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Urban tree planting should
consider local characteristics:
assessing spatial heterogeneity in
canopy cooling effects on land
surface temperature using
Bayesian spatially varying
coefficient models

Angel Ruiz-Valero, Jaime Francisco Perefia-Ortiz* and
Angel Enrique Salvo-Tierra

Department of Botany and Plant Physiology, Faculty of Sciences, University of Malaga, Malaga, Spain

Introduction: Urban trees are essential for mitigating elevated temperatures in
cities worldwide, with many municipalities implementing large-scale urban tree
planting initiatives. However, the cooling potential of tree canopy coverage is
often estimated as a constant value across study areas, despite evidence that
temperature reductions depend on local characteristics, including tree traits
and urban geometry.

Methods: We evaluated the ability of Bayesian Spatially Varying Coefficient
(SVC) models to capture local variability in the cooling potential of urban trees.
The model, implemented in R-INLA, integrated Landsat 8 and 9 Land Surface
Temperature (LST) data with aerial LIDAR data. Model performance was assessed
using validation metrics obtained through 10-fold spatial cross-validation.
Results: Although the SVC did not outperform simpler spatio-temporal
approaches according to validation metrics, the spatial distribution of local
canopy cooling capacity revealed substantial spatial variability. Average
estimated values of canopy cooling capacity on LST (defined as the change
in LST associated with a 10% increase in tree canopy cover) were —0.28 °C in
vacant lands and -0.09 °C in wooded areas.

Discussion: By providing local estimates, our model underscores how the cooling
capacity of tree canopy in built-up environments varies substantially across space.
This finding demonstrates the importance of accounting for local environmental
characteristics in urban planning and serves as an example of a modeling approach
that integrates both local-scale variability in canopy cooling capacity and spatial
extent. These results encourage policymakers to adopt context-specific strategies
for urban tree planting initiatives rather than applying uniform approaches.
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1 Introduction

Currently, 57.7% of the global population lives in urban areas, a
proportion expected to rise to 67.9% by 2050 (UN, 2025). This rapid
urban expansion is profoundly transforming land use systems, with
consequences for biodiversity and environmental sustainability
(Houghton et al., 2012; Seto et al., 2012; Phelan et al., 2015). Among
its most pressing impacts is the growing threat posed by extreme
temperatures in urban environments, which have resulted in severe
public health crises. The three deadliest extreme heat events of the 21st
century alone have caused nearly 200,000 deaths across Europe
(Robine et al., 2008; Barriopedro et al., 2011; Ballester et al., 2023).
Future projections of urban warming depict an increasingly
concerning scenario, exacerbated by the intensification of the Urban
Heat Island (UHI) effect (Chapman et al., 2017), the rising frequency,
intensity, duration, and spatial extent of heatwaves (Lorenzo et al.,
2021; Domeisen et al,, 2023), and the synergistic interaction between
UHI and extreme heat events (Founda and Santamouris, 2017).

These challenges underscore the urgent need for effective
adaptation and mitigation strategies to address the environmental
issues faced by cities (UN, 2023). The scientific literature has
explored numerous approaches to enhancing urban livability (Yu et
al., 2020). Among these, urban tree planting has gained increasing
recognition as a nature-based solution for mitigating multiple
environmental challenges, primarily due to its capacity to provide
essential ecosystem services (Pataki et al, 2021; Schwaab et
al,, 2021).

The capacity of urban trees to reduce temperatures has been
studied using multiple methods and across different spatial scales.
However, there is often a trade-off between the fine-scale variability
detected in field-based microclimate studies and the broader
extensibility afforded by analyses that rely on remote sensing data. In
general, the greater the analytical detail, the lower the potential to
scale results to larger study areas. Trees improve thermal comfort by
providing shade, reducing surface radiation, and increasing air
humidity through evapotranspiration (Oke et al., 2017). At the local
scale, research suggests that the cooling capacity of urban trees
exhibits substantial temporal and spatial variability (Ziter et al., 2019;
Hallar et al., 2021; Locke et al., 2024; Ettinger et al., 2024). This
variability is influenced both by urban geometry (Tsin et al., 20165
Kelly-Turner et al., 2022; Li et al., 2024; Li et al., 2025) and by tree
traits (Rahman et al.,, 2020; Miedema-Brown and Anand, 2022;
Sharmin et al,, 2023; Alonzo et al., 2025). In this context, mature and
vigorous trees (Endreny, 2018), large-diameter and long-lived trees
(Lindenmayer et al., 2012; Lindenmayer and Laurance, 2016), as well
as trees with fuller crowns and more extensive leaf surface areas
(Gomez-Muioz et al., 2010) provide greater ecosystem services and
consequently enhanced cooling capacity. Functional traits such as
specific leaf area, photosynthetic rate, and water-use strategies
determine how trees respond to urban stressors including drought,
heat, and pollution, ultimately shaping their capacity to provide
cooling (Esperén-Rodriguez et al, 2020; Cho et al, 2024;
Ramachandran et al., 2024). In parallel to these findings, but without
the same level of trait-specific detail, studies employing high-
resolution LST data have also demonstrated high variability in urban
cooling capacity as a function of the local characteristics of the study
unit (Bartesaghi-Koc et al., 2020; Ossola et al., 2021; Xu et al., 2021;
Ahmad et al., 2024; Zhou et al., 2025).
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A substantial body of literature has focused on estimating the
cooling potential of cities associated with increases in urban canopy
cover at the city scale. Given the broad spatial extent of these studies,
it is not feasible to account for fine-scale variability, leading to the
common assumption of homogeneous cooling capacities within cities.
The estimated temperature reductions vary considerably depending
on multiple factors, including whether LST or two-step process
models to estimate air temperature are considered, the extent of
canopy expansion, observational scales, estimation models and
methods, and local climate conditions (Logan et al., 2020; Krayenhoff
et al, 2021; Marando et al,, 2022; lungman et al., 2023; Wang et
al., 2024).

City-level estimates provide a broad overview of the benefits of
increasing tree canopy coverage but fail to capture localized
temperature reduction effects. The capacity of tree canopy expansion
to lower temperatures has also been studied at the block or census
scale to obtain estimates at a scale more operational for urban
planning (Chakraborty et al., 2022; Francis et al., 2023; McDonald et
al., 2024). Similarly, this relationship has been analyzed using grid-
based observational units (i.e., pixel-support) across multiple spatial
scales (Kong et al., 2014; Hou and Estoque, 2020; Yang et al., 2021;
Yuan et al., 2021), primarily capturing the cooling effects associated
with increases in canopy cover within observational units defined by
grid size.

Despite differences in the spatial scale at which estimates of
canopy contributions to temperature reduction have been conducted
(ranging from the city scale, to neighborhoods or administrative units,
or to grid cells) in all cases it is typically assumed that the relationship
between canopy cover and temperature is homogeneous across
observational units. In other words, it is assumed that local factors do
not influence the capacity of the canopy to provide cooling, and that
this ecological process operates uniformly across the city. To account
for the variability documented in microscale studies of urban tree
cooling, several works have considered such heterogeneity as spatial
variability in the cooling capacity of urban canopy cover within
individual cities, although this perspective has received comparatively
limited attention in the literature.

Spatially explicit models that estimate spatially varying coeflicients
offer a valuable framework for analyzing the heterogeneity, or
non-stationarity, of the relationship between canopy cover and LST
(Rollinson et al., 2021). Among these, Geographically Weighted
Regression (GWR) (Fotheringham et al., 2009) and Generalized
Additive Models (GAMs) (Wood, 2017) are commonly used
approaches that provide additional flexibility for modeling complex,
spatially varying covariate effects. GWR requires the a priori
specification of parameters controlling the spatial kernel and
bandwidth, which can heavily influence model outcomes and hinder
interpretability (Finley, 2011). GAMs can accommodate spatial
dependence in covariate effects through linear combinations of basis
functions, yet they also necessitate assumptions regarding the number
and placement of knots, which may lead to over-smoothed and
potentially biased estimates (Stein, 2014). Consequently, intra-city
differences in the cooling effects of urban tree canopy cover have been
examined almost exclusively, so far as we are aware, using GWR (e.g.,
Chen and Lin, 2021; Li et al., 2021; Liu et al., 2022; Francis et al., 2023).

Bayesian Spatially Varying Coeflicient (SVC) models (Gelfand et
al., 2003) offer an attractive alternative, as their hierarchical structure
provides great flexibility for modeling complex data. SVC models
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allow regression coeflicients to vary smoothly across space, employing
Gaussian Process specifications when working with geostatistical data
(Banerjee et al., 2014; Finley and Banerjee, 2020). While Bayesian SVC
models are more complex than the aforementioned approaches, they
offer several advantages: they enable full uncertainty propagation,
eliminate the need for a priori decisions on grid size or parameter
values, and have been shown to outperform GWR in various
simulation and empirical studies (Wheeler and Calder, 2007; Finley,
2011). Moreover, SVCs provide a more straightforward interpretation
of the estimated effect. By allowing the relationship between canopy
cover and temperature to vary across space, SVCs acknowledge that
each observational unit is subject to specific micro-scale influences
and factors, likely reflecting unobserved variables not included in the
model that shape the cooling process, and that this variability and
influence also depend on the spatial proximity among units.
Nevertheless, the flexibility of SVC models can present both
computational and practical challenges. In particular, the Bayesian
frameworK’s requirement to quantify uncertainty for every random
variable often leads to substantial computational costs (Thorson et al.,
2023). State-of-the-art Bayesian methods, such as the Integrated
Nested Laplace Approximation (INLA) framework (Rue et al., 2009),
significantly simplify their implementation and dramatically reduce
computational costs, making them a particularly relevant alternative
for SVC model applications (Bachl et al., 2019).

