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Urban tree planting should 
consider local characteristics: 
assessing spatial heterogeneity in 
canopy cooling effects on land 
surface temperature using 
Bayesian spatially varying 
coefficient models
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Introduction: Urban trees are essential for mitigating elevated temperatures in 
cities worldwide, with many municipalities implementing large-scale urban tree 
planting initiatives. However, the cooling potential of tree canopy coverage is 
often estimated as a constant value across study areas, despite evidence that 
temperature reductions depend on local characteristics, including tree traits 
and urban geometry.
Methods: We evaluated the ability of Bayesian Spatially Varying Coefficient 
(SVC) models to capture local variability in the cooling potential of urban trees. 
The model, implemented in R-INLA, integrated Landsat 8 and 9 Land Surface 
Temperature (LST) data with aerial LiDAR data. Model performance was assessed 
using validation metrics obtained through 10-fold spatial cross-validation.
Results: Although the SVC did not outperform simpler spatio-temporal 
approaches according to validation metrics, the spatial distribution of local 
canopy cooling capacity revealed substantial spatial variability. Average 
estimated values of canopy cooling capacity on LST (defined as the change 
in LST associated with a 10% increase in tree canopy cover) were −0.28 °C in 
vacant lands and −0.09 °C in wooded areas.
Discussion: By providing local estimates, our model underscores how the cooling 
capacity of tree canopy in built-up environments varies substantially across space. 
This finding demonstrates the importance of accounting for local environmental 
characteristics in urban planning and serves as an example of a modeling approach 
that integrates both local-scale variability in canopy cooling capacity and spatial 
extent. These results encourage policymakers to adopt context-specific strategies 
for urban tree planting initiatives rather than applying uniform approaches.
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1 Introduction

Currently, 57.7% of the global population lives in urban areas, a 
proportion expected to rise to 67.9% by 2050 (UN, 2025). This rapid 
urban expansion is profoundly transforming land use systems, with 
consequences for biodiversity and environmental sustainability 
(Houghton et al., 2012; Seto et al., 2012; Phelan et al., 2015). Among 
its most pressing impacts is the growing threat posed by extreme 
temperatures in urban environments, which have resulted in severe 
public health crises. The three deadliest extreme heat events of the 21st 
century alone have caused nearly 200,000 deaths across Europe 
(Robine et al., 2008; Barriopedro et al., 2011; Ballester et al., 2023). 
Future projections of urban warming depict an increasingly 
concerning scenario, exacerbated by the intensification of the Urban 
Heat Island (UHI) effect (Chapman et al., 2017), the rising frequency, 
intensity, duration, and spatial extent of heatwaves (Lorenzo et al., 
2021; Domeisen et al., 2023), and the synergistic interaction between 
UHI and extreme heat events (Founda and Santamouris, 2017).

These challenges underscore the urgent need for effective 
adaptation and mitigation strategies to address the environmental 
issues faced by cities (UN, 2023). The scientific literature has 
explored numerous approaches to enhancing urban livability (Yu et 
al., 2020). Among these, urban tree planting has gained increasing 
recognition as a nature-based solution for mitigating multiple 
environmental challenges, primarily due to its capacity to provide 
essential ecosystem services (Pataki et al., 2021; Schwaab et 
al., 2021).

The capacity of urban trees to reduce temperatures has been 
studied using multiple methods and across different spatial scales. 
However, there is often a trade-off between the fine-scale variability 
detected in field-based microclimate studies and the broader 
extensibility afforded by analyses that rely on remote sensing data. In 
general, the greater the analytical detail, the lower the potential to 
scale results to larger study areas. Trees improve thermal comfort by 
providing shade, reducing surface radiation, and increasing air 
humidity through evapotranspiration (Oke et al., 2017). At the local 
scale, research suggests that the cooling capacity of urban trees 
exhibits substantial temporal and spatial variability (Ziter et al., 2019; 
Hallar et al., 2021; Locke et al., 2024; Ettinger et al., 2024). This 
variability is influenced both by urban geometry (Tsin et al., 2016; 
Kelly-Turner et al., 2022; Li et al., 2024; Li et al., 2025) and by tree 
traits (Rahman et al., 2020; Miedema-Brown and Anand, 2022; 
Sharmin et al., 2023; Alonzo et al., 2025). In this context, mature and 
vigorous trees (Endreny, 2018), large-diameter and long-lived trees 
(Lindenmayer et al., 2012; Lindenmayer and Laurance, 2016), as well 
as trees with fuller crowns and more extensive leaf surface areas 
(Gómez-Muñoz et al., 2010) provide greater ecosystem services and 
consequently enhanced cooling capacity. Functional traits such as 
specific leaf area, photosynthetic rate, and water-use strategies 
determine how trees respond to urban stressors including drought, 
heat, and pollution, ultimately shaping their capacity to provide 
cooling (Esperón-Rodríguez et al., 2020; Cho et al., 2024; 
Ramachandran et al., 2024). In parallel to these findings, but without 
the same level of trait-specific detail, studies employing high-
resolution LST data have also demonstrated high variability in urban 
cooling capacity as a function of the local characteristics of the study 
unit (Bartesaghi-Koc et al., 2020; Ossola et al., 2021; Xu et al., 2021; 
Ahmad et al., 2024; Zhou et al., 2025).

A substantial body of literature has focused on estimating the 
cooling potential of cities associated with increases in urban canopy 
cover at the city scale. Given the broad spatial extent of these studies, 
it is not feasible to account for fine-scale variability, leading to the 
common assumption of homogeneous cooling capacities within cities. 
The estimated temperature reductions vary considerably depending 
on multiple factors, including whether LST or two-step process 
models to estimate air temperature are considered, the extent of 
canopy expansion, observational scales, estimation models and 
methods, and local climate conditions (Logan et al., 2020; Krayenhoff 
et al., 2021; Marando et al., 2022; Iungman et al., 2023; Wang et 
al., 2024).

City-level estimates provide a broad overview of the benefits of 
increasing tree canopy coverage but fail to capture localized 
temperature reduction effects. The capacity of tree canopy expansion 
to lower temperatures has also been studied at the block or census 
scale to obtain estimates at a scale more operational for urban 
planning (Chakraborty et al., 2022; Francis et al., 2023; McDonald et 
al., 2024). Similarly, this relationship has been analyzed using grid-
based observational units (i.e., pixel-support) across multiple spatial 
scales (Kong et al., 2014; Hou and Estoque, 2020; Yang et al., 2021; 
Yuan et al., 2021), primarily capturing the cooling effects associated 
with increases in canopy cover within observational units defined by 
grid size.

Despite differences in the spatial scale at which estimates of 
canopy contributions to temperature reduction have been conducted 
(ranging from the city scale, to neighborhoods or administrative units, 
or to grid cells) in all cases it is typically assumed that the relationship 
between canopy cover and temperature is homogeneous across 
observational units. In other words, it is assumed that local factors do 
not influence the capacity of the canopy to provide cooling, and that 
this ecological process operates uniformly across the city. To account 
for the variability documented in microscale studies of urban tree 
cooling, several works have considered such heterogeneity as spatial 
variability in the cooling capacity of urban canopy cover within 
individual cities, although this perspective has received comparatively 
limited attention in the literature.

Spatially explicit models that estimate spatially varying coefficients 
offer a valuable framework for analyzing the heterogeneity, or 
non-stationarity, of the relationship between canopy cover and LST 
(Rollinson et al., 2021). Among these, Geographically Weighted 
Regression (GWR) (Fotheringham et al., 2009) and Generalized 
Additive Models (GAMs) (Wood, 2017) are commonly used 
approaches that provide additional flexibility for modeling complex, 
spatially varying covariate effects. GWR requires the a priori 
specification of parameters controlling the spatial kernel and 
bandwidth, which can heavily influence model outcomes and hinder 
interpretability (Finley, 2011). GAMs can accommodate spatial 
dependence in covariate effects through linear combinations of basis 
functions, yet they also necessitate assumptions regarding the number 
and placement of knots, which may lead to over-smoothed and 
potentially biased estimates (Stein, 2014). Consequently, intra-city 
differences in the cooling effects of urban tree canopy cover have been 
examined almost exclusively, so far as we are aware, using GWR (e.g., 
Chen and Lin, 2021; Li et al., 2021; Liu et al., 2022; Francis et al., 2023).

Bayesian Spatially Varying Coefficient (SVC) models (Gelfand et 
al., 2003) offer an attractive alternative, as their hierarchical structure 
provides great flexibility for modeling complex data. SVC models 
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allow regression coefficients to vary smoothly across space, employing 
Gaussian Process specifications when working with geostatistical data 
(Banerjee et al., 2014; Finley and Banerjee, 2020). While Bayesian SVC 
models are more complex than the aforementioned approaches, they 
offer several advantages: they enable full uncertainty propagation, 
eliminate the need for a priori decisions on grid size or parameter 
values, and have been shown to outperform GWR in various 
simulation and empirical studies (Wheeler and Calder, 2007; Finley, 
2011). Moreover, SVCs provide a more straightforward interpretation 
of the estimated effect. By allowing the relationship between canopy 
cover and temperature to vary across space, SVCs acknowledge that 
each observational unit is subject to specific micro-scale influences 
and factors, likely reflecting unobserved variables not included in the 
model that shape the cooling process, and that this variability and 
influence also depend on the spatial proximity among units. 
Nevertheless, the flexibility of SVC models can present both 
computational and practical challenges. In particular, the Bayesian 
framework’s requirement to quantify uncertainty for every random 
variable often leads to substantial computational costs (Thorson et al., 
2023). State-of-the-art Bayesian methods, such as the Integrated 
Nested Laplace Approximation (INLA) framework (Rue et al., 2009), 
significantly simplify their implementation and dramatically reduce 
computational costs, making them a particularly relevant alternative 
for SVC model applications (Bachl et al., 2019).

