a designed system capable of sustaining itself and contributing to broader development goals. The strength of this model lies in its modularity—it can be adapted to different ecological contexts, scaled to match local capacity, and embedded within community-based restoration strategies. Emphasizing the interconnection of technology, biology, and economics allows this approach to reflect the multifaceted realities of actual landscapes. It addresses the demand for solutions that can scale effectively while remaining grounded in local context. Rather than viewing degraded areas solely as ecological losses, it frames them as opportunities for social and economic renewal. The combined use of advanced tools, ecological processes, and circular resource flows creates a practical and forward-oriented framework for achieving both environmental recovery and community resilience. While traditional restoration relies on costly, inefficient manual labor and linear systems in remote terrain, the framework presented here integrates UAV-based automation, microbial symbiosis, and circular bioeconomic resource flows to provide a more adaptive and cost-efficient pathway for ecological recovery.

3 The impact of conceptual framework on socio-economic-environment

The integrated restoration framework described herein has the potential to influence not just ecological metrics, but also social structures and economic resilience. Its environmental impact begins with immediate outcomes such as increased seedling survival and more efficient plant establishment, but extends further into long-term improvements in soil quality, water retention, and biodiversity (Castro et al., 2023; Fortes, 2017; Pozo and Azcón-Aguilar, 2007; Morte and Andrino, 2013; Robinson et al., 2022; Priyadarshini and Abhilash, 2020). AMF colonization fosters microbial diversity and carbon storage below ground, while vegetative cover delivers climate regulation and erosion control above ground (Chaudhury et al., 2024; Elahi et al., 2012; Li et al., 2008). Socially, the model contributes to capacity building, skill development, and community participation in environmental management. Restoration becomes not just an ecological task, but a community enterprise. Local involvement in seedball production, AMF cultivation, drone deployment, and monitoring creates new job opportunities and strengthens local ownership over land-use decisions. This is especially valuable in rural and remote areas where employment options are limited and land degradation undermines livelihoods. From an economic perspective, circular resource flows ensure that the benefits of restoration extend beyond the ecological sphere (Carus and Dammer, 2018; Giampietro, 2019). Biomass generated through restoration can be used locally for energy, compost, or fodder (Kumar Sarangi et al., 2023). The reduced need for synthetic fertilizers and imported planting materials lowers input costs for farmers. This closed-loop system reduces vulnerability to market fluctuations and promotes self-sufficiency (Klein et al., 2022). It also supports broader goals such as food security, energy sovereignty, and climate resilience. In combination, the environmental, social, and economic dimensions of this framework reinforce each other in a regenerative feedback loop. Improved ecosystems support livelihoods, engaged communities sustain the landscape, and circular economies reduce the footprint of intervention (Tan and Lamers, 2021; Carus and Dammer, 2018; Muscat et al., 2021). This synergy makes the model highly adaptable across different ecological contexts and scalable from village-level efforts to national programs. It also aligns with multiple global frameworks, including the UN Decade on Ecosystem Restoration and the Sustainable Development Goals (Bandyopadhyay and Maiti, 2022; Abhilash,

Each factor in the SWOT matrix is supported by evidence from various literature review (Table 1). To address weaknesses and threats, targeted actions such as capacity-building for drone operators, subsidies for renewable energy infrastructure, and ecological risk assessment protocols are recommended to strengthen long-term sustainability. The Integration of Cutting-Edge Technology, Nature-Based Soulutions and Circular Bioeconomy into landscape restoration presents numerous strengths. One of the primary advantages is its scalability and operational efficiency. Drone technology enables rapid and precise seed dispersal across large and inaccessible areas, significantly reducing labor costs and physical disturbance. When

TABLE 1 SWOT analysis of conceptual framework.