Urban planners require localized estimates of the cooling capacity
of urban tree canopy cover, as these align with the scale of urban
interventions and planning processes. Additionally, the effects of tree
canopy on temperatures in urban environments are unlikely to be
spatially uniform due to complex interactions with urban geometry
characteristics and the specific tree traits within each observational
unit. Consequently, it is necessary to develop methods that incorporate
this variability in cooling capacity at the micro-habitat scale. In
addition, these methods must allow for full uncertainty propagation
to avoid overoptimistic estimations (Gelman et al., 2013) and the
potential negative and costly consequences that may result (Mannucci
et al., 2023).

In this study, we explore the potential of SVC models as a
modeling tool to account for micro-scale variability in the cooling
capacity associated with increases in canopy cover, which, to the best
of our knowledge, has not been explored yet. This approach allows for
the assessment of spatial variability in the cooling capacity of urban
tree canopy across the entire urban matrix, which we hypothesize that
it models residual variation not accounted by the model due to
unobserved covariables that reflect variation in tree traits and the
urban geometry characterizing each observational unit. The model
leverages Landsat 8-9 LST and aerial LiDAR data, incorporating
uncertainty quantification within a Bayesian framework at an
operational scale of 900 m>.

The Landsat program has provided high-quality, multispectral
spatial data at a global scale for over 50 years. This sustained effort has
greatly advanced the study of key environmental processes, including
climate change, ecosystem monitoring, water resource management,
and forest and agricultural planning (Wulder et al., 2022). With regard
to the use of data from its thermal infrared sensors, and consequently
for LST derived research, Landsat stands out as one of the most widely
accepted and utilized data sources, as highlighted in recent reviews on
UHIs studies (e.g., Li et al., 2023; Rajagopal et al., 2023; Cheval et al,
2024). Moreover, Landsat-derived LST has been widely employed in
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studies addressing environmental sustainability and urban greening
(e.g., Lietal., 2024; Pande et al., 2024).

LiDAR technology has become a fundamental tool in forestry
science, in its various forms including terrestrial laser scanning, aerial
LiDAR, and full-waveform LiDAR, for deriving multiple metrics that
quantify canopy distribution, structure, and complexity (Koenig and
Hofle, 2016; Akerblom and Kaitaniemi, 2021; Coops et al., 2021;
Fassnacht et al., 2023; Balestra et al., 2024). In urban forestry, this
technology is increasingly prominent due to its ability to support the
development of urban tree inventories and to cover larger areas when
aerial LiDAR is employed (Casalegno et al., 2017; Shojanoori and
Shafri, 2016; Zigba-Kulawik et al., 2021; Miinzinger et al., 2022;
Sharma et al., 2025). In this context, LIDAR technology has been
extensively applied across various disciplines and fields within urban
sciences, establishing itself as a fundamental tool for advancing
environmental sustainability (Liu et al., 2019; Kovanic et al., 2023; Xu
etal, 2025). In the present study, discrete-return aerial LIDAR serves
as an essential tool to derive urban forest canopy cover across the
entire urban matrix of the study area.

Our ultimate goal is to provide policymakers and decision-makers
with actionable insights for the strategic integration of urban trees into
planning processes, taking into account potential spatial differences
in cooling effects and associated uncertainties. We aim to support the
development of sustainable, resilient, and healthy urban environments
while contributing to climate change adaptation efforts.

2 Materials and methods

2.1 Study area

Milaga has a population of 591,637 inhabitants, making it the
sixth most populated city in Spain (INIS, 2024). It is a coastal city
characterized by warm summers and mild winters, with an average
annual temperature of 18.5°C and an average annual total
precipitation of 534 mm (SMA, 2025). The urban matrix of Malaga
was selected as the study area (Figure 1). Two datasets were used for
this delineation: (1) The Urban Information System (UIS, 2024),
which serves as the primary reference for urban planning and land
classification in Spain. “Urban land” and “general systems” located
within urban areas were considered. (2) SIOSE-AR (NIG, 2017), a
local land use database, was used to extract areas classified as

» «

“non-built land,” “highways and expressways,” “roads” and “urban
streets” within the zones identified in the previous step. This ensured
the creation of a continuous and gap-free surface representing the
urban matrix. This vector-based information was rasterized and
co-registered to a pixel size of 30 x 30 m, matching the Landsat

resolution, to ensure full alignment of the study area with the LST grid.

2.2 Landsat 8 land surface temperature

Landsat 8 and 9 Collection 2 Level 2 Tier 1 data (USGS, 2020) was
accessed using Google Earth Engine (Gorelick et al., 2017) via rgee
package v.1.1.7 (Aybar et al.,, 2020). LST is reported in Kelvin on a
30 m grid, consistent with shortwave datasets, despite the raw thermal
infrared data having a coarser nominal resolution of 100 m (Crawford
etal, 2023). All available images of the study area from 2022 and 2023
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FIGURE 1

Geographic Location of the Study Area focusing on the urban matrix. The background information includes data from the Spanish National
Geographic Institute for the boundaries of Spain and its municipalities. The orthophotography used is from the 2022 National Plan for Aerial
Orthophotography project (NIG, 2022). Map represented in coordinate reference system: EPSG 25830.
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(n = 262) were selected for analysis. The Landsat Collection 2 Quality
Bands were used to mask pixels affected by cloud cover, cloud
shadows, cirrus, radiometric saturation, or atmospheric aerosols in
each image. Seasonal means were computed based on the standard
meteorological seasons: spring (March 1 — May 31), summer (June
1 - August 31), autumn (September 1 — November 30), and winter
(December 1 - February 28/29).

2.3 Description of the covariables

LST for each season was used as the response variable in the
modeling process. Each observational unit was defined based on
Landsat pixels, represented as grid cells with a spatial resolution of 30
x 30 meters. Higher-resolution covariates were aggregated to match
the spatial scale of these observational units. The following datasets
were used to generate the model covariates.

1) Cadastral data (CEO, 2024): Spatial information on building
footprints was downloaded and processed to calculate the
percentage of each observational unit occupied by buildings.

2) SIOSE-AR (NIG, 2017): This dataset was used to generate
compositional data at the pixel level due to its scale of 1:1000-
1:5,000 m. The percentage of each pixel occupied by vacant
land or bare soil was calculated, considering its significant
influence on surface UHIs in Mediterranean climates (Unal
Cilek and Cilek, 2021). The following land cover classes were
reclassified as vacant areas: “non-built land,” “paths and trails;
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» <

“meadows,” “grasslands,” “grassland-shrubland,” “shrubland”
and “bare or sparsely vegetated land”

3) Variables derived from Second Cover aerial LIDAR data from
PNOA (NIG, 2022): The lidR package v. 4.1.2 (Roussel et al.,
2020; Roussel and Auty, 2024) was used for point cloud data
processing. Canopy height models with a 1 m resolution were
developed, applying a minimum height threshold of 3 mand a
maximum of 30 m to identify trees and avoid the inclusion of
misclassified objects. Canopy cover per pixel was calculated as
the area occupied by tree crowns.

LiDAR classes “low vegetation” and “medium vegetation” were
used to derive the area occupied by permeable surfaces per pixel,
excluding the area covered by the tree canopy. The “soil” class was
rasterized as a separate layer, as it includes information on bare soil
and artificial surfaces, representing the actual land surface while
excluding elevated structures and vegetation.

Impermeable surface coverage was defined as the non-overlapping
pixels of the rasterized soil layer with the permeable surfaces and
vacant land polygons, and also excluding building footprints. Thus,
the simplex variable representing land surface composition (i.e.,
variables summing up to one) was defined by the proportions of
vacant land, permeable surfaces, impervious surfaces and building
area. Canopy cover was not included as a component of this simplex
covariate, as tree crowns operate on a different horizontal plane and
do not directly on the ground surface.

Additionally, information on building heights was extracted from
the LiDAR data. The height of each building footprint was calculated
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as the mean height of pixels contained within it. At the observational
unit level, the average building height was computed.

4) Urban Atlas (EEA, 2018): The land use categories were

» «

reclassified into the following classes: “roads,” “water surfaces,”
continuous urban fabric with >80% sealing level (s.l.)
“discontinuous high-density urban fabric (50-80% s.1.);
“discontinuous medium-density urban fabric (30-50% s.1.),”
“discontinuous low-density urban fabric (10-30% s.l.);
“discontinuous low-density urban fabric (<10% s.l.)”

» <« » <«

“industrial areas,” “green urban areas,” “seasonal vegetation or
vacant lands,” “herbaceous crops” and “woody crops.” A spatial
sieve with queen contiguity in a 90 x 90 moving window was
applied to the reclassified product to capture the local

environment (Bechtel et al., 2015; Demuzere et al., 2020).