Urban planners require localized estimates of the cooling capacity 
of urban tree canopy cover, as these align with the scale of urban 
interventions and planning processes. Additionally, the effects of tree 
canopy on temperatures in urban environments are unlikely to be 
spatially uniform due to complex interactions with urban geometry 
characteristics and the specific tree traits within each observational 
unit. Consequently, it is necessary to develop methods that incorporate 
this variability in cooling capacity at the micro-habitat scale. In 
addition, these methods must allow for full uncertainty propagation 
to avoid overoptimistic estimations (Gelman et al., 2013) and the 
potential negative and costly consequences that may result (Mannucci 
et al., 2023).

In this study, we explore the potential of SVC models as a 
modeling tool to account for micro-scale variability in the cooling 
capacity associated with increases in canopy cover, which, to the best 
of our knowledge, has not been explored yet. This approach allows for 
the assessment of spatial variability in the cooling capacity of urban 
tree canopy across the entire urban matrix, which we hypothesize that 
it models residual variation not accounted by the model due to 
unobserved covariables that reflect variation in tree traits and the 
urban geometry characterizing each observational unit. The model 
leverages Landsat 8–9 LST and aerial LiDAR data, incorporating 
uncertainty quantification within a Bayesian framework at an 
operational scale of 900 m2.

The Landsat program has provided high-quality, multispectral 
spatial data at a global scale for over 50 years. This sustained effort has 
greatly advanced the study of key environmental processes, including 
climate change, ecosystem monitoring, water resource management, 
and forest and agricultural planning (Wulder et al., 2022). With regard 
to the use of data from its thermal infrared sensors, and consequently 
for LST derived research, Landsat stands out as one of the most widely 
accepted and utilized data sources, as highlighted in recent reviews on 
UHIs studies (e.g., Li et al., 2023; Rajagopal et al., 2023; Cheval et al., 
2024). Moreover, Landsat-derived LST has been widely employed in 

studies addressing environmental sustainability and urban greening 
(e.g., Li et al., 2024; Pande et al., 2024).

LiDAR technology has become a fundamental tool in forestry 
science, in its various forms including terrestrial laser scanning, aerial 
LiDAR, and full-waveform LiDAR, for deriving multiple metrics that 
quantify canopy distribution, structure, and complexity (Koenig and 
Höfle, 2016; Åkerblom and Kaitaniemi, 2021; Coops et al., 2021; 
Fassnacht et al., 2023; Balestra et al., 2024). In urban forestry, this 
technology is increasingly prominent due to its ability to support the 
development of urban tree inventories and to cover larger areas when 
aerial LiDAR is employed (Casalegno et al., 2017; Shojanoori and 
Shafri, 2016; Zięba-Kulawik et al., 2021; Münzinger et al., 2022; 
Sharma et al., 2025). In this context, LiDAR technology has been 
extensively applied across various disciplines and fields within urban 
sciences, establishing itself as a fundamental tool for advancing 
environmental sustainability (Liu et al., 2019; Kovanič et al., 2023; Xu 
et al., 2025). In the present study, discrete-return aerial LiDAR serves 
as an essential tool to derive urban forest canopy cover across the 
entire urban matrix of the study area.

Our ultimate goal is to provide policymakers and decision-makers 
with actionable insights for the strategic integration of urban trees into 
planning processes, taking into account potential spatial differences 
in cooling effects and associated uncertainties. We aim to support the 
development of sustainable, resilient, and healthy urban environments 
while contributing to climate change adaptation efforts.

2 Materials and methods

2.1 Study area

Málaga has a population of 591,637 inhabitants, making it the 
sixth most populated city in Spain (NIS, 2024). It is a coastal city 
characterized by warm summers and mild winters, with an average 
annual temperature of 18.5 °C and an average annual total 
precipitation of 534 mm (SMA, 2025). The urban matrix of Málaga 
was selected as the study area (Figure 1). Two datasets were used for 
this delineation: (1) The Urban Information System (UIS, 2024), 
which serves as the primary reference for urban planning and land 
classification in Spain. “Urban land” and “general systems” located 
within urban areas were considered. (2) SIOSE-AR (NIG, 2017), a 
local land use database, was used to extract areas classified as 
“non-built land,” “highways and expressways,” “roads” and “urban 
streets” within the zones identified in the previous step. This ensured 
the creation of a continuous and gap-free surface representing the 
urban matrix. This vector-based information was rasterized and 
co-registered to a pixel size of 30 × 30 m, matching the Landsat 
resolution, to ensure full alignment of the study area with the LST grid.

2.2 Landsat 8 land surface temperature

Landsat 8 and 9 Collection 2 Level 2 Tier 1 data (USGS, 2020) was 
accessed using Google Earth Engine (Gorelick et al., 2017) via rgee 
package v.1.1.7 (Aybar et al., 2020). LST is reported in Kelvin on a 
30 m grid, consistent with shortwave datasets, despite the raw thermal 
infrared data having a coarser nominal resolution of 100 m (Crawford 
et al., 2023). All available images of the study area from 2022 and 2023 
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(n = 262) were selected for analysis. The Landsat Collection 2 Quality 
Bands were used to mask pixels affected by cloud cover, cloud 
shadows, cirrus, radiometric saturation, or atmospheric aerosols in 
each image. Seasonal means were computed based on the standard 
meteorological seasons: spring (March 1 – May 31), summer (June 
1 – August 31), autumn (September 1 – November 30), and winter 
(December 1 – February 28/29).

2.3 Description of the covariables

LST for each season was used as the response variable in the 
modeling process. Each observational unit was defined based on 
Landsat pixels, represented as grid cells with a spatial resolution of 30 
× 30 meters. Higher-resolution covariates were aggregated to match 
the spatial scale of these observational units. The following datasets 
were used to generate the model covariates.

	 1)	 Cadastral data (CEO, 2024): Spatial information on building 
footprints was downloaded and processed to calculate the 
percentage of each observational unit occupied by buildings.

	 2)	 SIOSE-AR (NIG, 2017): This dataset was used to generate 
compositional data at the pixel level due to its scale of 1:1000–
1:5,000 m. The percentage of each pixel occupied by vacant 
land or bare soil was calculated, considering its significant 
influence on surface UHIs in Mediterranean climates (Unal 
Cilek and Cilek, 2021). The following land cover classes were 
reclassified as vacant areas: “non-built land,” “paths and trails,” 

“meadows,” “grasslands,” “grassland-shrubland,” “shrubland” 
and “bare or sparsely vegetated land”

	 3)	 Variables derived from Second Cover aerial LiDAR data from 
PNOA (NIG, 2022): The lidR package v. 4.1.2 (Roussel et al., 
2020; Roussel and Auty, 2024) was used for point cloud data 
processing. Canopy height models with a 1 m resolution were 
developed, applying a minimum height threshold of 3 m and a 
maximum of 30 m to identify trees and avoid the inclusion of 
misclassified objects. Canopy cover per pixel was calculated as 
the area occupied by tree crowns.

LiDAR classes “low vegetation” and “medium vegetation” were 
used to derive the area occupied by permeable surfaces per pixel, 
excluding the area covered by the tree canopy. The “soil” class was 
rasterized as a separate layer, as it includes information on bare soil 
and artificial surfaces, representing the actual land surface while 
excluding elevated structures and vegetation.

Impermeable surface coverage was defined as the non-overlapping 
pixels of the rasterized soil layer with the permeable surfaces and 
vacant land polygons, and also excluding building footprints. Thus, 
the simplex variable representing land surface composition (i.e., 
variables summing up to one) was defined by the proportions of 
vacant land, permeable surfaces, impervious surfaces and building 
area. Canopy cover was not included as a component of this simplex 
covariate, as tree crowns operate on a different horizontal plane and 
do not directly on the ground surface.

Additionally, information on building heights was extracted from 
the LiDAR data. The height of each building footprint was calculated 

FIGURE 1

Geographic Location of the Study Area focusing on the urban matrix. The background information includes data from the Spanish National 
Geographic Institute for the boundaries of Spain and its municipalities. The orthophotography used is from the 2022 National Plan for Aerial 
Orthophotography project (NIG, 2022). Map represented in coordinate reference system: EPSG 25830.
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as the mean height of pixels contained within it. At the observational 
unit level, the average building height was computed.

	 4)	 Urban Atlas (EEA, 2018): The land use categories were 
reclassified into the following classes: “roads,” “water surfaces,” 
continuous urban fabric with >80% sealing level (s.l.),” 
“discontinuous high-density urban fabric (50–80% s.l.),” 
“discontinuous medium-density urban fabric (30–50% s.l.),” 
“discontinuous low-density urban fabric (10–30% s.l.),” 
“discontinuous low-density urban fabric (<10% s.l.),” 
“industrial areas,” “green urban areas,” “seasonal vegetation or 
vacant lands,” “herbaceous crops” and “woody crops.” A spatial 
sieve with queen contiguity in a 90 × 90 moving window was 
applied to the reclassified product to capture the local 
environment (Bechtel et al., 2015; Demuzere et al., 2020).