Strengths	Weaknesses
- Scalable and efficient restoration using drone-assisted planting	- High initial investment and limited energy infrastructure for UAV operation.
- Enhanced seedling survival and soil health through AMF symbiosis	Requires specialized training for drone operation and microbial inoculant handling
- Closed-loop sustainability through circular bioeconomy (waste minimization, biomass reuse)	- Limited access to local data on native AMF strains and soil biology in remote areas
- Adaptable to diverse ecological and socio-economic contexts	- Regulatory and logistical challenges in drone deployment in some regions
- Promotes local participation and community empowerment through localized value chains	- Need for continuous community engagement and long-term monitoring
- Reduces dependency on synthetic fertilizers and imported inputs	- Biophysical constraints (e.g., steep terrain, extreme weather) may hinder technology performance
Opportunities	Threats
- Alignment with global and national restoration targets (e.g., SDGs, UN Decade on Ecosystem Restoration)	- Potential resistance to adoption from conventional forestry and agriculture sectors
national restoration targets (e.g., SDGs, UN Decade on Ecosystem	conventional forestry and agriculture
national restoration targets (e.g., SDGs, UN Decade on Ecosystem Restoration) - Potential for community cooperatives to sustain operations and share economic	conventional forestry and agriculture sectors - Policy gaps or lack of government support for circular bioeconomy and
national restoration targets (e.g., SDGs, UN Decade on Ecosystem Restoration) - Potential for community cooperatives to sustain operations and share economic returns from restoration services. - Potential for public-private partnerships in drone services, seedball production, and AMF	conventional forestry and agriculture sectors - Policy gaps or lack of government support for circular bioeconomy and drone use - Overdependence on technology without adequate local capacity may

combined with AMF, the biological effectiveness of restoration increases—AMF symbiosis improves seedling survival, enhances nutrient and water uptake, and promotes long-term soil health. Furthermore, the circular bioeconomy framework reinforces ecological sustainability by minimizing waste, reusing biomass, and promoting localized resource cycles. This system is adaptable to a wide range of ecological and socio-economic contexts, allowing for flexible implementation in diverse restoration scenarios. It also encourages community participation by integrating local actors into seedball production, drone operation, and AMF cultivation, thereby creating green jobs and strengthening local economies. Additionally, this approach reduces dependency on synthetic fertilizers and imported materials by promoting natural and locally-sourced inputs. Furthermore, communitybased cooperatives and partnerships can sustain operations by channeling returns from restoration services, biomass sales, or government incentive programs.

Despite its strengths, several weaknesses must be addressed. The initial investment required for drone technology, AMF production, and specialized training is relatively high, posing a barrier to entry for many regions or communities. The success of the system also depends on the availability of skilled operators for drone deployment and microbiological management, which may be limited in remote or under-resourced areas. Access to reliable data on local AMF strains and soil conditions is often lacking, which complicates ecological matching and site-specific inoculation. Legal and logistical challenges in drone deployment, especially in regulated airspaces, can further constrain its application. Additionally, successful communitybased restoration requires sustained engagement, capacity building, and monitoring—factors that may be difficult to maintain without long-term support. Finally, in areas with steep terrain or extreme weather conditions, drone operations and seedling establishment may be technically constrained.

Several external opportunities support the broader adoption of this integrated model. It aligns closely with global and national restoration agendas, including the Sustainable Development Goals (SDGs), the UN Decade on Ecosystem Restoration, and national low-carbon development strategies. The model also fits well within rural development and green job creation programs, offering income-generating opportunities tied to environmental outcomes. Public-private partnerships present a promising pathway to scale up operations, offering investment, innovation, and shared resources for drone services, AMF supply, and seedball production. Moreover, there is a growing global interest in nature-based solutions and circular economy principles, which can amplify support and funding. The system's modular design makes it replicable in other regions experiencing similar forms of land degradation.

However, there are also important external threats. One such threat is institutional inertia or resistance to change from conventional forestry or agriculture sectors, which may be reluctant to adopt emerging technologies or ecological methods. Gaps in policy or lack of government support for circular practices and drone use can slow adoption and restrict legal operations. Overdependence on external technology providers, especially without building local capacity, may undermine longterm sustainability. Additionally, market volatility-particularly in biomass or circular product markets—can affect economic viability. Finally, without adequate ecological assessments, the introduction of non-native AMF strains or plant species may pose risks to local biodiversity and ecosystem balance. In summary, while the integration of drone technology, AMF inoculation, and circular bioeconomy offers transformative potential for ecological restoration, it must be approached with careful attention to ecological fit, economic feasibility, institutional support, and social inclusion to ensure lasting impact and replicability.

