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University of Belgrade, Serbia

REVIEWED BY

Uroš Durlević,
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Cloud seeding has emerged as a promising strategy for artificially enhancing
water availability in forest ecosystems, thereby supporting hydrological
processes and promoting ecological function. While previous studies have
reported improvements in hydrological indicators such as soil moisture and
runoff following cloud seeding-induced precipitation, there remains a critical
knowledge gap regarding the extent of these ecological effects including GPP
and NPP across basins with differing forest characteristics—such as total area,
forest coverage, and dominant tree species. This study addresses this gap
by conducting a comparative assessment of the ecological benefits of cloud
seeding across three basins in South Korea with varying forest properties. An
ecohydrological model, RHESSys, is first calibrated for each basin to simulate
both hydrological and ecological responses under different cloud seeding
scenarios from 2020 to 2023. The results indicate that cloud seeding improves
hydrological conditions—including runoff and soil moisture—proportional to
the degree of precipitation enhancement, These hydrological improvements,
in turn, lead to nonlinear yet consistent increases in GPP and NPP. Notably,
the magnitude and persistence of these ecological benefits are more strongly
influenced by forest characteristics than by basin size. Under cloud seeding
scenarios simulating a 20% annual increase in precipitation, an expansion in
forest cover from 78% to 84% results in a 3.1% to 4.2% increase in GPP. Moreover,
basins dominated by broadleaf forests exhibit extended vegetation productivity
responses, lasting approximately 20–30 days longer. These findings underscore
the importance of incorporating basin-specific forest characteristics into the
design and implementation of cloud seeding strategies aimed at ecological
conservation and productivity enhancement.

KEYWORDS

cloud seeding, ecohydrological model, forest characteristics, vegetation growth,
scenario-based analysis, lagged correlation analysis

1 Introduction

Given the critical role of water supply in sustaining and enhancing forest vegetation
activity, various strategies have been developed to optimize water availability in forested
ecosystems, particularly in response to challenges such as climate change, prolonged
droughts, and soil degradation. These approaches encompass irrigation systems adapted to
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natural landscapes, rainwater harvesting, soil moisture retention
techniques, cloud seeding, and afforestation strategies that
incorporate water-efficient plant species (Al-Jamal et al., 2002;
Herzog et al., 2014; Terêncio et al., 2018; Mahmoud et al.,
2016; Huang et al., 2022; Zheng et al., 2024; Yoo et al.,
2024). By improving water accessibility, these methods not
only support forest health but also yield broader environmental
benefits, such as mitigating wildfire risk and maintaining regional
hydrological cycles (Ager et al., 2016; Smerdon et al., 2009).
However, the effectiveness of different water supply strategies
in enhancing forest vegetation activity, as well as their broader
implications for sustainable forest management, remains a subject
of ongoing debate.

Several studies have investigated climate or weather
manipulation experiments to evaluate potential impacts on
ecosystem functioning and drought mitigation (Norby and Zak,
2011; Zarnetske et al., 2021; Leyrer et al., 2022; Sanchez-Martinez
et al., 2025). Norby and Zak (2011) introduced the Free-Air CO2
Enrichment (FACE) experiment, which advanced predictions of
ecosystem responses by showing how elevated concentrations affect
productivity and carbon storage. Zarnetske et al. (2021) provided
a comprehensive assessment of the potential ecological impacts
of climate intervention strategies, with particular emphasis on
solar radiation management and, more specifically, stratospheric
aerosol intervention. More recently, Sanchez-Martinez et al. (2025)
reported from a long-term Amazonian drought experiment that
rainforest ecosystems attained ecohydrological stability through
water redistribution.