To avoid correlation and collinearity among explanatory variables,
Pearson’s correlation coefficient and the generalized variance inflation
factor (GVIF) were computed prior to model implementation using
the car R package (v.3.0-12) (Fox and Weisberg, 2019). Pairs of
variables with high correlation (Pearson’s r > 0.6) or high GVIF (GVIF
> 5) were identified, and only one variable per pair was retained in the
model. None of the covariates exceeded these thresholds, with the
maximum observed values being —0.57 for correlation and 1.96 for
GVIE As a result, the final set of selected covariates comprised the
following: land use and land cover (LULC) classes, canopy cover,
impermeable cover, building cover, vacant land cover and mean
building height. The vertical stratification of percentual covariables
prevents the formation of a closed compositional system. Tree canopy
cover is quantified as the vertical projection of crown area onto the
ground surface. This measurement operates in a different vertical
plane dimension than the ground-cover fractions (impervious,
building, vacant, and pervious surfaces), which sum to 100% at
ground level. Crucially, tree canopy can overlap with pervious,
impervious, and vacant surfaces, only building footprints exclude
trees due to their vertical structure. Because we exclude the pervious
surface variable from the model (to avoid perfect collinearity within
the ground-cover simplex), and because tree canopy is not part of the
ground-cover compositional constraint, the remaining covariates
(impervious, building and vacant) do not sum to 1. Finally, to facilitate
model fitting in R-INLA, all numerical covariates were standardized
(z-score transformation).

2.4 Spatially varying coefficient model
specification

Bayesian Hierarchical Models (BHM:s) are widely used in spatial
statistics due to their capacity to account for spatial autocorrelation by
incorporating spatially structured priors on random effects (Banerjee
etal, 2014). A Latent Gaussian Model, which can be considered a type
of BHM with an additive structure for the linear predictor and
observed data modeled through a likelihood function that depends
only on the value of the linear predictor, was implemented using the
Integrated Nested Laplace Approximation framework and the INLA
R package (v.22.12.16) (Rue et al., 2009).

It was hypothesized that the spatial effects to be modeled, the
SPDE component (Stochastic Partial Differential Equation, used to
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approximate a Gaussian Field as a Gaussian Markov Random Field)
(Lindgren et al., 2011), representing a spatially varying intercept, and
the SVC component, operate at different spatial scales. Specifically, the
SPDE effect was assumed to capture broader-scale spatial variation,
while the SVC component, reflecting spatial heterogeneity in the
relationship between canopy cover and LST, was expected to operate
at a more localized scale, driven by stand-level differences in urban
geometry and environmental conditions. To account for these
differences in spatial scale, two meshes were defined. (1) SPDE Mesh.
A range of 1,395 m, defined as the distance at which the correlation
drops to approximately 0.13, was selected. This range was estimated
by fitting an exponential semivariogram to LST for each season
independently using the gstat R package v.2.0-7 (Pebesma, 2004).
Following recommendations that the maximum allowed triangle edge
length in the Delaunay triangulation should be around one-third to
one-tenth of the range (KKrainski et al., 2018), a maximum edge length
of 300 m was chosen. The minimum distance between points was
defined as one-third of the largest allowed triangle edge length. The
offset was set to c(100, 300) to provide an inner extension of 100 m
and outer extension of 300 m from the boundary. The cutoff distance
was defined as 60 m (one-fifth of the largest allowed triangle edge
length) to prevent the creation of excessive small triangles around
clustered data locations while maintaining adequate spatial resolution.
(2) SVC mesh. Constructed using a prior range of 300 m. The
maximum triangle edge length in the Delaunay triangulation was
fixed at 100 m, and the minimum spacing between points was set to
60 m. We used the same offset parameters and cutoff as in SPDE mesh.
For both meshes, the minimum angle between triangle edges was
constrained to 21°, the recommended threshold to avoid
ill-conditioned triangulations containing overly elongated triangles
that could compromise numerical stability.

According to best practices in the species distribution modeling
field, it is always recommended to compare the results obtained
through SVC models with simpler models, as such comparisons can
reveal the level of support for the SVC model (Doser et al., 2024). To
ensure a robust analysis, 14 different models were compared, ranging
from simpler linear regression models without spatial effects to more
complex spatio-temporal models. Details on these models can be
found in Supplementary Table S.1 and Supplementary Equation S.1
describes M8 model structure, as it achieved the highest performance
among the different SVC structures tested. Furthermore, it
encapsulates the mathematical framework of the simpler models
evaluated, which exhibited similar or superior validation metrics
compared to M8. Finally, comparisons of best-performing INLA
models with GAM and GWR models can be found in
Supplementary Material 3.

2.5 Model selection and validation

Following Doser et al. (2024), spatial cross-validation was
implemented to explicitly test the extrapolation ability of SVC models
to new geographical regions. A 10-fold spatial blocking approach was
employed using the blockCV R package v2.1-4 (Valavi et al., 2019),
with blocks assigned systematically to cross-validation folds to ensure
even spatial distribution of training and testing data. The blocking
distance of 850 m was determined based on the effective range of
spatial autocorrelation in model residuals from a preliminary linear
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model (388,64 m), following Roberts et al. (2017) guidelines that
blocking distances should substantially exceed the autocorrelation
range to obtain unbiased error estimates. This distance ensures spatial
independence between training and testing sets, preventing the
overoptimistic performance estimates commonly observed when
spatial dependence is ignored. The representation of the spatial block
partitioning can be found in Supplementary Figure 1.

Model predictive performance was evaluated using both
traditional metrics (coefficient of determination R% Root Mean
Squared Error RMSE) and Bayesian coverage metrics that assess
uncertainty quantification reliability. The Bayesian metrics include: (i)
the proportion of observations within the 95% highest posterior
density interval (HPDI) of the linear predictor (p-LP-HPDI), which
evaluates systematic model uncertainty, i.e., the extent to which the
linear predictor is correctly specified and, consequently, able to
capture the observed value for each test set observation within its
credibility intervals, and (ii) the proportion of observations within the
95% HPDI of the posterior predictive distribution (p-HPDI-PPD),
which incorporates all sources of uncertainty including observation
error. Well-calibrated models should not exhibit a strong imbalance
between these two metrics. A situation in which the p-LP-HPDI is
much lower than the p-HPDI-PPD reflects a linear predictor that is
unable to model the data correctly. Consequently, all residual
variability is captured by the standard deviation of the Gaussian
likelihood, resulting in a PPD with wide intervals that encompass the
observations, while the credibility intervals of the linear predictor
remain insufficiently to contain them.

The final model selection was based on a comprehensive
evaluation prioritizing RMSE and p-LP-HPDI performance metrics,
which provide the most direct assessment of predictive accuracy and
systematic uncertainty quantification without the effects of excessive
residual variability that might be captured in p-HPDI-PPD. This
approach aligns with Occam’s razor principle, favoring parsimonious
models that achieve optimal performance without unnecessary
complexity. Following established statistical learning principles
(Hastie et al., 2009; Sterkenburg, 2024), the selected model represents
the optimal balance between predictive performance and model
complexity. This selection strategy ensures that the chosen model
generalizes effectively to new spatial regions.

3 Results
3.1 Model comparison

The model selection process favors models incorporating
spatially structured effects (M2-M14) over the simple linear regression
model (M1), which does not account for spatial -effects
(Supplementary Table S.1). The p-PPD-HPDI metric, which captures
the model’s ability to generate simulations, suggests that M1 is the
most capable of reproducing the analyzed dataset. However, when
assessing p-LP-HPDI, M1 produces probabilistic predictions whose
95% HPDI contains the observed LST value for only 1.3% (4,958) of
the observations. This indicates that the latent process modeled by the
linear predictor fails to capture the dataset’s variability. The linear
predictor’s insufficient capacity to model the underlying process
suggests that the unexplained residual variability is absorbed into the
PPD through a higher standard deviation of the gaussian likelihood.
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Among the models incorporating spatial effects, the results reveal
the following patterns. (1) Models that include only SVC effects but do
not incorporate SPDE effects (M6, M13, M14), exhibit the worst
performance among the tested models. Except for p-LP-HPDI and
WAIC, all other evaluation metrics yield lower values compared to M1.
(2) The inclusion of separable spatio-temporal SPDE effects improves
predictive performance relative to models where the SPDE is estimated
to be invariant in time. This improvement is observed both when an SVC
effect is included (M8 vs. M7) and when it is not (M4 and M5 vs. M3).
In models incorporating SPDE but not SVC, estimating SPDE
independently via an i.i.d. structure for each season, rather than using an
autoregressive process, results in higher predictive performance and a
lower computation time of 1.15 h. Additionally, this approach increases
computation time by only six minutes compared to a model where the
SPDE is estimated invariant in time. (3) Incorporating space-time
separable SVC effects does not improve predictive performance,
regardless of the structure of the SPDE effect (M8 vs. M9, M10, M11, and
M12). The seasonal variation in the data is effectively captured by the
SPDE spatial pattern adjusted for each season, rendering the added
complexity of temporal effects in the SVC estimation unnecessary.

M4 emerges as the model with the highest predictive capacity,
followed by M5, M8, and M3. To illustrate the variation in estimated
effects and predictions across different model structures, the results for
M1, M3, M4, and M8 are presented. M1 is included as a baseline model
to assess the impact of not incorporating SPDE or SVC effects. M3 is
considered to evaluate the effect of not accounting for temporal
variations in the estimation of the SPDE. M4 is presented as it achieved
the best overall performance. M8 is included as the highest-performing
SVC model type among those evaluated. In general, the results in Figures
and Tables, both in the manuscript and in the Supplementary material,
are presented for all four models under analysis. However, the textual
presentation of the results is focused on the two models of interest, M4
and M8. In addition, model residual diagnostics are specifically reported
for M4 and M8 and can be consulted in Supplementary Figures 5.2-5.5.
These models were selected because they represent, respectively, the
highest-performing model and the SVC model whose advantages are the
subject of assessment.