4 Conclusion

In the face of accelerating environmental degradation, climate uncertainty, and social vulnerability, restoration must evolve into a regenerative, systemic practice that integrates ecology, technology, and local economies. The framework proposed in this article—uniting drone technology, arbuscular mycorrhizal fungi

inoculation, and circular bioeconomy principles—offers a scalable, resilient, and inclusive model for tropical upland. Each element of the triad contributes unique strengths: drones provide efficiency and spatial precision; AMF strengthens the biological foundation of restored ecosystems; and circular bioeconomy ensures that material and energy flows remain localized, renewable, and economically productive. Importantly, this integrative approach does not treat restoration as a temporary intervention, but as a long-term, community-rooted system. It embeds ecological recovery within social and economic structures, ensuring that restored landscapes provide tangible, lasting benefits for the people who depend on them. The synergistic model enhances biodiversity, rebuilds degraded soils, supports rural livelihoods, and aligns with global commitments such as the Sustainable Development Goals and the UN Decade on Ecosystem Restoration. To realize its full potential, this conceptual framework must be supported by enabling policies, investments in local capacity building, and transdisciplinary collaboration. Future research should refine UAV energy use and seedball resilience to improve field performance in tropical uplands. Restoration must be understood not only as a scientific or technical pursuit, but as a societal project—one that requires inclusive governance, adaptive learning, and a long-term commitment to ecological integrity and social justice. Enabling policies should include simplified licensing for UAV operation in restoration zones, subsidies for AMF inoculation and training, and incentives for circular bioeconomic products to support market access. Implementation can begin through pilot schemes within existing national restoration programs. Through this integrated lens, restoration becomes more than planting trees; it becomes a pathway to regenerate life, economies, and hope on degraded lands.

Data availability statement

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Author contributions

JW: Funding acquisition, Writing - original draft, Conceptualization, Methodology, Resources, Writing - review & editing. Su: Conceptualization, Formal analysis, Project administration, Writing - review & editing, Supervision, Funding acquisition. W: Formal analysis, Writing - review & editing, Conceptualization, Funding acquisition, Supervision. NA: Investigation, Methodology, Writing - review & editing, Resources, Project administration. AM: Formal analysis, Resources, Project administration, Investigation, Writing - review & editing, Methodology. Sa: Methodology, Investigation, Validation, Writing review & editing, Formal analysis, Project administration. IS: Project administration, Investigation, Resources, Writing review & editing. FA: Writing - review & editing, Resources, Investigation, Project administration, Validation, Methodology. MS: Methodology, Investigation, Writing - review & editing, Project administration, Validation, Formal analysis. SR: Formal analysis, Funding acquisition, Resources, Writing - review & editing, Investigation, Methodology. NB: Writing - review &

editing, Funding acquisition, Investigation, Resources, Project administration, Data curation. AA: Validation, Methodology, Writing – review & editing, Supervision, Conceptualization, Writing – original draft.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This research was funded by Indonesia Asahan Aluminium (INALUM) Ltd., under Contract Numbers ICF-001/PKS/XI/2024 and 210/UN1/FPN/HK/VII/2024.

Conflict of interest

SR and NB were employed by Indonesia Asahan Aluminium (INALUM) Ltd.