Cloud seeding offers a means of artificially enhancing
water availability in forested ecosystems. As a form of weather
modification, this technique was initially explored as a potential
solution to mitigate drought and enhance precipitation in arid
regions, including parts of the United States, Australia, and the
Middle East (Ryan and King, 1997; Khatri et al., 2021; Pokharel
et al., 2021; Al Hosari et al., 2021). By spraying seeding materials
such as silver iodide (AgI) or calcium chloride (CaCl2) into
clouds, cloud seeding aims to stimulate ice crystal formation,
ultimately increasing rainfall or snowfall. The effectiveness of
cloud seeding is typically evaluated by comparing surface
precipitation at designated test sites before, during, and after
seeding (Ryan and King, 1997; Bruintjes, 1999). To investigate
the impacts of cloud seeding through numerical simulations, the
Weather Research and Forecasting (WRF) model—a mesoscale
atmospheric modeling and forecasting system (Skamarock et al.,
2005) equipped with advanced microphysics parameterizations—
has been extensively employed (Fonseca et al., 2022; Lin et al.,
2023; Moon et al., 2025). This model allows explicit representation
of microphysical processes including droplet activation, auto-
conversion, deposition, condensation freezing, and contact freezing
(Khain and Lynn, 2009), thereby providing a robust framework for
assessing the dynamical effects of seeding operations.

The ecological implications of cloud seeding warrant careful
scrutiny within the context of hydrological processes. In particular,
cloud seeding has been shown to enhance infiltration rates,
thereby promoting soil moisture and groundwater recharge (Yoo
et al., 2022). Once adequate soil moisture is secured, it not
only mitigates excessive nutrient leaching but also improves

nutrient solubility, ultimately facilitating uptake by plant roots
and enhancing plant productivity (Metwally and Pollard, 1959).
Furthermore, improved soil–water conditions can alleviate drought
stress, thereby supporting the resilience of water and carbon
cycling at the ecosystem scale (Wondie, 2023; Mondal et al., 2024;
Fan and Wei, 2025). Moreover, precipitation enhancement may
increase transpiration rates—which are strongly correlated with
biomass accumulation (Lie et al., 2018; Li et al., 2021)—thereby
underscoring the need for sophisticated hydrological modeling to
capture these dynamics accurately (Chun et al., 2018; Tripathi
et al., 2022; Sharma et al., 2024). In addition, previous studies
highlight the potential of weather modification techniques, such
as cloud seeding, to supplement conventional water resources and
enhance crop yields in water-stressed regions (Abshaev et al., 2022;
Valjarević et al., 2022). This is because the augmented rainfall
can lead to increased soil moisture availability (Alzahrani and
Abdelbaki, 2025).

To the best of our knowledge, aside from the recent work
by Yoo et al. (2024), who scrutinized the ecological effect
of cloud seeding along with its hydrological performance at
Boryeong dam basin in South Korea, studies that directly couple
cloud seeding simulations or experiments with ecohydrological
modeling remain scarce. Only a few investigations have examined
ecohydrological responses to precipitation variability based on
modeling approach (Saksa et al., 2020; Smith et al., 2021). For
instance, Saksa et al. (2020) used the Regional Hydro-Ecological
Simulation System (RHESSys) model in the Sierra Nevada in
U.S. and demonstrated that precipitation variability exerts a
stronger influence on runoff and infiltration than vegetation
changes induced by forest management or wildfires. Smith et al.
(2021), applying the Ecohydrological Water Isotope (EcH2O-iso)
model calibrated to Demnitzer Millcreek catchment in Germany,
quantified the impacts of land use and vegetation on water
partitioning and water age.

A significant research gap exists in assessing the ecological
effects of cloud seeding, particularly regarding its efficacy in
enhancing productivity across different forest ecosystems, which is
expected to vary depending on the characteristics. Different forest
types exhibit distinct hydrological dynamics, soil compositions,
and species adaptability, all of which influence how additional
precipitation from cloud seeding influences the forest vitality.
For instance, in water-limited ecosystems such as dry coniferous
forests, increased rainfall may significantly boost plant growth
and carbon sequestration (Gerten et al., 2008; Rohr et al.,
2013). In contrast, in already moisture-saturated rainforests,
additional precipitation could lead to nutrient leaching or excessive
runoff, potentially offsetting productivity gains (Fuentes et al.,
2018). Furthermore, variations in canopy density, root structure,
and microbial activity mediate water absorption and retention,
further diversifying the ecological outcomes of cloud seeding.
Understanding these differences is crucial for assessing the
feasibility of cloud seeding as a tool for ecosystem restoration and
climate resilience.