To avoid correlation and collinearity among explanatory variables, 
Pearson’s correlation coefficient and the generalized variance inflation 
factor (GVIF) were computed prior to model implementation using 
the car R package (v.3.0–12) (Fox and Weisberg, 2019). Pairs of 
variables with high correlation (Pearson’s r > 0.6) or high GVIF (GVIF 
> 5) were identified, and only one variable per pair was retained in the 
model. None of the covariates exceeded these thresholds, with the 
maximum observed values being −0.57 for correlation and 1.96 for 
GVIF. As a result, the final set of selected covariates comprised the 
following: land use and land cover (LULC) classes, canopy cover, 
impermeable cover, building cover, vacant land cover and mean 
building height. The vertical stratification of percentual covariables 
prevents the formation of a closed compositional system. Tree canopy 
cover is quantified as the vertical projection of crown area onto the 
ground surface. This measurement operates in a different vertical 
plane dimension than the ground-cover fractions (impervious, 
building, vacant, and pervious surfaces), which sum to 100% at 
ground level. Crucially, tree canopy can overlap with pervious, 
impervious, and vacant surfaces, only building footprints exclude 
trees due to their vertical structure. Because we exclude the pervious 
surface variable from the model (to avoid perfect collinearity within 
the ground-cover simplex), and because tree canopy is not part of the 
ground-cover compositional constraint, the remaining covariates 
(impervious, building and vacant) do not sum to 1. Finally, to facilitate 
model fitting in R-INLA, all numerical covariates were standardized 
(z-score transformation).

2.4 Spatially varying coefficient model 
specification

Bayesian Hierarchical Models (BHMs) are widely used in spatial 
statistics due to their capacity to account for spatial autocorrelation by 
incorporating spatially structured priors on random effects (Banerjee 
et al., 2014). A Latent Gaussian Model, which can be considered a type 
of BHM with an additive structure for the linear predictor and 
observed data modeled through a likelihood function that depends 
only on the value of the linear predictor, was implemented using the 
Integrated Nested Laplace Approximation framework and the INLA 
R package (v.22.12.16) (Rue et al., 2009).

It was hypothesized that the spatial effects to be modeled, the 
SPDE component (Stochastic Partial Differential Equation, used to 

approximate a Gaussian Field as a Gaussian Markov Random Field) 
(Lindgren et al., 2011), representing a spatially varying intercept, and 
the SVC component, operate at different spatial scales. Specifically, the 
SPDE effect was assumed to capture broader-scale spatial variation, 
while the SVC component, reflecting spatial heterogeneity in the 
relationship between canopy cover and LST, was expected to operate 
at a more localized scale, driven by stand-level differences in urban 
geometry and environmental conditions. To account for these 
differences in spatial scale, two meshes were defined. (1) SPDE Mesh. 
A range of 1,395 m, defined as the distance at which the correlation 
drops to approximately 0.13, was selected. This range was estimated 
by fitting an exponential semivariogram to LST for each season 
independently using the gstat R package v.2.0–7 (Pebesma, 2004). 
Following recommendations that the maximum allowed triangle edge 
length in the Delaunay triangulation should be around one-third to 
one-tenth of the range (Krainski et al., 2018), a maximum edge length 
of 300 m was chosen. The minimum distance between points was 
defined as one-third of the largest allowed triangle edge length. The 
offset was set to c(100, 300) to provide an inner extension of 100 m 
and outer extension of 300 m from the boundary. The cutoff distance 
was defined as 60 m (one-fifth of the largest allowed triangle edge 
length) to prevent the creation of excessive small triangles around 
clustered data locations while maintaining adequate spatial resolution. 
(2) SVC mesh. Constructed using a prior range of 300 m. The 
maximum triangle edge length in the Delaunay triangulation was 
fixed at 100 m, and the minimum spacing between points was set to 
60 m. We used the same offset parameters and cutoff as in SPDE mesh. 
For both meshes, the minimum angle between triangle edges was 
constrained to 21°, the recommended threshold to avoid 
ill-conditioned triangulations containing overly elongated triangles 
that could compromise numerical stability.

According to best practices in the species distribution modeling 
field, it is always recommended to compare the results obtained 
through SVC models with simpler models, as such comparisons can 
reveal the level of support for the SVC model (Doser et al., 2024). To 
ensure a robust analysis, 14 different models were compared, ranging 
from simpler linear regression models without spatial effects to more 
complex spatio-temporal models. Details on these models can be 
found in Supplementary Table S.1 and Supplementary Equation S.1 
describes M8 model structure, as it achieved the highest performance 
among the different SVC structures tested. Furthermore, it 
encapsulates the mathematical framework of the simpler models 
evaluated, which exhibited similar or superior validation metrics 
compared to M8. Finally, comparisons of best-performing INLA 
models with GAM and GWR models can be found in 
Supplementary Material 3.

2.5 Model selection and validation

Following Doser et al. (2024), spatial cross-validation was 
implemented to explicitly test the extrapolation ability of SVC models 
to new geographical regions. A 10-fold spatial blocking approach was 
employed using the blockCV R package v2.1–4 (Valavi et al., 2019), 
with blocks assigned systematically to cross-validation folds to ensure 
even spatial distribution of training and testing data. The blocking 
distance of 850 m was determined based on the effective range of 
spatial autocorrelation in model residuals from a preliminary linear 
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model (388,64  m), following Roberts et al. (2017) guidelines that 
blocking distances should substantially exceed the autocorrelation 
range to obtain unbiased error estimates. This distance ensures spatial 
independence between training and testing sets, preventing the 
overoptimistic performance estimates commonly observed when 
spatial dependence is ignored. The representation of the spatial block 
partitioning can be found in Supplementary Figure 1.

Model predictive performance was evaluated using both 
traditional metrics (coefficient of determination R2, Root Mean 
Squared Error RMSE) and Bayesian coverage metrics that assess 
uncertainty quantification reliability. The Bayesian metrics include: (i) 
the proportion of observations within the 95% highest posterior 
density interval (HPDI) of the linear predictor (p-LP-HPDI), which 
evaluates systematic model uncertainty, i.e., the extent to which the 
linear predictor is correctly specified and, consequently, able to 
capture the observed value for each test set observation within its 
credibility intervals, and (ii) the proportion of observations within the 
95% HPDI of the posterior predictive distribution (p-HPDI-PPD), 
which incorporates all sources of uncertainty including observation 
error. Well-calibrated models should not exhibit a strong imbalance 
between these two metrics. A situation in which the p-LP-HPDI is 
much lower than the p-HPDI-PPD reflects a linear predictor that is 
unable to model the data correctly. Consequently, all residual 
variability is captured by the standard deviation of the Gaussian 
likelihood, resulting in a PPD with wide intervals that encompass the 
observations, while the credibility intervals of the linear predictor 
remain insufficiently to contain them.

The final model selection was based on a comprehensive 
evaluation prioritizing RMSE and p-LP-HPDI performance metrics, 
which provide the most direct assessment of predictive accuracy and 
systematic uncertainty quantification without the effects of excessive 
residual variability that might be captured in p-HPDI-PPD. This 
approach aligns with Occam’s razor principle, favoring parsimonious 
models that achieve optimal performance without unnecessary 
complexity. Following established statistical learning principles 
(Hastie et al., 2009; Sterkenburg, 2024), the selected model represents 
the optimal balance between predictive performance and model 
complexity. This selection strategy ensures that the chosen model 
generalizes effectively to new spatial regions.

3 Results

3.1 Model comparison

The model selection process favors models incorporating 
spatially structured effects (M2–M14) over the simple linear regression 
model (M1), which does not account for spatial effects 
(Supplementary Table S.1). The p-PPD-HPDI metric, which captures 
the model’s ability to generate simulations, suggests that M1 is the 
most capable of reproducing the analyzed dataset. However, when 
assessing p-LP-HPDI, M1 produces probabilistic predictions whose 
95% HPDI contains the observed LST value for only 1.3% (4,958) of 
the observations. This indicates that the latent process modeled by the 
linear predictor fails to capture the dataset’s variability. The linear 
predictor’s insufficient capacity to model the underlying process 
suggests that the unexplained residual variability is absorbed into the 
PPD through a higher standard deviation of the gaussian likelihood.

Among the models incorporating spatial effects, the results reveal 
the following patterns. (1) Models that include only SVC effects but do 
not incorporate SPDE effects (M6, M13, M14), exhibit the worst 
performance among the tested models. Except for p-LP-HPDI and 
WAIC, all other evaluation metrics yield lower values compared to M1. 
(2) The inclusion of separable spatio-temporal SPDE effects improves 
predictive performance relative to models where the SPDE is estimated 
to be invariant in time. This improvement is observed both when an SVC 
effect is included (M8 vs. M7) and when it is not (M4 and M5 vs. M3). 
In models incorporating SPDE but not SVC, estimating SPDE 
independently via an i.i.d. structure for each season, rather than using an 
autoregressive process, results in higher predictive performance and a 
lower computation time of 1.15 h. Additionally, this approach increases 
computation time by only six minutes compared to a model where the 
SPDE is estimated invariant in time. (3) Incorporating space–time 
separable SVC effects does not improve predictive performance, 
regardless of the structure of the SPDE effect (M8 vs. M9, M10, M11, and 
M12). The seasonal variation in the data is effectively captured by the 
SPDE spatial pattern adjusted for each season, rendering the added 
complexity of temporal effects in the SVC estimation unnecessary.

M4 emerges as the model with the highest predictive capacity, 
followed by M5, M8, and M3. To illustrate the variation in estimated 
effects and predictions across different model structures, the results for 
M1, M3, M4, and M8 are presented. M1 is included as a baseline model 
to assess the impact of not incorporating SPDE or SVC effects. M3 is 
considered to evaluate the effect of not accounting for temporal 
variations in the estimation of the SPDE. M4 is presented as it achieved 
the best overall performance. M8 is included as the highest-performing 
SVC model type among those evaluated. In general, the results in Figures 
and Tables, both in the manuscript and in the Supplementary material, 
are presented for all four models under analysis. However, the textual 
presentation of the results is focused on the two models of interest, M4 
and M8. In addition, model residual diagnostics are specifically reported 
for M4 and M8 and can be consulted in Supplementary Figures S.2–S.5. 
These models were selected because they represent, respectively, the 
highest-performing model and the SVC model whose advantages are the 
subject of assessment.