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Abhilash, P. C. (2021). Restoring the unrestored: strategies for restoring global land during the UN decade on ecosystem restoration (UN-DER). *Land (Basel)*. 10:201. doi: 10.3390/land10020201

Ansari, A., Pranesti, A., Telaumbanua, M., Ngadisih, H.ardiansyah, and M. Y., Alam, T, et al. (2023). Optimizing water-energy-food nexus: achieving economic prosperity and environmental sustainability in agriculture. Front. Sustain. Food Syst. 7:1207197. doi: 10.3389/fsufs.2023.1207197

Badano, E. I., and de Oca, E. J. S. M. (2022). Seed fate, seedling establishment and the role of propagule size in forest regeneration under climate change conditions. *For. Ecol. Manage.* 503:119776. doi: 10.1016/j.foreco.2021.119776

Bandyopadhyay, S., and Maiti, S. K. (2022). Steering restoration of coal mining degraded ecosystem to achieve sustainable development goal-13 (climate action): United Nations decade of ecosystem restoration (2021–2030). *Environ. Sci. Pollut. Res.* 29, 88383–88409. doi: 10.1007/s11356-022-23699-x

Berta, G., Fusconi, A., and Hooker, J. E. (2002). "Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences," in *Mycorrhizal Technology in Agriculture: From Genes to Bioproducts*, eds. S. Gianinazzi, H. Schüepp, J. M. Barea, and K. Haselwandter (Birkhauser Verlag: Springer), 71–85. doi: 10.1007/978-3-0348-8117-3_6

Binayao, I. I. I. N. K. D. III, de Luna, C. C., and Limpiada, A. A. (2021). "Evaluating the rehabilitation potential of Calliandra (*Calliandra calothyrsus* Meissn.) in degraded areas through landscape function analysis in Manolo Fortich, Bukidnon, Philippines," in *Natural Resource Governance in Asia*, eds. R. Ullah, S. Sharma, M. Inoue, S. Asghar, and G. Shivakoti (Amsterdam: Elsevier), 39–54. doi: 10.1016/B978-0-323-85729-1.00010-4

Carus, M., and Dammer, L. (2018). The circular bioeconomy—concepts, opportunities, and limitations. *Industrial Indus. Biotechnology.* 14, 83–91. doi: 10.1089/ind.2018.29121.mca

Castillo-Figueroa, D. (2021). Carbon cycle in tropical upland ecosystems: a global review. Web Ecol. 21, 109–136. doi: 10.5194/we-21-109-2021

Castro, J., Alcaraz-Segura, D., Baltzer, J. L., Amorós, L., Morales-Rueda, F., and Tabik, S. (2024). Automated precise seeding with drones and artificial intelligence: a workflow. *Restor. Ecol.* 32:e14164. doi: 10.1111/rec.14164

Castro, J., Morales-Rueda, F., Alcaraz-Segura, D., and Tabik, S. (2023). Forest restoration is more than firing seeds from a drone. *Restor. Ecol.* 31:e13736. doi: 10.1111/rec.13736

Castro, J., Morales-Rueda, F., Navarro, F. B., Löf, M., Vacchiano, G., and Alcaraz-Segura, D. (2021). Precision restoration: a necessary approach to foster forest recovery in the 21st century. *Restor. Ecol.* 29, :e13421. doi: 10.1111/rec.13421

Chaudhury, R., Chakraborty, A., Rahaman, F., Sarkar, T., Dey, S., Das, M., et al. (2024). Mycorrhization in trees: ecology, physiology, emerging technologies and beyond. *Plant Biol.* 26, 145–156. doi: 10.1111/plb.13613

Generative AI statement

The author(s) declare that no Gen AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

D'Amato, D., Veijonaho, S., and Toppinen, A. (2020). Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. For. Policy Econ. 110:101848. doi: 10.1016/j.forpol.2018.12.004

de Luna, C., Calderon, M., Cruz, R. V., Tolentino, E. Jr., and Carandang, W. M. (2020). The economic value of *Calliandra calothyrsus* in watershed rehabilitation in Manolo Fortich, Bukidnon, Philippines. *J. Environ. Sci. Manage.* 2, 76–84. Available online at: https://inrem.cfnr.uplb.edu.ph/_publications/the-economicvalue-of-calliandra-calothyrsus-in-watershed-rehabilitation-inmanolo-fortich-bukidnon-philippines/

Elahi, F. E., Mridha, M. A. U., and Aminuzzaman, F. M. (2012). Role of AMF on plant growth, nutrient uptake, arsenic toxicity and chlorophyll content of chili grown in arsenic amended soil. *Bangladesh Journal of. Agricultural Agric. Research.* 37, 635–644. doi: 10.3329/bjar.v37i4.14388

Fortes, E. P. (2017). Seed plant drone for reforestation. *The Graduate Review*. 2, 13–26.