3.2 Fixed effect estimates

The effects derived from models M1, M3, M4, and M8 are
estimated with narrow 95% credible intervals (Table 1). Only the
random effect associated with the varying intercept for the autumn
season includes zero within its credible interval, suggesting that,
during this season, there may be no significant deviation in average
LST from the mean across the study area.

The inclusion of SPDE effects in the structure of the BHM results
in a general reduction of the estimated magnitudes for the effects.
Despite this reduction, the directionality of the covariate effects on
LST remains consistent across models. An exception is observed in
the effect of impervious surface cover, where M4 estimates a negative
relationship, while model M8 indicates a positive effect. The inclusion
of a temporal effect through a separable space-time model (i.e.,
moving from a purely spatial model, M3, to a space-time model, M4),
or the incorporation of an SVC effect once a spatial or space-time
component is already present (M8), does not substantially modify the
posterior estimates of the fixed effects.
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TABLE 1 Comparison of estimated effects across models.

Effect estimates

M1

M3

M4

10.3389/ffgc.2025.1644486

M8

Intercept 29.16 [24.84, 32.61] 29.49 [24.34, 33.32] 30.01 [26.41, 33.12] 30.01 [26.41, 33.12]
Roads i) 1.03 [1.01, 1.06] 0.11 [0.09, 0.13] 0.11 [0.1,0.12] 0.11 [0.1,0.12]
Water yoq) —2.64 [-2.72, =2.57] ~0.73 [<0.79, —0.68] —0.74 [-0.77, =0.7] —0.74 [-0.77, =0.7]

D. L. D. Urb. (S. L: 10-30%) i)

—~1.15[-1.18, =1.11]

—0.07 [-0.1, —0.03]

—0.07 [-0.09, —0.05]

—0.07 [-0.09, —0.05]

Green urban areas )

—0.61 [-0.64, —0.57]

—0.13 [-0.16, —0.1]

—0.13 [-0.15, —0.12]

—0.13 [-0.15, —-0.12]

D. H. D. Urb. (S. L.: 50-80%) i)

—0.23 [-0.25, -0.2]

—0.04 [—-0.06, —0.02]

—0.04 [-0.05, —0.02]

—0.04 [-0.05, —0.02]

Seassonal vegetation (yic

1.05 [1.02, 1.07]

0.15[0.13,0.17]

0.15[0.14, 0.17]

0.15[0.14, 0.17]

D.L.D Urb. (S. L.: < 10%) 11y

—1.13 [-1.19, —-1.07]

—0.05 [-0.1, 0.01]

—0.05 [—0.08, —0.02]

—0.05 [—0.08, —0.02]

Industrial areasy i

2.42 [2.4,2.44]

0.29 [0.27, 0.31]

0.29 [0.28, 0.31]

0.29 [0.28, 0.31]

D. M. D. Urb. (S. L.: 30-50%) i)

~0.95 [-0.98, —0.92]

~0.06 [—0.09, —0.03]

~0.06 [0.08, —0.04]

~0.06 [0.08, —0.04]

Herbaceus crops juiq

1.52 [1.48, 1.56]

0.120.09, 0.16]

0.13[0.1,0.15]

0.13{0.1,0.15]

Woody crops iy

0.66 [0.57, 0.74]

0.22[0.13,0.3]

0.22 [0.17, 0.28]

0.22 [0.17, 0.28]

Impermeable surface (%)

(AX = 30%)

—0.08 [—0.09, —0.08]

—0.01 [—0.01, 0]

—0.01 [—0.01, —0.01]

0.01 [0.01, 0.02]

Vacant land surface (%)

(AX =30%)

0.06 [0.05, 0.06]

0.02 [0.02, 0.03]

0.03 [0.02, 0.03]

0.03 [0.02, 0.03]

Building surface (%) (AX = 30%)

0.04 [0.03, 0.05]

0.03 [0.02, 0.03]

0.03 [0.02, 0.03]

0.01 [0, 0.01]

Building height (m) (AX = 15 m)

—0.29 [-0.31, —0.27]

—0.09 [—0.1, —0.08]

—0.09 [—0.1, —0.08]

—0.06 [—0.07, —0.05]

Canopy cover (%) (AX = 10%)

—0.13 [-0.19, —0.08]

Canopy cover ying (%) (AX = 10%)

—0.33 [-0.33, —0.31]

—0.08 [—0.09, —0.07]

—0.06 [—0.06, —0.06]

Canopy cover gmmer (%) (AX = 10%)

—0.52 [-0.53, —0.51]

—0.28 [-0.29, —0.27]

—0.09 [—0.09, —0.09]

Canopy Cover(yuam (%) (AX = 10%)

—0.39 [<0.4, —0.38]

~0.15 [—0.15, —0.13]

—0.07 [=0.07, =0.07]

Canopy coverjyiey (%) (AX = 10%)

0.01 [0, 0.02]

0.26 [0.25, 0.27]

—0.03 [=0.03, —0.03]

SPring feasson)

4.19[0.72, 8.49]

4.46 [0.63, 9.6]

3.72 (0.59, 7.33]

3.72(0.59, 7.33]

Summer (segsson)

13.39[9.93,17.7]

13.67 [9.84, 18.81]

13.18 [10.05, 16.78]

13.18 [10.05, 16.78]

Autunm (eagon

2.86 [-0.61,7.16]

3.14 [-0.69, 8.28]

2.69 [-0.44, 6.29]

2.69 [—0.44, 6.29]

Winter (seasson)

—10.56 [—14.03, —6.26]

—10.28[-14.11, —5.14]

—10.65 [—13.78, =7.05]

—10.65 [-13.78, —7.05]

[LULC]: indicates the estimated effect for each category of the categorical land use and land cover variable [spring, summer, autumn, winter]: indicates canopy cover effect for that season
estimated by partial pooling [season]: indicates the seasonal random effect. SL, Sealing level; DHD, discontinuous high density; DMD, discontinuous medium density; DLD, discontinuous low
density. The marginal effect of each covariate is presented as its mean value, accompanied by the 0.025 and 0.975 quantiles of its posterior predictive distribution. AX represents the increment

in the covariate that leads to a corresponding AY change in land surface temperature (LST).

Given the z-score standardization of the continuous covariates
and the selection of “Continuous Urban Fabric (s.l. >80%)” as the
reference category for the LULC covariable, the model intercept
represents observational units characterized by this specific land
use type and average values for all continuous covariates.
Accordingly, and under ceteris paribus conditions (i.e., holding all
other covariates constant), the land use types “Road Areas,
“Seasonal Vegetation or Bare Ground, “Industrial Areas,
“Herbaceous Crops” and “Woody Crops” exhibit, on average,
higher LST relative to the reference category. As expected,
“Industrial Areas” show the highest marginal LST among all LULC
categories considered. LULC associated with lower average LST
than “continuous urban fabric” include: “water surfaces,” “green
urban areas;,” “discontinuous high-density urban fabric (s.l.
50-80%),” “discontinuous medium-density urban fabric (s.l.
30-50%)” and “discontinuous low-density urban fabric (s.l. <10%).”
Among these, “water surfaces” show the most pronounced LST
difference relative to continuous urban fabric, with estimated
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average differences of approximately —0.75 °C. “Green urban areas”
exhibit the second-largest difference in LST in models M3-M8.

For the compositional variables related to impervious surface,
building-covered surface, and vacant land surface, all four models
estimate effects with a high probability, as indicated by 95% credibility
intervals not including zero, but with limited practical significance due
to the small magnitude of the estimates. Observational units with a
higher fraction of vacant or building surface are associated with higher
LST values, regardless of the LULC category they belong to. Contrary
to expectations, M4 estimates a negative relationship between
impervious surface fraction and LST, whereas model M8 estimates a
positive relationship.

Regarding the influence of canopy cover on LST, i.e., the linear
cooling capacity effect on LST associated with an increase in tree canopy
coverage within an observational unit, there is substantial variation
across seasons and between models. In the case of M8, only the global
effect of canopy cover is presented, since models incorporating SVC
structures typically model the coefficient as the sum of a global effect (an
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average parameter for the entire study area) and the SVC term that
captures local deviations from this mean, presented in later sections.
According to M8, a 10% increase in canopy cover per 900 m’
observational unit, under ceteris paribus conditions, is associated with
an average decrease in LST of —0.13 °C [-0.19 °C, —0.08 °C]. For M4, a
drastic reduction in the estimated cooling capacity is observed, with a
negative effect estimated with 95% credibility. However, its magnitude is
low, with an average LST decrease of 0.03 °C per 10% increase in canopy
cover during winter, and a maximum decrease of 0.09 °C per 10%
increase observed during summer.