3.2 Fixed effect estimates

The effects derived from models M1, M3, M4, and M8 are 
estimated with narrow 95% credible intervals (Table 1). Only the 
random effect associated with the varying intercept for the autumn 
season includes zero within its credible interval, suggesting that, 
during this season, there may be no significant deviation in average 
LST from the mean across the study area.

The inclusion of SPDE effects in the structure of the BHM results 
in a general reduction of the estimated magnitudes for the effects. 
Despite this reduction, the directionality of the covariate effects on 
LST remains consistent across models. An exception is observed in 
the effect of impervious surface cover, where M4 estimates a negative 
relationship, while model M8 indicates a positive effect. The inclusion 
of a temporal effect through a separable space–time model (i.e., 
moving from a purely spatial model, M3, to a space–time model, M4), 
or the incorporation of an SVC effect once a spatial or space–time 
component is already present (M8), does not substantially modify the 
posterior estimates of the fixed effects.
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Given the z-score standardization of the continuous covariates 
and the selection of “Continuous Urban Fabric (s.l. >80%)” as the 
reference category for the LULC covariable, the model intercept 
represents observational units characterized by this specific land 
use type and average values for all continuous covariates. 
Accordingly, and under ceteris paribus conditions (i.e., holding all 
other covariates constant), the land use types “Road Areas,” 
“Seasonal Vegetation or Bare Ground,” “Industrial Areas,” 
“Herbaceous Crops” and “Woody Crops” exhibit, on average, 
higher LST relative to the reference category. As expected, 
“Industrial Areas” show the highest marginal LST among all LULC 
categories considered. LULC associated with lower average LST 
than “continuous urban fabric” include: “water surfaces,” “green 
urban areas,” “discontinuous high-density urban fabric (s.l. 
50–80%),” “discontinuous medium-density urban fabric (s.l. 
30–50%)” and “discontinuous low-density urban fabric (s.l. <10%).” 
Among these, “water surfaces” show the most pronounced LST 
difference relative to continuous urban fabric, with estimated 

average differences of approximately −0.75 °C. “Green urban areas” 
exhibit the second-largest difference in LST in models M3–M8.

For the compositional variables related to impervious surface, 
building-covered surface, and vacant land surface, all four models 
estimate effects with a high probability, as indicated by 95% credibility 
intervals not including zero, but with limited practical significance due 
to the small magnitude of the estimates. Observational units with a 
higher fraction of vacant or building surface are associated with higher 
LST values, regardless of the LULC category they belong to. Contrary 
to expectations, M4 estimates a negative relationship between 
impervious surface fraction and LST, whereas model M8 estimates a 
positive relationship.

Regarding the influence of canopy cover on LST, i.e., the linear 
cooling capacity effect on LST associated with an increase in tree canopy 
coverage within an observational unit, there is substantial variation 
across seasons and between models. In the case of M8, only the global 
effect of canopy cover is presented, since models incorporating SVC 
structures typically model the coefficient as the sum of a global effect (an 

TABLE 1  Comparison of estimated effects across models.

Effect estimates M1 M3 M4 M8

Intercept 29.16 [24.84, 32.61] 29.49 [24.34, 33.32] 30.01 [26.41, 33.12] 30.01 [26.41, 33.12]

Roads [LULC] 1.03 [1.01, 1.06] 0.11 [0.09, 0.13] 0.11 [0.1, 0.12] 0.11 [0.1, 0.12]

Water [LULC] −2.64 [−2.72, −2.57] −0.73 [−0.79, −0.68] −0.74 [−0.77, −0.7] −0.74 [−0.77, −0.7]

D. L. D. Urb. (S. L.: 10–30%) [LULC] −1.15 [−1.18, −1.11] −0.07 [−0.1, −0.03] −0.07 [−0.09, −0.05] −0.07 [−0.09, −0.05]

Green urban areas [LULC] −0.61 [−0.64, −0.57] −0.13 [−0.16, −0.1] −0.13 [−0.15, −0.12] −0.13 [−0.15, −0.12]

D. H. D. Urb. (S. L.: 50–80%) [LULC] −0.23 [−0.25, −0.2] −0.04 [−0.06, −0.02] −0.04 [−0.05, −0.02] −0.04 [−0.05, −0.02]

Seassonal vegetation [LULC] 1.05 [1.02, 1.07] 0.15 [0.13, 0.17] 0.15 [0.14, 0.17] 0.15 [0.14, 0.17]

D. L. D Urb. (S. L.: < 10%) [LULC] −1.13 [−1.19, −1.07] −0.05 [−0.1, 0.01] −0.05 [−0.08, −0.02] −0.05 [−0.08, −0.02]

Industrial areas[LULC] 2.42 [2.4, 2.44] 0.29 [0.27, 0.31] 0.29 [0.28, 0.31] 0.29 [0.28, 0.31]

D. M. D. Urb. (S. L.: 30–50%) [LULC] −0.95 [−0.98, −0.92] −0.06 [−0.09, −0.03] −0.06 [−0.08, −0.04] −0.06 [−0.08, −0.04]

Herbaceus crops [LULC] 1.52 [1.48, 1.56] 0.12 [0.09, 0.16] 0.13 [0.1, 0.15] 0.13 [0.1, 0.15]

Woody crops [LULC] 0.66 [0.57, 0.74] 0.22 [0.13, 0.3] 0.22 [0.17, 0.28] 0.22 [0.17, 0.28]

Impermeable surface (%)

(ΔX = 30%)

−0.08 [−0.09, −0.08] −0.01 [−0.01, 0] −0.01 [−0.01, −0.01] 0.01 [0.01, 0.02]

Vacant land surface (%)

(ΔX = 30%)

0.06 [0.05, 0.06] 0.02 [0.02, 0.03] 0.03 [0.02, 0.03] 0.03 [0.02, 0.03]

Building surface (%) (ΔX = 30%) 0.04 [0.03, 0.05] 0.03 [0.02, 0.03] 0.03 [0.02, 0.03] 0.01 [0, 0.01]

Building height (m) (ΔX = 15 m) −0.29 [−0.31, −0.27] −0.09 [−0.1, −0.08] −0.09 [−0.1, −0.08] −0.06 [−0.07, −0.05]

Canopy cover (%) (ΔX = 10%) – – – −0.13 [−0.19, −0.08]

Canopy cover[spring] (%) (ΔX = 10%) −0.33 [−0.33, −0.31] −0.08 [−0.09, −0.07] −0.06 [−0.06, −0.06] –

Canopy cover[summer] (%) (ΔX = 10%) −0.52 [−0.53, −0.51] −0.28 [−0.29, −0.27] −0.09 [−0.09, −0.09] –

Canopy cover[autunm] (%) (ΔX = 10%) −0.39 [−0.4, −0.38] −0.15 [−0.15, −0.13] −0.07 [−0.07, −0.07] -

Canopy cover[winter] (%) (ΔX = 10%) 0.01 [0, 0.02] 0.26 [0.25, 0.27] −0.03 [−0.03, −0.03] –

Spring [seasson] 4.19 [0.72, 8.49] 4.46 [0.63, 9.6] 3.72 [0.59, 7.33] 3.72 [0.59, 7.33]

Summer [seasson] 13.39 [9.93, 17.7] 13.67 [9.84, 18.81] 13.18 [10.05, 16.78] 13.18 [10.05, 16.78]

Autunm [seasson] 2.86 [−0.61, 7.16] 3.14 [−0.69, 8.28] 2.69 [−0.44, 6.29] 2.69 [−0.44, 6.29]

Winter [seasson] −10.56 [−14.03, −6.26] −10.28[−14.11, −5.14] −10.65 [−13.78, −7.05] −10.65 [−13.78, −7.05]

[LULC]: indicates the estimated effect for each category of the categorical land use and land cover variable [spring, summer, autumn, winter]: indicates canopy cover effect for that season 
estimated by partial pooling [season]: indicates the seasonal random effect. SL, Sealing level; DHD, discontinuous high density; DMD, discontinuous medium density; DLD, discontinuous low 
density. The marginal effect of each covariate is presented as its mean value, accompanied by the 0.025 and 0.975 quantiles of its posterior predictive distribution. ΔX represents the increment 
in the covariate that leads to a corresponding ΔY change in land surface temperature (LST).
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average parameter for the entire study area) and the SVC term that 
captures local deviations from this mean, presented in later sections. 
According to M8, a 10% increase in canopy cover per 900 m2 
observational unit, under ceteris paribus conditions, is associated with 
an average decrease in LST of −0.13 °C [−0.19 °C, −0.08 °C]. For M4, a 
drastic reduction in the estimated cooling capacity is observed, with a 
negative effect estimated with 95% credibility. However, its magnitude is 
low, with an average LST decrease of 0.03 °C per 10% increase in canopy 
cover during winter, and a maximum decrease of 0.09 °C per 10% 
increase observed during summer.