Gafur, A., Noviana, Z., Antonius, S., Tjahjono, B., and Sayyed, R. (2025). "Nature-based solutions for management of biotic stresses for sustainable climate-resilient plantation forests," in *Forests for Inclusive and Sustainable Economic Growth*, eds. P. Saikia, A. Kumar, M. L. Khan, and X. Lei (Amsterdam: Elsevier), 501–511. doi: 10.1016/B978-0-443-31406-3.00036-9

Giampietro, M. (2019). On the circular bioeconomy and decoupling: implications for sustainable growth. *Ecological Ecol. Economics*. 162, 143–156. doi: 10.1016/j.ecolecon.2019.05.001

Gigendhiran, D., Raja, K., Umarani, R., Anand, T., and Karthikeyan, R. A. (2025). review on modern seed delivery systems for sustainable agriculture and environmental restoration. *Plant Science Sci. Today*. 12:7077. doi: 10.14719/pst.7077

Holden, N. M., Neill, A. M., Stout, J. C., O'Brien, D., and Morris, M. A. (2023). Biocircularity: a framework to define sustainable, circular bioeconomy. *Circular Circ. Economy and. Sustainability* [Internet]. 3, 77–91. Available from: doi: 10.1007/s43615-022-00180-y

Indrajaya, Y., Yuwati, T. W., Lestari, S., Winarno, B., Narendra, B. H., Nugroho, H. Y. S. H., et al. (2022). Tropical forest landscape restoration in Indonesia: A a review. *Land (Basel)*. 11:328. doi: 10.3390/land11030328

Kemppinen, K. M. S., Collins, P. M., Hole, D. G., Wolf, C., Ripple, W. J., Gerber, L. R., et al. (2020). Global reforestation and biodiversity conservation. *Conservation Conserv. Biology.* 34, 1221–1228. doi: 10.1111/cobi. 13478

Klein, O., Nier, S., and Tamásy, C. (2022). Towards a circular bioeconomy? Pathways and spatialities of agri-food waste valorisation. *Tijdschrift voor Economische en Sociale Geografie*. 113, 194–210. doi: 10.1111/tesg.12500

Kumar Sarangi, P., Subudhi, S., Bhatia, L., Saha, K., Mudgil, D., Prasad Shadangi, K., et al. (2023). Utilization of agricultural waste biomass and recycling toward circular

bioeconomy. Environmental Environ. Science and. Pollution Pollut. Research [Internet]. 30, 8526–8539. Available from: doi: 10.1007/s11356-022-20669-1

Lebel, L., and Daniel, R. (2009). The governance of ecosystem services from tropical upland watersheds. *Curr. Opin. Environ. Sustain.* 1, 61–68. doi: 10.1016/j.cosust.2009.07.008

Li, H., Smith, F. A., Dickson, S., Holloway, R. E., and Smith, S. E. (2008). Plant growth depressions in arbuscular mycorrhizal symbioses: not just caused by carbon drain? *New Phytol.* 178, 852–862. doi: 10.1111/j.1469-8137.2008.02410.x

Mahala, A. (2019). Identifying the factors and status of land degradation in a tropical plateau region. *Geo Journal*. 84, 1199–1218. doi: 10.1007/s10708-018-9916-x

Markovchick, L. M., Carrasco-Denney, V., Sharma, J., Querejeta, J. I., Gibson, K. S., Swaty, R., et al. (2023). The gap between mycorrhizal science and application: existence, origins, and relevance during the United Nation's Decade on Ecosystem Restoration. *Restor. Ecol.* 31:e13866. doi: 10.1111/rec.13866

MoEF (Ministry of Environment and Forestry of Indonesia), UNCCD (United Nations Convention to Combat Desertification) (2015). *Indonesia – Land Degradation Neutrality National Report*. 1–28. Available online at: https://knowledge.unccd.int/sites/default/files/ldn_targets/2021-02/indonesia_ldn_country_report.pdf (Accessed April 10, 2025).