3.3 Hyperparameter estimates

Increasing model complexity results in a decrease in the standard
deviation of the gaussian likelihood (Table 2), primarily due to the
greater variability captured by the linear predictor. As observed in the
canopy cover effect estimates reported in Table 1, when SPDE effect is
included, there is a decrease in the standard deviation of the varying
slope effect for canopy cover. The posterior mean of the standard
deviation for the seasonal effect-generating distribution is similar across
models. However, in the case of M4, a greater increase, particularly in
the 97.5% quantile, is observed. This may be attributed to the high
flexibility introduced by the i.i.d. estimation of the SPDE, which allows
the SPDE effect to capture more specific variation from each seasson,
thereby making the estimation of the seasonal effect more challenging.
Model M8 seasonal effect exhibits a slightly lower average standard
deviation, potentially due to the inclusion of the SVC effect, which may
be capturing variability that would otherwise be captured by the
seasonal effect. M8 shows higher values estimated than M4 for both the
range and marginal standard deviation, likely because the SPDE effect
in this model is capturing variability at a broader spatial scale due to the
concurrent inclusion of the SVC effect. For the SVC effect, the estimated
range suggests a localized influence within approximately 200 meters.
Its marginal standard devitation indicates the existence of geographic
heterogeneity in the relationship between canopy cover and LST.

3.4 Predicted spatial patterns of land
surface temperature

Model M8 effectively captures and reconstructs the observed
spatial pattern of LST for each season, displaying relatively low

10.3389/ffgc.2025.1644486

prediction uncertainty and a narrow residual range. Results for M8 are
presented as the observed LST values along with the mean, 2.5, and
97.5% quantiles of the posterior distribution of the linear predictor;
prediction uncertainty, expressed as the difference between quantiles;
and residuals for spring, summer, autumn, and winter (Figures 2-5).
For comparison purposes regarding predictive performance across
models M1, M3, M4, and M8, Supplementary Figures 5.6-5.8 show
the predictions, uncertainties, and residuals disaggregated by season.

Both M4 and M8 successfully capture the smoothed spatial
pattern of LST distribution (Supplementary Figure 5.6). These
advanced models adequately represent the full range of observed LST
values for each season, avoiding the constrained predictions around
mean values that characterize simpler modeling approaches.

The highest uncertainty among M4 and M8 across seasons for the
linear predictor reaches 1.85 °C (Supplementary Figure S.7). The
spatial uncertainty patterns in both models are primarily driven by the
mesh used in the modeling process, a common feature of INLA-SPDE
models. Both M4 and M8 provide realistic uncertainty estimates that
appropriately capture the observed variations in LST, as evidenced by
their respective p-LP-HPDI values in Supplementary Table S.1.

The spatial pattern of residuals demonstrates the effectiveness of
both M4 and M8 in generating reliable predictions for the study area
(Supplementary Figure S.8). Both models display a spatial residual
pattern tightly centered around zero, with the main deviations
localized in the southwest of the study area. Differences in the spatial
residual patterns between M4 and M8 are minimal, and importantly,
no structured spatial patterns emerge in either model, indicating their
success in capturing the underlying spatial processes. This absence of
systematic residual patterns confirms that both approaches effectively
model LST across seasons.

3.5 Spatially varying coefficient model
effect estimates

The spatial pattern of the local effect estimates of canopy cooling
capacity on LST (hereinafter referred to as local effects) is presented
in Figure 6. These local effects were computed as the sum of the
posterior distribution of the global canopy cover effect and the
spatially varying deviations estimated for each observational unit
through the SVC component. Mathematically, the units of the effects
are reported as the variation in LST for a 10% increase in tree canopy
cover. The spatial pattern of the local effect estimates shows high

TABLE 2 Comparison of posterior distributions of hyperparameters across models.

Hyper parameter MO M3 M4 M8
Standard deviation of the Gaussian Likelihood 1.90 [1.89, 1.90] 1.06 [1.06, 1.06] 0.67 [0.67, 0.67] 0.47 [0.47, 0.48]
Standard deviation of the partial pooling effect on canopy cover 0.90 [0.44, 1.59] 0.29[0.17,0.51] 0.15 [0.06, 0.31] -
Standard deviation of the seasonal effect 11.41 [5.77,21.12] 12.66 [6.71, 19.7] 16.54 [6.86, 43.04] 8.3 [4.82, 15.84]

Range of the SPDE effect - 551.51 [513.05, 591.46] 580.06 [557.39, 600.51] 708.17 [680.1, 736.63]
Marginal spatial standard deviation of the SPDE effect - 1.95 [1.86, 2.04] 2.09 [2.04, 2.14] 2.32[2.24,2.41]
Temporal autocorrelation of the SPDE effect - - - 0.89 [0.88, 0.9]

Range of the SVC effect

202.73 [194.38, 211.15]

Marginal spatial standard deviation of the SVC effect

1.65 [1.61, 1.68]

The mean value, along with the 0.025 and 0.975 quantiles of the posterior distribution, is presented.
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FIGURE 2
Model M8 results for the spring season. (A) Observed mean Land Surface Temperature (LST) values during spring; (B) Posterior mean of the linear
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.

spatial variability, especially when considering the representation of
the quantiles (Figures 6A-C). It is important to note that areas with
higher localized effects are associated with high uncertainty, reaching
up to 3 °C of LST cooling (Figure 6D). These areas are generally linked
to regions with low canopy cover and are primarily located in the
western part of the study area, coinciding with the airport area, the
northwest corresponding to significant vacant land zones, and the
southern and southeastern areas related to the Guadalhorce river
mouth and port areas, respectively. According to the estimates, for
areas with a 95% probability of presenting a localized cooling effect
different from zero (Figure 6E), zones with high-magnitude estimates
continue to be significant (Figure 6F).

Frontiers in Forests and Global Change

Local effect estimates of canopy cooling capacity are also
represented according to LULC type (Figure 7), and their spatial
pattern is shown in Supplementary Figure S.9. Considering the
uncertainty in the estimation of the SVC effects, represented in
the statistical distributions of the population of significant effects
in the study area through the mean and the 2.5 and 97.5%
quantiles of the posterior distribution of the local effects, it is
determined that, firstly, vacant lands, and secondly, green spaces,
exhibit the greatest variability in local cooling effects (Figure 7).
Distributions of posterior metrics for local effects for vacant lands
display greater differences than those for green urban areas or
areas with over 25% canopy cover (hereinafter referred as wooded
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FIGURE 3
Model M8 results for the summer season. (A) Observed mean Land Surface Temperature (LST) values during summer; (B) Posterior mean of the linear
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.

areas), as reflected by their lower overlap in distributions.
Specifically, the distribution of local effects in vacant lands shows
an average cooling of —0.28 °C, with a 50% coverage interval (CI)
of —1.39 °C to 0.71 °C, and 95% CI of —3.34 °C and 2.47 °C. In
green urban areas, the mean of the local effects is —0.16 °C, with
a 50% CI of —0.68 °C to 0.25 °C and a 95% CI of —2.54 °C to
1.57 °C. In contrast, wooded areas show less heterogeneous and
lower-magnitude local effects compared to areas the other areas,
contrary to expectations. The distribution of local effects is
characterized by an average of —0.09 °C, a 50% CI ranging from
—0.254 °C to —0.06 °C, and a 95% CI spanning from —0.496 °C to
0.318 °C.

Frontiers in Forests and Global Change

4 Discussion

The potential of urban trees to regulate temperature is widely
acknowledged, with forested green spaces exhibiting lower
temperatures compared to non-treed areas (Bowler et al., 2010; Gago
et al., 2013; Schwaab et al, 2021). Trees mitigate the urban heat
primarily through shading and transpiration, with the magnitude of
these effects largely depending on tree-specific traits (Rahman et al.,
2020). The effectiveness of these cooling mechanisms varies across
space and time (Alonzo et al, 2021) and interacts with other
components of the built environment (Tsin et al., 2016; Ziter et
al,, 2019).
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FIGURE 4
Model M8 results for the autumn season. (A) Observed mean Land Surface Temperature (LST) values during autumn; (B) Posterior mean of the linear
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.

In situ studies of air temperature cooling associated with canopy
cover show mixed results, particularly depending on the spatial scale
or buffer radius considered around temperature measurement points.
Ziter et al. (2019), in Madison, Wisconsin, observed a non-linear
decrease in air temperature with increasing canopy cover. Their
findings indicated a mean air temperature reduction of 0.7 °C when
increasing canopy cover from 0 to 100% within a 10 m radius,
compared to a 1.3 °C decrease at a 30 m radius, and >1.5 °C when
using 60- or 90-m radii. Similarly, Ettinger et al. (2024), working in
South Tacoma, Washington, found a reduction of 0.01 °C per 1%
increase in field-measured canopy within 10 m. Locke et al. (2024), in

Frontiers in Forests and Global Change

New Haven, Connecticut, determined that a 100% increase in tree
canopy cover resulted in air temperature reductions of approximately
0.375 °C between 8:00 and 11:00, and 0.75 °C between 11:00 and
14:00, with no statistically significant effects observed after 14:00, all
within a 10 m radius. Under a 90 m buffer, the temperature reductions
were more substantial: —1.62 °C at midday, —1.19 °C in the afternoon,
and —1.15 °C in the morning for a change from 0 to 100% canopy
cover. The increased magnitude of cooling effects observed at larger
spatial scales may reflect the influence of confounding variables, such
as urban geometry or broader atmospheric processes. These factors
could potentially lead to overestimations of tree canopy cooling
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Model M8 results for the winter season. (A) Observed mean Land Surface Temperature (LST) values during winter; (B) Posterior mean of the linear
predictor; (C) Posterior 2.5% quantile of the linear predictor; (D) Posterior 97.5% quantile of the linear predictor; (E) Prediction uncertainty, defined as
the difference between the 97.5 and 2.5% quantiles; and (F) Residuals, calculated as the difference between observed LST values and the posterior
mean of the linear predictor. All maps are represented in the EPSG:25830 coordinate reference system.

effects, as cooling effects are expected to be more detectable at smaller
buffer distances, where temperature measurements occur closer to the
actual tree cover and its direct influence.