3.3 Hyperparameter estimates

Increasing model complexity results in a decrease in the standard 
deviation of the gaussian likelihood (Table 2), primarily due to the 
greater variability captured by the linear predictor. As observed in the 
canopy cover effect estimates reported in Table 1, when SPDE effect is 
included, there is a decrease in the standard deviation of the varying 
slope effect for canopy cover. The posterior mean of the standard 
deviation for the seasonal effect-generating distribution is similar across 
models. However, in the case of M4, a greater increase, particularly in 
the 97.5% quantile, is observed. This may be attributed to the high 
flexibility introduced by the i.i.d. estimation of the SPDE, which allows 
the SPDE effect to capture more specific variation from each seasson, 
thereby making the estimation of the seasonal effect more challenging. 
Model M8 seasonal effect exhibits a slightly lower average standard 
deviation, potentially due to the inclusion of the SVC effect, which may 
be capturing variability that would otherwise be captured by the 
seasonal effect. M8 shows higher values estimated than M4 for both the 
range and marginal standard deviation, likely because the SPDE effect 
in this model is capturing variability at a broader spatial scale due to the 
concurrent inclusion of the SVC effect. For the SVC effect, the estimated 
range suggests a localized influence within approximately 200 meters. 
Its marginal standard devitation indicates the existence of geographic 
heterogeneity in the relationship between canopy cover and LST.

3.4 Predicted spatial patterns of land 
surface temperature

Model M8 effectively captures and reconstructs the observed 
spatial pattern of LST for each season, displaying relatively low 

prediction uncertainty and a narrow residual range. Results for M8 are 
presented as the observed LST values along with the mean, 2.5, and 
97.5% quantiles of the posterior distribution of the linear predictor; 
prediction uncertainty, expressed as the difference between quantiles; 
and residuals for spring, summer, autumn, and winter (Figures 2–5). 
For comparison purposes regarding predictive performance across 
models M1, M3, M4, and M8, Supplementary Figures S.6–S.8 show 
the predictions, uncertainties, and residuals disaggregated by season.

Both M4 and M8 successfully capture the smoothed spatial 
pattern of LST distribution (Supplementary Figure S.6). These 
advanced models adequately represent the full range of observed LST 
values for each season, avoiding the constrained predictions around 
mean values that characterize simpler modeling approaches.

The highest uncertainty among M4 and M8 across seasons for the 
linear predictor reaches 1.85 °C (Supplementary Figure S.7). The 
spatial uncertainty patterns in both models are primarily driven by the 
mesh used in the modeling process, a common feature of INLA-SPDE 
models. Both M4 and M8 provide realistic uncertainty estimates that 
appropriately capture the observed variations in LST, as evidenced by 
their respective p-LP-HPDI values in Supplementary Table S.1.

The spatial pattern of residuals demonstrates the effectiveness of 
both M4 and M8 in generating reliable predictions for the study area 
(Supplementary Figure S.8). Both models display a spatial residual 
pattern tightly centered around zero, with the main deviations 
localized in the southwest of the study area. Differences in the spatial 
residual patterns between M4 and M8 are minimal, and importantly, 
no structured spatial patterns emerge in either model, indicating their 
success in capturing the underlying spatial processes. This absence of 
systematic residual patterns confirms that both approaches effectively 
model LST across seasons.

3.5 Spatially varying coefficient model 
effect estimates

The spatial pattern of the local effect estimates of canopy cooling 
capacity on LST (hereinafter referred to as local effects) is presented 
in Figure 6. These local effects were computed as the sum of the 
posterior distribution of the global canopy cover effect and the 
spatially varying deviations estimated for each observational unit 
through the SVC component. Mathematically, the units of the effects 
are reported as the variation in LST for a 10% increase in tree canopy 
cover. The spatial pattern of the local effect estimates shows high 

TABLE 2  Comparison of posterior distributions of hyperparameters across models.

Hyper parameter M0 M3 M4 M8

Standard deviation of the Gaussian Likelihood 1.90 [1.89, 1.90] 1.06 [1.06, 1.06] 0.67 [0.67, 0.67] 0.47 [0.47, 0.48]

Standard deviation of the partial pooling effect on canopy cover 0.90 [0.44, 1.59] 0.29 [0.17, 0.51] 0.15 [0.06, 0.31] –

Standard deviation of the seasonal effect 11.41 [5.77, 21.12] 12.66 [6.71, 19.7] 16.54 [6.86, 43.04] 8.3 [4.82, 15.84]

Range of the SPDE effect – 551.51 [513.05, 591.46] 580.06 [557.39, 600.51] 708.17 [680.1, 736.63]

Marginal spatial standard deviation of the SPDE effect – 1.95 [1.86, 2.04] 2.09 [2.04, 2.14] 2.32 [2.24, 2.41]

Temporal autocorrelation of the SPDE effect – – – 0.89 [0.88, 0.9]

Range of the SVC effect – – – 202.73 [194.38, 211.15]

Marginal spatial standard deviation of the SVC effect – – – 1.65 [1.61, 1.68]

The mean value, along with the 0.025 and 0.975 quantiles of the posterior distribution, is presented.
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spatial variability, especially when considering the representation of 
the quantiles (Figures 6A–C). It is important to note that areas with 
higher localized effects are associated with high uncertainty, reaching 
up to 3 °C of LST cooling (Figure 6D). These areas are generally linked 
to regions with low canopy cover and are primarily located in the 
western part of the study area, coinciding with the airport area, the 
northwest corresponding to significant vacant land zones, and the 
southern and southeastern areas related to the Guadalhorce river 
mouth and port areas, respectively. According to the estimates, for 
areas with a 95% probability of presenting a localized cooling effect 
different from zero (Figure 6E), zones with high-magnitude estimates 
continue to be significant (Figure 6F).

Local effect estimates of canopy cooling capacity are also 
represented according to LULC type (Figure 7), and their spatial 
pattern is shown in Supplementary Figure S.9. Considering the 
uncertainty in the estimation of the SVC effects, represented in 
the statistical distributions of the population of significant effects 
in the study area through the mean and the 2.5 and 97.5% 
quantiles of the posterior distribution of the local effects, it is 
determined that, firstly, vacant lands, and secondly, green spaces, 
exhibit the greatest variability in local cooling effects (Figure 7). 
Distributions of posterior metrics for local effects for vacant lands 
display greater differences than those for green urban areas or 
areas with over 25% canopy cover (hereinafter referred as wooded 

FIGURE 2

Model M8 results for the spring season. (A) Observed mean Land Surface Temperature (LST) values during spring; (B) Posterior mean of the linear 
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as 
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior 
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.
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areas), as reflected by their lower overlap in distributions. 
Specifically, the distribution of local effects in vacant lands shows 
an average cooling of −0.28 °C, with a 50% coverage interval (CI) 
of −1.39 °C to 0.71 °C, and 95% CI of −3.34 °C and 2.47 °C. In 
green urban areas, the mean of the local effects is −0.16 °C, with 
a 50% CI of −0.68 °C to 0.25 °C and a 95% CI of −2.54 °C to 
1.57 °C. In contrast, wooded areas show less heterogeneous and 
lower-magnitude local effects compared to areas the other areas, 
contrary to expectations. The distribution of local effects is 
characterized by an average of −0.09 °C, a 50% CI ranging from 
−0.254 °C to −0.06 °C, and a 95% CI spanning from −0.496 °C to 
0.318 °C.

4 Discussion

The potential of urban trees to regulate temperature is widely 
acknowledged, with forested green spaces exhibiting lower 
temperatures compared to non-treed areas (Bowler et al., 2010; Gago 
et al., 2013; Schwaab et al., 2021). Trees mitigate the urban heat 
primarily through shading and transpiration, with the magnitude of 
these effects largely depending on tree-specific traits (Rahman et al., 
2020). The effectiveness of these cooling mechanisms varies across 
space and time (Alonzo et al., 2021) and interacts with other 
components of the built environment (Tsin et al., 2016; Ziter et 
al., 2019).

FIGURE 3

Model M8 results for the summer season. (A) Observed mean Land Surface Temperature (LST) values during summer; (B) Posterior mean of the linear 
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as 
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior 
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.
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In situ studies of air temperature cooling associated with canopy 
cover show mixed results, particularly depending on the spatial scale 
or buffer radius considered around temperature measurement points. 
Ziter et al. (2019), in Madison, Wisconsin, observed a non-linear 
decrease in air temperature with increasing canopy cover. Their 
findings indicated a mean air temperature reduction of 0.7 °C when 
increasing canopy cover from 0 to 100% within a 10 m radius, 
compared to a 1.3 °C decrease at a 30 m radius, and >1.5 °C when 
using 60- or 90-m radii. Similarly, Ettinger et al. (2024), working in 
South Tacoma, Washington, found a reduction of 0.01 °C per 1% 
increase in field-measured canopy within 10 m. Locke et al. (2024), in 

New Haven, Connecticut, determined that a 100% increase in tree 
canopy cover resulted in air temperature reductions of approximately 
0.375 °C between 8:00 and 11:00, and 0.75 °C between 11:00 and 
14:00, with no statistically significant effects observed after 14:00, all 
within a 10 m radius. Under a 90 m buffer, the temperature reductions 
were more substantial: −1.62 °C at midday, −1.19 °C in the afternoon, 
and −1.15 °C in the morning for a change from 0 to 100% canopy 
cover. The increased magnitude of cooling effects observed at larger 
spatial scales may reflect the influence of confounding variables, such 
as urban geometry or broader atmospheric processes. These factors 
could potentially lead to overestimations of tree canopy cooling 

FIGURE 4

Model M8 results for the autumn season. (A) Observed mean Land Surface Temperature (LST) values during autumn; (B) Posterior mean of the linear 
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as 
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior 
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.
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effects, as cooling effects are expected to be more detectable at smaller 
buffer distances, where temperature measurements occur closer to the 
actual tree cover and its direct influence.

Regarding high-resolution LST studies, available results are more 
limited. Bartesaghi-Koc et al. (2020), in Sydney, Australia, observed 
LST differences of up to 12 °C depending on their proposed typology 
of green infrastructure. However, they did not conduct a statistical 
analysis to assess the marginal effect associated with tree canopy cover 
increase. Ossola et al. (2021), in Adelaide, Australia, found that tree 
canopy cover had no significant effect on LST at the suburb scale. 
When analyzing the relationship using buffers around building 
footprints, they observed an approximate decrease of 0.3 °C per 10% 

increase in tree canopy cover at a 30 m radius. This effect was reduced 
to less than 0.1 °C for 60 m buffers and was not detectable at 90 m.