Mohan, M., Richardson, G., Gopan, G., Aghai, M. M., Bajaj, S., Galgamuwa, G. A. P., et al. (2021). UAV-supported forest regeneration: current trends, challenges and implications. *Remote Sens. (Basel)*. 13:2596. doi: 10.3390/rs13132596

Morte, A., and Andrino, A. (2013). "Domestication: preparation of mycorrhizal seedlings," in *Desert Truffles: Phylogeny, Physiology, Distribution and Domestication*, eds. V. Kagan-Zur, N. Roth-Bejerano, Y. Sitrit, and A. Morte (Berlin; Heidelberg: Springer), 343–365. doi: 10.1007/978-3-642-40096-4_21

Muscat, A., de Olde, E. M., Ripoll-Bosch, R., Van Zanten, H. H. E., Metze, T. A. P., Termeer, C. J. A. M., et al. (2021). Principles, drivers and opportunities of a circular bioeconomy. *Nat. Food.* 2, 561–566. doi: 10.1038/s43016-021-00340-7

Nyssen, J., Poesen, J., and Deckers, J. (2009). Land degradation and soil and water conservation in tropical highlands. *Soil Tillage Res.* 103, 197–202. doi: 10.1016/j.still.2008.08.002

Pozo, M. J., and Azcón-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398. doi: 10.1016/j.pbi.2007.05.004

Priyadarshini, P., and Abhilash, P. C. (2020). Fostering sustainable land restoration through circular economy-governed transitions. *Restor. Ecol.* 28, 719–723. doi: 10.1111/rec.13181

Rasmussen, H. N., and Rasmussen, F. N. (2014). Seedling mycorrhiza: a discussion of origin and evolution in *Orchidaceae. Botanical Bot. Journal of. the Linnean Society*. 175, 313–327. doi: 10.1111/boj.12170

Robinson, J. M., Harrison, P. A., Mavoa, S., and Breed, M. F. (2022). Existing and emerging uses of drones in restoration ecology. *Methods Ecol. Evol.* 13, 1899–1911. doi: 10.1111/2041-210X.13912

Saragih, B., and Sunito, S. (2001). Lake Toba: need for an integrated management system. *Lakes Reserv.* 6, 247–251. doi: 10.1046/j.1440-1770.2001.00155.x

Smith, S. E., Jakobsen, I., Grønlund, M., and Smith, F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. *Plant Physiol.* 156, 1050–1057. doi: 10.1104/pp.111. 174581

Southworth, J., and Nagendra, H. (2009). "Reforestation: challenges and themes in reforestation research," in *Reforesting Landscapes: Linking Pattern and Process*, eds. H. Nagendra and J. Southworth (Dordrecht: Springer), 1–14. doi: 10.1007/978-1-4020-9656-3_1

Stamatopoulos, I., Le, T. C., and Daver, F. (2024). UAV-assisted seeding and monitoring of reforestation sites: a review. *Aust. For.* 87, 90–98. doi: 10.1080/00049158.2024.2343516

Stanturf, J. A., Dumroese, R. K., Elliott, S., Ivetic, V., Khokthong, W., Kleine, M., et al. (2024). "Advances in forest restoration management and technology," in *Restoring Forests and Trees for Sustainable Development: Policies, Practices, Impacts, and Ways Forward*, eds. P. Katila, C. J. Pierce Colfer, W. de Jong, G. Galloway, P. Pacheco, and G. Winkel (New York, NY), 297. doi: 10.1093/9780197683958.00 3 0011

Tan, E. C. D., and Lamers, P. (2021). Circular bioeconomy concepts—a perspective. Frontiers in. Sustainability. 2, 1–8:701509. doi: 10.3389/frsus.2021.701509

Teste, F. P., Simard, S. W., and Durall, D. M. (2009). Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. *Fungal Ecol.* 2, 21–30. doi: 10.1016/j.funeco.2008.11.003