Regarding high-resolution LST studies, available results are more
limited. Bartesaghi-Koc et al. (2020), in Sydney, Australia, observed
LST differences of up to 12 °C depending on their proposed typology
of green infrastructure. However, they did not conduct a statistical
analysis to assess the marginal effect associated with tree canopy cover
increase. Ossola et al. (2021), in Adelaide, Australia, found that tree
canopy cover had no significant effect on LST at the suburb scale.
When analyzing the relationship using buffers around building
footprints, they observed an approximate decrease of 0.3 °C per 10%
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increase in tree canopy cover at a 30 m radius. This effect was reduced
to less than 0.1 °C for 60 m buffers and was not detectable at 90 m.
To extend the estimation of tree canopy cooling effects to broader
spatial extents, numerous studies have employed satellite-derived
LST, either directly or as part of a two-step modeling workflow to
estimate air temperature, across various spatial scales (e.g., city-wide,
census tracts, urban blocks, grid cells). These studies consistently
report average cooling effects across the study area. At the city scale,
in a review analyzing air temperature reductions from street trees, it
was found that a 10% increase in canopy cover could reduce air
temperature by an average of 0.3 °C (Krayenhofl et al., 2021).
Schwaab et al. (2021) estimated LST differences using GAMs,
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FIGURE 6
Local effect estimates of canopy cooling capacity as variation in land surface temperature resulting from a 10% increase in tree canopy cover,
calculated as the sum of the posterior distributions of the global effect for canopy cover effect and the local deviations per observational unit
estimated by the SVC effect. (A) Posterior mean; (B) Posterior quantile 2.5%; (C) Posterior quantile 97.5%; (D) Posterior uncertainty as the difference
between the 97.5 and 2.5% quantiles; (E) Significance, understood as local effect estimates whose 95% credibility intervals do not contain zero, i.e.,
estimates with a 95% probability of being non-zero. Negative and positive indicate the direction of the relationship; (F) Posterior mean of the local
effects for observational units whose effects are estimated as significant.

comparing predicted LST under a hypothetical scenario of 0% tree
canopy cover with those under 100% cover. They reported LST
reductions ranging from 0 °C to 4 °C across Southern European
regions. Marando et al. (2022) found that air temperature reductions,
modeled using LST, ranged from —2.9 °C to 0.4 °C across European
Functional Urban Areas as a result of increased canopy cover.
Chakraborty et al. (2022) estimated an average LST reduction
ranging from 0.3 °C to 1.8 °C, depending on the urban afforestation
scenario implemented across 81 cities. lungman et al. (2023)
developed a two-step regression approach to estimate potential
cooling capacity, first by quantifying LST reduction due to urban
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trees and then converting that to air temperature effects. They
estimated that achieving a 30% tree canopy cover could cool
European cities by 0.4 °C. Studies at finer spatial units also report
similar or even smaller effect sizes than those estimated at the city
scale. McDonald et al. (2024), working at the block scale in the
United States, estimated a reduction of 0.37 °C + 0.014 °C in median
summer air temperature when increasing tree canopy cover to 40%.
Shui et al. (2025), analyzing 2,230 cities and counties in China,
estimated a reduction in LST ranging from 0.038 °C to 0.144 °C per
1% increase in tree canopy cover, without specific focus on
urban trees.
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for the statistical distribution of posterior means, and thus the X-axis is defined by their values. To improve visualization, the second plot shows
zoomed-in distributions constrained to the 10th and 90th quantiles, calculated over the vacant lands distribution, as it exhibits the highest dispersion.

At the grid scale, Kong et al. (2014), in Nanjing, China, observed
reductions in LST ranging from 0.61 °C to 0.87 °C for every 10%
increase in tree canopy cover, depending on the grid size, and larger
reductions were associated with coarser grids. These estimations were
performed without controlling for additional factors influencing LST
distribution and without considering the effects of spatial
autocorrelation. Similarly, Hou and Estoque (2020), in Hangzhou,
China, estimated LST reductions of 0.284 °C to 0.292 °C per 10%
increase in canopy cover using simple linear regression models. Rogan
etal. (2013) estimated that 200 x 200 m grid cells with 10% less tree
cover exhibited LST that were, on average, 0.7 °C higher. In
Mediterranean environments, Godinho et al. (2016) reported a
0.64 °C decrease in LST per 10% increase in canopy cover. In Addis
Abeba, Ethiopia, Feyisa et al. (2014) found a 0.2 °C reduction in LST
per 10% increase in canopy cover within urban green spaces. Using
machine learning, Yuan et al. (2021) estimated a maximum cooling of
0.8 °C with 64% canopy cover, while Logan et al. (2020) reported
daytime cooling ranging from 1.5 to 6.5 °C for a 40% increase in
canopy cover, showing a strong linear pattern, both using Landsat 8
pixel resolution.

The global cooling estimates obtained in this study fall on the
lower end of the range reported in the literature. Based on model M3
estimates (excluding M1 due to poor model fit and predictive capacity,
and excluding M4 due to suspected spatial confounding, discussed
later), an LST reduction of —0.28 °C [—0.29, —0.27] is observed for
every 10% increase in tree canopy cover during summer. Part of the
observed differences with prior studies can be attributed to model
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structure. Our models included a wide range of covariates known to
influence LST, as well as random effects to account for spatial
autocorrelation and unmeasured variables. In contrast, many of the
studies discussed above used simple univariate linear regressions,
without random effects. Neglecting these dependencies can lead to
overly narrow credibility intervals and biased estimates of the relative
importance of model estimates (Banerjee et al, 2014). The
Mediterranean climate of the study area and its location as a coastal
city may also contribute to the reduced cooling capacity observed.
This diminished effect may stem from lower evapotranspiration rates
due to water stress, which limit trees ability to dissipate heat through
latent flux (Schwaab et al., 2021). Nevertheless, this should be further
investigated, as urban trees may be regularly irrigated. Coastal cities
also experience less intense UHI effects compared to inland cities due
to the moderating influence of oceanic airflow, which reduces thermal
extremes (Naserikia et al., 2022). Consequently, the inland-coastal
LST gradients are smoother, and diurnal variability in LST is smaller
in coastal regions. This homogenizing effect of coastal proximity may
reduce the contrast in LST between tree covered and artificial surfaces,
leading to lower estimates of tree canopy cooling capacity.
Nevertheless, the estimated values in this study remain consistent with
those reported in cities with comparable climatic conditions.

Urban environments often exhibit considerable heterogeneity in
terms of infrastructure, urban geometry, vegetation cover, and
microclimates. The complexity of these settings can lead to spatial
variation in the relationship between tree canopy cover and LST (Tsin
et al., 2016; Hallar et al., 2021; Kelly-Turner et al., 2022). Accounting
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for these differences in canopy cooling effects is crucial for urban
planning, environmental management, and climate studies, as it
suggests that strategies aimed at mitigating heat through increased
canopy cover should be tailored to local conditions. In the literature,
most studies that explore this spatial variability in the canopy-LST
relationship have employed GWR, often using the coverage of green
spaces rather than directly measuring urban tree canopy cover (e.g.,
Chen and Lin, 2021; Li et al., 2021; Liu et al., 2022). Francis et al.
(2023) estimated GWR coefficients ranging from —2.36 to 2.06 for the
relationship between canopy cover and LST at the block scale in
Chicago, without accounting for factors other than average canopy
height. The authors did not specify whether covariates and response
variables were standardized, or whether canopy cover was included in
the model as a percentage or proportion, limiting the interpretability
and comparability of the coefficients. Nevertheless, these authors
emphasize “the heterogeneity of Chicago’s census blocks whereby
depending on the local environmental conditions, simply adding
more trees in some locations may not result in reduced LST,
highlighting the importance of conducting localized estimates.

In the present study, an SVC model is employed, allowing the
effect of tree canopy cover on LST to vary spatially. The inclusion of
the SVC effect, once the SPDE effect is also accounted for (M8),
resulted in worse predictive performance compared to models that did
not include SVC (M4). This pattern is commonly reported across
fields where the application of SVC models is well established (Brodie
etal., 2020; Thorson et al., 2023). However, as highlighted by Thorson
et al. (2023), the value of SVC models often lies in the nuanced
descriptions of processes they can capture, given their ability to model
context-dependent covariate responses.

The local effects, for the population of observational units with
95% CI that do not include zero, were estimated to range between
[-3.34°C, 2.47 °C] in vacant lands, [—2.54 °C, 1.57 °C] in green
urban spaces, and [—0.496 °C, 0.318 °C] wooded areas. Several
hypotheses may help explain these results, beyond the influence of the
local characteristics of each observational unit that may modulate tree
canopy cooling effects.