To extend the estimation of tree canopy cooling effects to broader 
spatial extents, numerous studies have employed satellite-derived 
LST, either directly or as part of a two-step modeling workflow to 
estimate air temperature, across various spatial scales (e.g., city-wide, 
census tracts, urban blocks, grid cells). These studies consistently 
report average cooling effects across the study area. At the city scale, 
in a review analyzing air temperature reductions from street trees, it 
was found that a 10% increase in canopy cover could reduce air 
temperature by an average of 0.3 °C (Krayenhoff et al., 2021). 
Schwaab et al. (2021) estimated LST differences using GAMs, 

FIGURE 5

Model M8 results for the winter season. (A) Observed mean Land Surface Temperature (LST) values during winter; (B) Posterior mean of the linear 
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as 
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior 
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.
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comparing predicted LST under a hypothetical scenario of 0% tree 
canopy cover with those under 100% cover. They reported LST 
reductions ranging from 0 °C to 4 °C across Southern European 
regions. Marando et al. (2022) found that air temperature reductions, 
modeled using LST, ranged from −2.9 °C to 0.4 °C across European 
Functional Urban Areas as a result of increased canopy cover. 
Chakraborty et al. (2022) estimated an average LST reduction 
ranging from 0.3 °C to 1.8 °C, depending on the urban afforestation 
scenario implemented across 81 cities. Iungman et al. (2023) 
developed a two-step regression approach to estimate potential 
cooling capacity, first by quantifying LST reduction due to urban 

trees and then converting that to air temperature effects. They 
estimated that achieving a 30% tree canopy cover could cool 
European cities by 0.4 °C. Studies at finer spatial units also report 
similar or even smaller effect sizes than those estimated at the city 
scale. McDonald et al. (2024), working at the block scale in the 
United States, estimated a reduction of 0.37 °C ± 0.014 °C in median 
summer air temperature when increasing tree canopy cover to 40%. 
Shui et al. (2025), analyzing 2,230 cities and counties in China, 
estimated a reduction in LST ranging from 0.038 °C to 0.144 °C per 
1% increase in tree canopy cover, without specific focus on 
urban trees.

FIGURE 6

Local effect estimates of canopy cooling capacity as variation in land surface temperature resulting from a 10% increase in tree canopy cover, 
calculated as the sum of the posterior distributions of the global effect for canopy cover effect and the local deviations per observational unit 
estimated by the SVC effect. (A) Posterior mean; (B) Posterior quantile 2.5%; (C) Posterior quantile 97.5%; (D) Posterior uncertainty as the difference 
between the 97.5 and 2.5% quantiles; (E) Significance, understood as local effect estimates whose 95% credibility intervals do not contain zero, i.e., 
estimates with a 95% probability of being non-zero. Negative and positive indicate the direction of the relationship; (F) Posterior mean of the local 
effects for observational units whose effects are estimated as significant.
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At the grid scale, Kong et al. (2014), in Nanjing, China, observed 
reductions in LST ranging from 0.61 °C to 0.87 °C for every 10% 
increase in tree canopy cover, depending on the grid size, and larger 
reductions were associated with coarser grids. These estimations were 
performed without controlling for additional factors influencing LST 
distribution and without considering the effects of spatial 
autocorrelation. Similarly, Hou and Estoque (2020), in Hangzhou, 
China, estimated LST reductions of 0.284 °C to 0.292 °C per 10% 
increase in canopy cover using simple linear regression models. Rogan 
et al. (2013) estimated that 200 × 200 m grid cells with 10% less tree 
cover exhibited LST that were, on average, 0.7 °C higher. In 
Mediterranean environments, Godinho et al. (2016) reported a 
0.64 °C decrease in LST per 10% increase in canopy cover. In Addis 
Abeba, Ethiopia, Feyisa et al. (2014) found a 0.2 °C reduction in LST 
per 10% increase in canopy cover within urban green spaces. Using 
machine learning, Yuan et al. (2021) estimated a maximum cooling of 
0.8 °C with 64% canopy cover, while Logan et al. (2020) reported 
daytime cooling ranging from 1.5 to 6.5 °C for a 40% increase in 
canopy cover, showing a strong linear pattern, both using Landsat 8 
pixel resolution.

The global cooling estimates obtained in this study fall on the 
lower end of the range reported in the literature. Based on model M3 
estimates (excluding M1 due to poor model fit and predictive capacity, 
and excluding M4 due to suspected spatial confounding, discussed 
later), an LST reduction of −0.28 °C [−0.29, −0.27] is observed for 
every 10% increase in tree canopy cover during summer. Part of the 
observed differences with prior studies can be attributed to model 

structure. Our models included a wide range of covariates known to 
influence LST, as well as random effects to account for spatial 
autocorrelation and unmeasured variables. In contrast, many of the 
studies discussed above used simple univariate linear regressions, 
without random effects. Neglecting these dependencies can lead to 
overly narrow credibility intervals and biased estimates of the relative 
importance of model estimates (Banerjee et al., 2014). The 
Mediterranean climate of the study area and its location as a coastal 
city may also contribute to the reduced cooling capacity observed. 
This diminished effect may stem from lower evapotranspiration rates 
due to water stress, which limit trees’ ability to dissipate heat through 
latent flux (Schwaab et al., 2021). Nevertheless, this should be further 
investigated, as urban trees may be regularly irrigated. Coastal cities 
also experience less intense UHI effects compared to inland cities due 
to the moderating influence of oceanic airflow, which reduces thermal 
extremes (Naserikia et al., 2022). Consequently, the inland-coastal 
LST gradients are smoother, and diurnal variability in LST is smaller 
in coastal regions. This homogenizing effect of coastal proximity may 
reduce the contrast in LST between tree covered and artificial surfaces, 
leading to lower estimates of tree canopy cooling capacity. 
Nevertheless, the estimated values in this study remain consistent with 
those reported in cities with comparable climatic conditions.

Urban environments often exhibit considerable heterogeneity in 
terms of infrastructure, urban geometry, vegetation cover, and 
microclimates. The complexity of these settings can lead to spatial 
variation in the relationship between tree canopy cover and LST (Tsin 
et al., 2016; Hallar et al., 2021; Kelly-Turner et al., 2022). Accounting 

FIGURE 7

Statistical distribution for the population of significant posterior mean, quantile 2.5%, and quantile 97.5% values of local effect estimates. The 
distributions are presented globally for all observations (n = 95.349) and depending on whether the units have more than 25% canopy cover 
(n = 10,677), are in urban green spaces (n = 5,309), or areas with more than 30% vacant land surface (n = 20,525). The box-plots are represented only 
for the statistical distribution of posterior means, and thus the X-axis is defined by their values. To improve visualization, the second plot shows 
zoomed-in distributions constrained to the 10th and 90th quantiles, calculated over the vacant lands distribution, as it exhibits the highest dispersion.
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for these differences in canopy cooling effects is crucial for urban 
planning, environmental management, and climate studies, as it 
suggests that strategies aimed at mitigating heat through increased 
canopy cover should be tailored to local conditions. In the literature, 
most studies that explore this spatial variability in the canopy–LST 
relationship have employed GWR, often using the coverage of green 
spaces rather than directly measuring urban tree canopy cover (e.g., 
Chen and Lin, 2021; Li et al., 2021; Liu et al., 2022). Francis et al. 
(2023) estimated GWR coefficients ranging from −2.36 to 2.06 for the 
relationship between canopy cover and LST at the block scale in 
Chicago, without accounting for factors other than average canopy 
height. The authors did not specify whether covariates and response 
variables were standardized, or whether canopy cover was included in 
the model as a percentage or proportion, limiting the interpretability 
and comparability of the coefficients. Nevertheless, these authors 
emphasize “the heterogeneity of Chicago’s census blocks whereby 
depending on the local environmental conditions, simply adding 
more trees in some locations may not result in reduced LST,” 
highlighting the importance of conducting localized estimates.

In the present study, an SVC model is employed, allowing the 
effect of tree canopy cover on LST to vary spatially. The inclusion of 
the SVC effect, once the SPDE effect is also accounted for (M8), 
resulted in worse predictive performance compared to models that did 
not include SVC (M4). This pattern is commonly reported across 
fields where the application of SVC models is well established (Brodie 
et al., 2020; Thorson et al., 2023). However, as highlighted by Thorson 
et al. (2023), the value of SVC models often lies in the nuanced 
descriptions of processes they can capture, given their ability to model 
context-dependent covariate responses.

The local effects, for the population of observational units with 
95% CI that do not include zero, were estimated to range between 
[−3.34 °C, 2.47 °C] in vacant lands, [−2.54 °C, 1.57 °C] in green 
urban spaces, and [−0.496 °C, 0.318 °C] wooded areas. Several 
hypotheses may help explain these results, beyond the influence of the 
local characteristics of each observational unit that may modulate tree 
canopy cooling effects.

	(1)	 Saturation Effect in Wooded Areas. Estimated effects in 
wooded areas were lower than in other land use types, 
potentially indicating a saturation effect. That is, beyond a 
certain threshold, additional increases in canopy cover may 
yield diminishing returns in terms of cooling, resulting in effect 
estimates that are close to zero or even slightly positive. 
However, this hypothesis is not consistently supported by 
existing literature. For instance, Ziter et al. (2019) found that 
increasing canopy cover from 0 to 40% within a 90-meter 
radius produced negligible changes in air temperature, whereas 
increasing cover from 40 to 80% led to approximately 1 °C of 
cooling, suggesting that greater canopy density may, in fact, 
enhance cooling effects. Nonetheless, it is important to 
distinguish between the processes by which tree canopy 
influences air temperature and LST. While air temperature is 
more strongly affected by airflow and convective processes, 
LST is primarily reduced through surface shading (Li et al., 
2024). Therefore, it is plausible that once a certain canopy cover 
threshold is surpassed, where maximum shading has already 
been achieved, further increases in canopy may not lead to 
additional LST reductions. In such cases, the marginal effect of 

increasing canopy becomes negligible, as additional coverage 
does not significantly enhance surface shading.

	(2)	 Greater marginal cooling in vacant lands. Vacant lands often 
lack significant tree cover and typically exhibit higher baseline 
LST due to increased solar exposure and heat retention by bare 
soils. Therefore, the addition of tree canopy in such areas might 
yield a more pronounced cooling effect, as it introduces 
shading and evapotranspiration where it was previously absent 
or minimal. However, Ziter et al. (2019) also noted that areas 
composed primarily of grassy or low vegetation experienced a 
smaller cooling benefit when canopy cover increased from 0 to 
40% (~0.3 °C), while an increase from 40 to 80% resulted in 
~0.8 °C of additional cooling. This suggests that areas 
dominated by low or seasonal vegetation may require higher 
canopy densities to achieve effective shading, possibly due to 
the need to reach higher leaf area indices as suggested by 
the authors.

	(3)	 Influence of surrounding environment. Given the spatial 
resolution of the pixels used in the analysis, vacant lands, green 
spaces, and wooded areas are likely to be surrounded by areas 
with similar land cover. As a result, a vacant land classified pixel 
is generally embedded in an area with high LST, while green 
spaces and wooded pixels tend to be surrounded by areas with 
lower LST. Since the estimation of SVCs is spatially smoothed 
based on a Gaussian Field with a Matérn covariance structure, 
the localized effect is influenced by the local relationships in the 
surrounding environment. Pixels in high-LST areas tend to 
exhibit higher magnitude local effects, while those in lower-LST 
surroundings may exhibit reduced magnitudes. This spatial 
dependence may help explain the broader ranges of estimated 
effects in areas with lower canopy cover.

The consideration of all the aforementioned hypotheses would 
require the formulation of causal statements, which we strongly reject. 
Unlike other authors, such as Francis et al. (2023), we also refrain from 
using SVCs as a tool for delineating or prioritizing areas for urban tree 
planting based on the optimization of localized cooling estimates. This 
decision is based on several key factors, which we believe carry 
significantly more weight in explaining the results than the physically 
plausible hypotheses previously discussed.

	(1)	 Detection challenges and model artifacts across the canopy 
cover gradient. The SVC estimates reveal methodological 
challenges that arise across the full spectrum of canopy cover 
conditions, leading to coefficient instability that can produce 
counterintuitive results. In wooded land pixels with high tree 
canopy cover, the localized effect of increasing canopy may be 
challenging to detect at the spatial resolution of Landsat LST, 
due to the high existing tree canopy cover creating a saturation 
effect where additional vegetation provides diminishing 
marginal cooling benefits. Conversely, in areas with very low 
canopy cover, the low tree canopy coverage limits the model’s 
ability to estimate the local relationship between tree canopy 
coverage and LST, as the thermal signal remains dominated by 
the underlying substrate properties (bare soil, concrete, 
impervious surfaces, etc.) rather than the limited vegetation 
present. The counterintuitive warming effects observed in 
some vacant lands and areas with minimal canopy cover (e.g., 
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up to 2.47 °C positive coefficients) represent methodological 
artifacts rather than genuine biophysical processes. These 
artifacts could arise from the model’s inability to isolate the 
cooling effect of sparse vegetation within thermally extreme 
environments, where individual trees contribute minimally to 
the 30-meter pixel scale. It is also important to note that the 
thermal information is originally measured at 100 m resolution 
and subsequently resampled by USGS to 30 m, which further 
complicates detection in areas with low tree density. 
Additionally, edge effects can cause the model to conflate the 
warming influence of surrounding impervious surfaces with 
the vegetation signal when canopy cover falls below critical 
detection thresholds, due to SVC being based on spatial 
proximity. These limitations across both high and low canopy 
cover extremes contribute to the wide range observed in 
localized effect estimates, emphasizing that SVC results must 
be interpreted within the context of Landsat LST’s spatial 
resolution constraints and the underlying thermal 
heterogeneity of urban environments.

	(2)	 Spatial confounding represents a well-documented 
phenomenon in spatial regression models that arises when 
spatial random effects are not independent of covariates or 
other random effects, as first identified by Clayton et al. (1993) 
and which has generated substantial research interest recently 
(Hui et al., 2024; Urdangarin et al., 2024; Gilbert et al., 2024; 
Lamouroux et al., 2025). Gilbert et al. (2024) identify four main 
sources of spatial confounding: (i) omitted confounder bias, 
occurring when unmeasured spatially structured variables 
influence both exposure and outcome; (ii) regularization bias, 
stemming from finite-sample bias in models using flexible 
regression functions such as splines or Gaussian processes to 
control spatial dependencies; (iii) random effect collinearity, 
resulting from correlation between spatially dependent random 
effects and covariates, altering fixed-effect estimates; and (iv) 
concurvity, complicating estimation when exposure closely 
follows smooth spatial functions, particularly with additional 
smooth spatial functions in the model.

As noted by Dupont et al. (2023), spatial confounding is 
particularly problematic when both random effects exhibit smooth or 
similar spatial patterns, as their collinearity prevents the distinction of 
each individual effect. Doser et al. (2024) observed that confounding 
can occur between the SPDE effect and the SVC, particularly when 
working with modestly sized datasets (e.g., around 500 data points), 
which may potentially lead to misleading conclusions. In our case, 
examination of Supplementary Figures 10, 11 reveals clear similarities 
between the spatial patterns of the residuals from model M4, defined 
as the difference between observed Land Surface Temperature values 
and the posterior mean of the linear predictor, and the posterior mean 
of the SVC effects estimated by model M8. A moderate negative linear 
correlation (r = −0.42) indicates that areas where M4 overestimates 
LST tend to correspond to negative SVC effects in M8, and vice versa, 
reflecting a moderate degree of spatial confounding. In such cases, the 
spatially varying coefficient component tends to absorb systematic 
error patterns not captured by the linear term, leading to compensatory 
negative or positive values in the SVC estimates.

Thus, even with a large dataset (n =  381,396) and the use of 
meshes with different characteristics for the SPDE and SVC 

components, we recommend interpreting the SVC effect estimates 
with caution, despite the correlation indicating only a moderate 
degree of confounding. Although various methods have been 
proposed to address spatial confounding, recent studies caution that 
many of these approaches may produce counterintuitive or unreliable 
results. For instance, Khan and Calder (2022) demonstrate that several 
popular strategies may underperform, while Zimmerman and Ver 
Hoef (2022) classify some of them as “bad statistical practice.” Despite 
these concerns, spatial confounding remains a critical issue for future 
research, particularly in models incorporating SPDE effects, and 
should be carefully considered in both model development and 
interpretation. Ongoing debates include whether orthogonalization 
between spatio-temporal random effects matrices should be applied 
globally or at each time step, and how this should be implemented in 
multivariate or multiple data currency contexts (Hui et al., 2024). 
Recent advances in R-INLA are actively exploring the implementation 
of tools to mitigate spatial confounding in geostatistical applications 
(Lamouroux et al., 2025), making it increasingly accessible to 
practitioners. Continued research is needed to assess the performance, 
limitations, and optimal application scenarios for the various methods 
proposed to address spatial confounding, including restricted spatial 
regression (Khan and Calder, 2022), geoadditive structural equation 
models (gSEM) and Double Spatial Regression (DSR) (Wiecha et al., 
2025), Spatial+ (Dupont et al., 2022), Spatial+ 2.0 (Urdangarin et al., 
2024), regularized principal spline functions (Zaccardi et al., 2025), 
Transformed Gaussian Markov Random Fields (TGMRF) (Prates et 
al., 2015), and approaches grounded in instrumental variable 
frameworks (Woodward et al., 2024). Evaluating the stability of 
estimates across these methods may further clarify whether results 
obtained from SVC reflect true ecological processes or are artifacts of 
the particular approach chosen to mitigate spatial confounding.

	(3)	 Residual pattern absorption by the SVC. The poorer 
performance observed after including the SVC effect may be 
related to the model’s inability to properly estimate the process 
of interest, with the SVC instead capturing local residual 
characteristics, as further suggested by spatial confounding. All 
environmental or urban features not explicitly included in the 
model, remaining as residual variation, may cause the SVC to 
act as a compensatory mechanism for these missing effects. 
Although the purpose of the SVC is to account for spatial 
heterogeneity, part of this heterogeneity stems from omitted 
covariates, while another part reflects genuine variation in the 
canopy cooling effect (i.e., the process of interest), potentially 
driven by interactions with multiple factors. SVCs cannot 
disentangle these two sources of variation. Therefore, in some 
observational units, local variations in the canopy’s effect on 
LST may be correctly modeled, while in others, the estimated 
effect may primarily reflect a compensation for the model’s 
inability to account for the area’s specific characteristics. This 
issue is evident both in the present study and in Francis et al. 
(2023), where, in their estimation of the interaction between 
canopy area and tree height, port areas emerged as those where 
canopy contributes most negatively to cooling. This is likely an 
estimation artifact, with the negative coefficient being 
influenced by the inclusion or proximity of water pixels, whose 
effects were not properly accounted for in either study, beyond 
a categorical variable in the present article. Similarly, as shown 
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in Figure 6H, areas with strongly positive local effects appear 
to correspond to surfaces with very high albedo, again 
suggesting an effect driven by the omission of covariates and 
the absorption of residual patterns by the SVC.