(1) Saturation Effect in Wooded Areas. Estimated effects in
wooded areas were lower than in other land use types,
potentially indicating a saturation effect. That is, beyond a
certain threshold, additional increases in canopy cover may
yield diminishing returns in terms of cooling, resulting in effect
estimates that are close to zero or even slightly positive.
However, this hypothesis is not consistently supported by
existing literature. For instance, Ziter et al. (2019) found that
increasing canopy cover from 0 to 40% within a 90-meter
radius produced negligible changes in air temperature, whereas
increasing cover from 40 to 80% led to approximately 1 °C of
cooling, suggesting that greater canopy density may, in fact,
enhance cooling effects. Nonetheless, it is important to
distinguish between the processes by which tree canopy
influences air temperature and LST. While air temperature is
more strongly affected by airflow and convective processes,
LST is primarily reduced through surface shading (Li et al.,
2024). Therefore, it is plausible that once a certain canopy cover
threshold is surpassed, where maximum shading has already
been achieved, further increases in canopy may not lead to
additional LST reductions. In such cases, the marginal effect of
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increasing canopy becomes negligible, as additional coverage

does not significantly enhance surface shading.
(2) Greater marginal cooling in vacant lands. Vacant lands often
lack significant tree cover and typically exhibit higher baseline
LST due to increased solar exposure and heat retention by bare
soils. Therefore, the addition of tree canopy in such areas might
yield a more pronounced cooling effect, as it introduces
shading and evapotranspiration where it was previously absent
or minimal. However, Ziter et al. (2019) also noted that areas
composed primarily of grassy or low vegetation experienced a
smaller cooling benefit when canopy cover increased from 0 to
40% (~0.3 °C), while an increase from 40 to 80% resulted in
~0.8°C of additional cooling. This suggests that areas
dominated by low or seasonal vegetation may require higher
canopy densities to achieve effective shading, possibly due to
the need to reach higher leaf area indices as suggested by
the authors.
(3) Influence of surrounding environment. Given the spatial
resolution of the pixels used in the analysis, vacant lands, green
spaces, and wooded areas are likely to be surrounded by areas
with similar land cover. As a result, a vacant land classified pixel
is generally embedded in an area with high LST, while green
spaces and wooded pixels tend to be surrounded by areas with
lower LST. Since the estimation of SVCs is spatially smoothed
based on a Gaussian Field with a Matérn covariance structure,
the localized effect is influenced by the local relationships in the
surrounding environment. Pixels in high-LST areas tend to
exhibit higher magnitude local effects, while those in lower-LST
surroundings may exhibit reduced magnitudes. This spatial
dependence may help explain the broader ranges of estimated
effects in areas with lower canopy cover.

The consideration of all the aforementioned hypotheses would
require the formulation of causal statements, which we strongly reject.
Unlike other authors, such as Francis et al. (2023), we also refrain from
using SVCs as a tool for delineating or prioritizing areas for urban tree
planting based on the optimization of localized cooling estimates. This
decision is based on several key factors, which we believe carry
significantly more weight in explaining the results than the physically
plausible hypotheses previously discussed.

(1) Detection challenges and model artifacts across the canopy
cover gradient. The SVC estimates reveal methodological
challenges that arise across the full spectrum of canopy cover
conditions, leading to coefficient instability that can produce
counterintuitive results. In wooded land pixels with high tree
canopy cover, the localized effect of increasing canopy may be
challenging to detect at the spatial resolution of Landsat LST,
due to the high existing tree canopy cover creating a saturation
effect where additional vegetation provides diminishing
marginal cooling benefits. Conversely, in areas with very low
canopy cover, the low tree canopy coverage limits the model’s
ability to estimate the local relationship between tree canopy
coverage and LST, as the thermal signal remains dominated by
the underlying substrate properties (bare soil, concrete,
impervious surfaces, etc.) rather than the limited vegetation
present. The counterintuitive warming effects observed in
some vacant lands and areas with minimal canopy cover (e.g.,
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up to 2.47 °C positive coefficients) represent methodological
artifacts rather than genuine biophysical processes. These
artifacts could arise from the model’s inability to isolate the
cooling effect of sparse vegetation within thermally extreme
environments, where individual trees contribute minimally to
the 30-meter pixel scale. It is also important to note that the
thermal information is originally measured at 100 m resolution
and subsequently resampled by USGS to 30 m, which further
complicates detection in areas with low tree density.
Additionally, edge effects can cause the model to conflate the
warming influence of surrounding impervious surfaces with
the vegetation signal when canopy cover falls below critical
detection thresholds, due to SVC being based on spatial
proximity. These limitations across both high and low canopy
cover extremes contribute to the wide range observed in
localized effect estimates, emphasizing that SVC results must
be interpreted within the context of Landsat LST’s spatial
the
heterogeneity of urban environments.

resolution constraints and underlying thermal

well-documented

(2) Spatial confounding represents a
phenomenon in spatial regression models that arises when
spatial random effects are not independent of covariates or
other random effects, as first identified by Clayton et al. (1993)
and which has generated substantial research interest recently
(Hui et al., 2024; Urdangarin et al., 2024; Gilbert et al., 2024;
Lamouroux et al,, 2025). Gilbert et al. (2024) identify four main
sources of spatial confounding: (i) omitted confounder bias,
occurring when unmeasured spatially structured variables
influence both exposure and outcome; (ii) regularization bias,
stemming from finite-sample bias in models using flexible
regression functions such as splines or Gaussian processes to
control spatial dependencies; (iii) random effect collinearity,
resulting from correlation between spatially dependent random
effects and covariates, altering fixed-effect estimates; and (iv)
concurvity, complicating estimation when exposure closely
follows smooth spatial functions, particularly with additional

smooth spatial functions in the model.

As noted by Dupont et al. (2023), spatial confounding is
particularly problematic when both random effects exhibit smooth or
similar spatial patterns, as their collinearity prevents the distinction of
each individual effect. Doser et al. (2024) observed that confounding
can occur between the SPDE effect and the SVC, particularly when
working with modestly sized datasets (e.g., around 500 data points),
which may potentially lead to misleading conclusions. In our case,
examination of Supplementary Figures 10, 11 reveals clear similarities
between the spatial patterns of the residuals from model M4, defined
as the difference between observed Land Surface Temperature values
and the posterior mean of the linear predictor, and the posterior mean
of the SVC effects estimated by model M8. A moderate negative linear
correlation (r = —0.42) indicates that areas where M4 overestimates
LST tend to correspond to negative SVC effects in M8, and vice versa,
reflecting a moderate degree of spatial confounding. In such cases, the
spatially varying coefficient component tends to absorb systematic
error patterns not captured by the linear term, leading to compensatory
negative or positive values in the SVC estimates.

Thus, even with a large dataset (n = 381,396) and the use of
meshes with different characteristics for the SPDE and SVC
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components, we recommend interpreting the SVC effect estimates
with caution, despite the correlation indicating only a moderate
degree of confounding. Although various methods have been
proposed to address spatial confounding, recent studies caution that
many of these approaches may produce counterintuitive or unreliable
results. For instance, K han and Calder (2022) demonstrate that several
popular strategies may underperform, while Zimmerman and Ver
Hoef (2022) classify some of them as “bad statistical practice” Despite
these concerns, spatial confounding remains a critical issue for future
research, particularly in models incorporating SPDE effects, and
should be carefully considered in both model development and
interpretation. Ongoing debates include whether orthogonalization
between spatio-temporal random effects matrices should be applied
globally or at each time step, and how this should be implemented in
multivariate or multiple data currency contexts (Hui et al., 2024).
Recent advances in R-INLA are actively exploring the implementation
of tools to mitigate spatial confounding in geostatistical applications
(Lamouroux et al., 2025), making it increasingly accessible to
practitioners. Continued research is needed to assess the performance,
limitations, and optimal application scenarios for the various methods
proposed to address spatial confounding, including restricted spatial
regression (Khan and Calder, 2022), geoadditive structural equation
models (gSEM) and Double Spatial Regression (DSR) (Wiecha et al.,
2025), Spatial+ (Dupont et al., 2022), Spatial+ 2.0 (Urdangarin et al,
2024), regularized principal spline functions (Zaccardi et al., 2025),
Transformed Gaussian Markov Random Fields (TGMRF) (Prates et
al., 2015), and approaches grounded in instrumental variable
frameworks (Woodward et al, 2024). Evaluating the stability of
estimates across these methods may further clarify whether results
obtained from SVC reflect true ecological processes or are artifacts of
the particular approach chosen to mitigate spatial confounding.

(3) Residual pattern absorption by the SVC. The poorer
performance observed after including the SVC effect may be
related to the model’s inability to properly estimate the process
of interest, with the SVC instead capturing local residual
characteristics, as further suggested by spatial confounding. All
environmental or urban features not explicitly included in the
model, remaining as residual variation, may cause the SVC to
act as a compensatory mechanism for these missing effects.
Although the purpose of the SVC is to account for spatial
heterogeneity, part of this heterogeneity stems from omitted
covariates, while another part reflects genuine variation in the
canopy cooling effect (i.e., the process of interest), potentially
driven by interactions with multiple factors. SVCs cannot
disentangle these two sources of variation. Therefore, in some
observational units, local variations in the canopy’s effect on
LST may be correctly modeled, while in others, the estimated
effect may primarily reflect a compensation for the model’s
inability to account for the area’s specific characteristics. This
issue is evident both in the present study and in Francis et al.
(2023), where, in their estimation of the interaction between
canopy area and tree height, port areas emerged as those where
canopy contributes most negatively to cooling. This is likely an
estimation artifact, with the negative coefficient being
influenced by the inclusion or proximity of water pixels, whose
effects were not properly accounted for in either study, beyond
a categorical variable in the present article. Similarly, as shown
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in Figure 6H, areas with strongly positive local effects appear
to correspond to surfaces with very high albedo, again
suggesting an effect driven by the omission of covariates and
the absorption of residual patterns by the SVC.