Our findings reveal that planting strategies must evolve beyond 
simple canopy percentage targets to embrace a comprehensive, trait-
based approach that maximizes the cooling potential and resilience of 
urban forests considering the micro-scale variability. This 
comprehensive perspective aligns with growing evidence 
demonstrating the importance of multifunctional and site-specific 
approaches in urban green infrastructure design for increasing urban 
areas livability. Recent research has established that government 
policies and heritage tree protection ordinances can significantly 
increase urban tree canopy coverage, with municipalities 
implementing these measures showing up higher canopy coverage 
than those without protections (Hilbert et al., 2019). Furthermore, 
strategic urban species selection frameworks must consider not only 
cooling capacity but also specific physical traits that optimize other 
ecosystem services, such as precipitation interception and enhanced 
infiltration for stormwater management (Dowtin et al., 2023). 
Moreover, district-level urban livability assessment reveals that spatial 
features such as population density, green space accessibility, and 
environmental quality are positively correlated with community 
health outcomes, emphasizing that urban green design must adopt 
holistic approaches considering both environmental and human well-
being benefits (Chi and Mak, 2021). Thus, our findings enable the 
consideration and evaluation of local specificities in the provision of 
cooling ecosystem services by urban tree canopies, accounting for the 
variability that operates at the local scale, which can be seamlessly 
integrated with other assessment frameworks for multiple ecosystem 
services, thereby contributing to the advancement of urban 
development and green space design that aims to enhance livability 
and well-being in urban environments.

While our spatially explicit modeling approach demonstrates 
significant spatial variability in cooling effects across urban 
environment, these results require careful interpretation due to 
moderate spatial confounding between SPDE and SVC components. 
This methodological consideration underscores the importance of 
integrating our findings with established ecological principles rather 
than relying solely on model predictions for site-specific interventions. 
Urban planners should prioritize the strategic selection of tree species 
based on functional characteristics that optimize ecosystem service 
delivery under local environmental conditions. Functional traits such 
as high leaf area index, low hydrophobicity, low inclination angles, and 
high surface roughness promote rainfall retention by the canopy 
(Dowtin et al., 2023), while trees with high LAI and wider canopies 
are associated with the greatest daytime cooling benefits (Sharmin et 
al., 2023). Urban forestry initiatives should therefore prioritize broad-
leaved species, large trunk circumferences, tall shapes, low branch 
point heights, wide and large crowns, umbrella-shaped shapes, large 
leaf area density (Li et al., 2025), as these morphological characteristics 
directly enhance the magnitude of cooling benefits while supporting 
climate resilience (Esperón-Rodríguez et al., 2022).

The potential of this research lies in its capacity to inform 
evidence-based urban greening that addresses both environmental 
and social imperatives, though practitioners must acknowledge the 
inherent spatial confounding challenges in spatially varying coefficient 

models when interpreting SVC marginal effects. Achieving Sustainable 
Development Goal 11 requires addressing inequities in access to 
ecosystem services provided by urban trees to ensure a fair distribution 
of environmental benefits across socioeconomic groups (Pereña-Ortiz 
et al., 2025; Ruiz-Valero et al., 2025). Our spatially explicit modeling 
framework provides urban planners with valuable insights into the 
spatial heterogeneity of cooling effects, revealing that context-
dependent responses are fundamental to urban forest performance 
rather than exceptional cases. The sustained delivery of ecosystem 
services depends less on the absolute number of species and more on 
the presence of ecologically functional vegetation and the maintenance 
of interspecific interactions that uphold critical ecological processes 
(Cardinale et al., 2012; Mace et al., 2012; Isbell et al., 2017). This 
principle should guide urban forest management toward fostering 
functional diversity rather than simply increasing tree quantity, 
ensuring that planting efforts contribute meaningfully to urban 
livability and climate resilience.

Looking forward, urban planning must integrate climate-
adaptive species selection with sophisticated understanding of spatial 
ecological processes to create resilient urban forests capable of 
delivering sustained ecosystem services under changing 
environmental conditions. Urban planning and tree selection 
strategies must proactively identify and promote genotypes or 
ecotypes that are best suited to future climatic conditions, thereby 
ensuring long-term planting success and optimizing ecosystem 
service returns on investment (Watkins et al., 2021). Traits such as 
specific leaf area, photosynthetic rate, and water-use strategies 
determine how trees respond to urban stressors like drought, heat, 
and pollution, ultimately shaping their capacity to provide key 
ecosystem services (Esperón-Rodríguez et al., 2020; Cho et al., 2024; 
Ramachandran et al., 2024).

While spatial confounding between SPDE and SVC components 
necessitates cautious interpretation of our SVC marginal effects, the 
broader insights regarding spatial heterogeneity and context-
dependency remain robust and valuable for advancing urban forestry 
practice. This work constitutes a fundamental step toward the 
integration of all previously described factors, together with urban 
geometry operating at the micro-scale, that influence the cooling 
capacity of urban tree canopy. An SVC model within a Bayesian 
hierarchical framework offers substantial advantages over GWR by 
providing a statistically more robust and flexible approach. SVC 
models enable automatic learning of spatial hyperparameters such as 
the length scale of underlying spatial processes, which is critical for 
understanding spatial process characteristics, while GWR relies on 
manual bandwidth selection that is highly sensitive and can produce 
unstable results. Additionally, the Bayesian approach facilitates 
uncertainty quantification through complete posterior distributions 
for both coefficients and out-of-sample predictions. The hierarchical 
Bayesian framework also permits formal incorporation of prior 
knowledge and provides a more solid probabilistic foundation for 
statistical inference. Furthermore, hierarchical models allow the 
inclusion of additional effects, such as SPDE which a priori enables 
better segregation of effects associated with local temperature 
variability from the anisotropy in cooling processes that the SVC 
aims to estimate, a capability that GWR is inherently limited in 
addressing. However, more comparative and field validation studies 
are necessary to fully establish these theoretical advantages in 
practical applications.
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The proposed modeling framework advances a shift away from 
assigning uniform cooling capacities across entire study areas toward 
explicitly accounting for micro-scale characteristics that modulate this 
ecosystem service, thereby enabling more spatially nuanced urban 
forestry decisions. At the same time, further work should 
systematically evaluate alternative approaches to mitigate or avoid 
spatial confounding between SPDE and SVC components to obtain 
robust SVC marginal effect estimates that can be directly applied to 
identify locations with cooling deficits and to target strategic canopy 
enhancement. The transparency of the present study is intended to 
guide future research by foregrounding spatial confounding as a 
central methodological consideration in study design and inference. 
Collectively, this work advances the scientific basis for urban forest 
management by providing a framework that integrates spatial 
variability, as micro-scale environmental factors, and cooling service 
quantification for improved urban canopy planning.

4.1 Limitations and future research 
directions

While the present study has revealed and estimated the local 
effects of tree canopy coverage on LST, there are limitations deserving 
further studies:

	 1	 It is important to note that our findings are based on LST rather 
than air temperature, and as such, not a direct predictor of 
human thermal comfort. LST, however, might represent a 
robust indicator when evaluating heat impacts on humans and 
cities, and for this reason, this parameter has been used in 
numerous urban studies. The results underscore the 
importance of tree cover and its variation at a larger scale. 
Understanding these differences will be crucial for informing 
urban planning strategies aimed at improving thermal comfort 
in urban spaces.

	 2	 The analysis was conducted in a single city, and therefore, 
climate conditions were not considered. As highlighted in the 
scientific literature, background climate has a significant 
impact on surface urban heat (Martilli et al., 2020; Naserikia et 
al., 2022; Li et al., 2024). An important avenue for future 
research would be to extend the current study to other cities 
with varying climatic conditions to assess whether there are 
differences in the statistical distributions of the local 
relationship between canopy cover and LST.

	 3	 While the proposed model does not meet the requirements for 
causal inference, understanding the spatial differences in urban 
tree cooling potential, taking into account urban characteristics 
that influence LST, can complement and enhance our 
understanding of the processes that lead to lower urban 
LST. Therefore, the results highlight the importance of 
considering the effects of the surrounding environment on 
cooling capacities and emphasize the need for localized studies.

5 Conclusion

The urban heat island phenomenon strongly reduces 
thermal comfort in cities, while urban trees provide essential 

ecosystem services that can mitigate these conditions. However, 
cooling benefits are often analyzed at the city scale or assumed 
to be spatially uniform, overlooking evidence that factors 
such as urban form, canopy structure, and species composition 
drive substantial local variability. To date, no work has 
systematically quantified this spatial heterogeneity within a 
framework that also addresses uncertainty and other 
latent processes.

This study advances this field by applying SVC within a BHM 
to account for the fine-scale differences in cooling capacity. The 
results reveal pronounced spatial variability but also demonstrate 
the presence of moderate spatial confounding, warranting caution 
in interpreting localized effects in areas with canopy cover below 
25%, which serves as the threshold used in this study. Future 
research should evaluate the lower reliability limit for SVC 
estimation to establish more robust guidelines for different canopy 
cover conditions. These findings highlight the limitations of 
uniform canopy targets and call for context-sensitive planning 
that considers local environmental conditions.

Future initiatives should prioritize trait-based species 
selection to optimize ecosystem service delivery while ensuring 
equitable access to cooling. At the same time, the methodological 
framework developed here provides a foundation for spatially 
explicit urban forest research, while further refinements are 
needed to address spatial confounding and strengthen causal 
inference. Ultimately, this work supports the design of evidence-
based greening strategies that enhance both climate resilience and 
urban livability.
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