Our findings reveal that planting strategies must evolve beyond
simple canopy percentage targets to embrace a comprehensive, trait-
based approach that maximizes the cooling potential and resilience of
urban forests considering the micro-scale variability. This
comprehensive perspective aligns with growing evidence
demonstrating the importance of multifunctional and site-specific
approaches in urban green infrastructure design for increasing urban
areas livability. Recent research has established that government
policies and heritage tree protection ordinances can significantly
increase urban tree canopy coverage, with municipalities
implementing these measures showing up higher canopy coverage
than those without protections (Hilbert et al., 2019). Furthermore,
strategic urban species selection frameworks must consider not only
cooling capacity but also specific physical traits that optimize other
ecosystem services, such as precipitation interception and enhanced
infiltration for stormwater management (Dowtin et al, 2023).
Moreover, district-level urban livability assessment reveals that spatial
features such as population density, green space accessibility, and
environmental quality are positively correlated with community
health outcomes, emphasizing that urban green design must adopt
holistic approaches considering both environmental and human well-
being benefits (Chi and Mak, 2021). Thus, our findings enable the
consideration and evaluation of local specificities in the provision of
cooling ecosystem services by urban tree canopies, accounting for the
variability that operates at the local scale, which can be seamlessly
integrated with other assessment frameworks for multiple ecosystem
services, thereby contributing to the advancement of urban
development and green space design that aims to enhance livability
and well-being in urban environments.

While our spatially explicit modeling approach demonstrates
significant spatial variability in cooling effects across urban
environment, these results require careful interpretation due to
moderate spatial confounding between SPDE and SVC components.
This methodological consideration underscores the importance of
integrating our findings with established ecological principles rather
than relying solely on model predictions for site-specific interventions.
Urban planners should prioritize the strategic selection of tree species
based on functional characteristics that optimize ecosystem service
delivery under local environmental conditions. Functional traits such
as high leaf area index, low hydrophobicity, low inclination angles, and
high surface roughness promote rainfall retention by the canopy
(Dowtin et al., 2023), while trees with high LAI and wider canopies
are associated with the greatest daytime cooling benefits (Sharmin et
al., 2023). Urban forestry initiatives should therefore prioritize broad-
leaved species, large trunk circumferences, tall shapes, low branch
point heights, wide and large crowns, umbrella-shaped shapes, large
leaf area density (Li et al., 2025), as these morphological characteristics
directly enhance the magnitude of cooling benefits while supporting
climate resilience (Esperon-Rodriguez et al., 2022).

The potential of this research lies in its capacity to inform
evidence-based urban greening that addresses both environmental
and social imperatives, though practitioners must acknowledge the
inherent spatial confounding challenges in spatially varying coefficient
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models when interpreting SVC marginal effects. Achieving Sustainable
Development Goal 11 requires addressing inequities in access to
ecosystem services provided by urban trees to ensure a fair distribution
of environmental benefits across socioeconomic groups (Perefia-Ortiz
etal., 2025; Ruiz-Valero et al., 2025). Our spatially explicit modeling
framework provides urban planners with valuable insights into the
spatial heterogeneity of cooling effects, revealing that context-
dependent responses are fundamental to urban forest performance
rather than exceptional cases. The sustained delivery of ecosystem
services depends less on the absolute number of species and more on
the presence of ecologically functional vegetation and the maintenance
of interspecific interactions that uphold critical ecological processes
(Cardinale et al., 2012; Mace et al., 2012; Isbell et al., 2017). This
principle should guide urban forest management toward fostering
functional diversity rather than simply increasing tree quantity,
ensuring that planting efforts contribute meaningfully to urban
livability and climate resilience.

Looking forward, urban planning must integrate climate-
adaptive species selection with sophisticated understanding of spatial
ecological processes to create resilient urban forests capable of
delivering sustained ecosystem services under changing
environmental conditions. Urban planning and tree selection
strategies must proactively identify and promote genotypes or
ecotypes that are best suited to future climatic conditions, thereby
ensuring long-term planting success and optimizing ecosystem
service returns on investment (Watkins et al., 2021). Traits such as
specific leaf area, photosynthetic rate, and water-use strategies
determine how trees respond to urban stressors like drought, heat,
and pollution, ultimately shaping their capacity to provide key
ecosystem services (Esperon-Rodriguez et al., 2020; Cho et al., 2024;
Ramachandran et al., 2024).

While spatial confounding between SPDE and SVC components
necessitates cautious interpretation of our SVC marginal effects, the
broader insights regarding spatial heterogeneity and context-
dependency remain robust and valuable for advancing urban forestry
practice. This work constitutes a fundamental step toward the
integration of all previously described factors, together with urban
geometry operating at the micro-scale, that influence the cooling
capacity of urban tree canopy. An SVC model within a Bayesian
hierarchical framework offers substantial advantages over GWR by
providing a statistically more robust and flexible approach. SVC
models enable automatic learning of spatial hyperparameters such as
the length scale of underlying spatial processes, which is critical for
understanding spatial process characteristics, while GWR relies on
manual bandwidth selection that is highly sensitive and can produce
unstable results. Additionally, the Bayesian approach facilitates
uncertainty quantification through complete posterior distributions
for both coefficients and out-of-sample predictions. The hierarchical
Bayesian framework also permits formal incorporation of prior
knowledge and provides a more solid probabilistic foundation for
statistical inference. Furthermore, hierarchical models allow the
inclusion of additional effects, such as SPDE which a priori enables
better segregation of effects associated with local temperature
variability from the anisotropy in cooling processes that the SVC
aims to estimate, a capability that GWR is inherently limited in
addressing. However, more comparative and field validation studies
are necessary to fully establish these theoretical advantages in
practical applications.
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The proposed modeling framework advances a shift away from
assigning uniform cooling capacities across entire study areas toward
explicitly accounting for micro-scale characteristics that modulate this
ecosystem service, thereby enabling more spatially nuanced urban
forestry decisions. At the same time, further work should
systematically evaluate alternative approaches to mitigate or avoid
spatial confounding between SPDE and SVC components to obtain
robust SVC marginal effect estimates that can be directly applied to
identify locations with cooling deficits and to target strategic canopy
enhancement. The transparency of the present study is intended to
guide future research by foregrounding spatial confounding as a
central methodological consideration in study design and inference.
Collectively, this work advances the scientific basis for urban forest
management by providing a framework that integrates spatial
variability, as micro-scale environmental factors, and cooling service
quantification for improved urban canopy planning.

4.1 Limitations and future research
directions

While the present study has revealed and estimated the local
effects of tree canopy coverage on LST, there are limitations deserving
further studies:

1 Itis important to note that our findings are based on LST rather
than air temperature, and as such, not a direct predictor of
human thermal comfort. LST, however, might represent a
robust indicator when evaluating heat impacts on humans and
cities, and for this reason, this parameter has been used in
numerous urban studies. The results underscore the

importance of tree cover and its variation at a larger scale.

Understanding these differences will be crucial for informing

urban planning strategies aimed at improving thermal comfort

in urban spaces.

The analysis was conducted in a single city, and therefore,

climate conditions were not considered. As highlighted in the

scientific literature, background climate has a significant
impact on surface urban heat (Martilli et al., 2020; Naserikia et

al., 2022;

research would be to extend the current study to other cities

Li et al, 2024). An important avenue for future

with varying climatic conditions to assess whether there are
differences in the statistical distributions of the local
relationship between canopy cover and LST.

While the proposed model does not meet the requirements for
causal inference, understanding the spatial differences in urban
tree cooling potential, taking into account urban characteristics
that influence LST, can complement and enhance our
understanding of the processes that lead to lower urban
LST. Therefore, the results highlight the importance of
considering the effects of the surrounding environment on
cooling capacities and emphasize the need for localized studies.

5 Conclusion

The urban heat island phenomenon strongly reduces
thermal comfort in cities, while urban trees provide essential
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ecosystem services that can mitigate these conditions. However,
cooling benefits are often analyzed at the city scale or assumed
to be spatially uniform, overlooking evidence that factors
such as urban form, canopy structure, and species composition
drive substantial local variability. To date, no work has
systematically quantified this spatial heterogeneity within a
that
latent processes.
This study advances this field by applying SVC within a BHM
to account for the fine-scale differences in cooling capacity. The

framework also addresses uncertainty and other

results reveal pronounced spatial variability but also demonstrate
the presence of moderate spatial confounding, warranting caution
in interpreting localized effects in areas with canopy cover below
25%, which serves as the threshold used in this study. Future
research should evaluate the lower reliability limit for SVC
estimation to establish more robust guidelines for different canopy
cover conditions. These findings highlight the limitations of
uniform canopy targets and call for context-sensitive planning
that considers local environmental conditions.

Future initiatives should prioritize trait-based species
selection to optimize ecosystem service delivery while ensuring
equitable access to cooling. At the same time, the methodological
framework developed here provides a foundation for spatially
explicit urban forest research, while further refinements are
needed to address spatial confounding and strengthen causal
inference. Ultimately, this work supports the design of evidence-
based greening strategies that enhance both climate resilience and
urban livability.
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