To address the identified research gap, this study advances the
ecohydrological modeling framework proposed by Yoo et al. (2024)
to assess the effects of cloud seeding for ecological conservation and
vegetation productivity in basins with varying forest characteristics.
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To this end, we construct an ecohydrological model for three
basins in South Korea. Using multi-year (2020–2023) scenario-
based cloud seeding simulations as input, we generate hydrological
and ecological components, respectively, to evaluate the effects of
cloud seeding on vegetation photosynthesis, respiration, and water
use efficiency. Specifically, we incorporate both unseeded (UNSD)
and seeded (SEED) scenarios into the modeling framework and
quantify their differences, where a greater difference indicates a
stronger influence of cloud seeding. The hydrological variables
analyzed include runoff, soil moisture, and evapotranspiration,
while the vegetation-related metrics encompass GPP, NPP, and
respiration. By employing this approach, we assess the diverse
ecohydrological responses to cloud seeding, investigating whether
its effects vary with forest scale and type. Furthermore, we examine
the temporal dynamics of these effects, including potential time lags
and the persistence of cloud seeding impacts on plant growth.

2 Materials and methods

2.1 Research areas with different climate
and ecological conditions

Three dam basins with distinct characteristics—Boryeong,
Yongdam, and Namgang—are selected as the study areas
(Figure 1). They serve as representative experimental sites for a
cloud seeding research project launched in 2022 with support
from the National Institute of Meteorological Sciences (NIMS).
Consequently, these basins have already been the focus of previous
research (Yoo et al., 2022; Ma et al., 2023; Yoo et al., 2024; Moon
et al., 2025). Moreover, all three basins have recently encountered
challenges related to water resource availability due to recurrent
droughts. Boryeong dam basin, covering an area of 163.6 km2,
is relatively small compared to other dam basins in South Korea.
Thus, its water resources can be inherently constrained, making the
basin particularly susceptible to drought conditions, which resulted
in multiple water shortage issues during the 2010s (Chungnam
Institute, 2016). Yongdam dam basin, located in the upper Geum
River basin, spans an area of 930.0 km2. In 2015, the basin received
an annual precipitation of 877.6 mm, which accounted for only
67.5% of the normal annual precipitation of 1,300.7 mm recorded
between 1983 and 2021. This substantial deviation highlights the
basin’s vulnerability to hydrological variability. Namgang dam
basin, one of the largest in South Korea, covers an area of
2,285 km². Despite its extensive catchment area, the basin has a
relatively limited reservoir capacity, making it particularly prone to
drought events.

Forest characteristics exhibit notable variations across the
different basins (Figure 1). Among them, Boryeong dam basin,
the smallest in size, has the highest proportion of forest
cover, encompassing 83.7% of its total area. In comparison,
Yongdam dam basin has a forest cover of 79.8%, while
Namgang dam basin exhibits a slightly lower forest coverage
of 78.1%. Distinct differences are also observed in the forest
types, including broadleaf, coniferous, and mixed forests. In all
basins, broadleaf forests constitute a larger proportion of the
forested area than coniferous forests. Overall, despite Namgang
dam basin’s substantially larger spatial extent, its forest coverage

and composition suggest a relatively lower productivity potential
compared to the other basins.

2.2 Observation data and GIS information

The RHESSys model is calibrated using various observational
datasets, which play a crucial role in determining key
ecohydrological parameters. For this purpose, meteorological
data, including daily precipitation (mm), minimum and maximum
temperatures (◦C), soil temperature (◦C), wind speed (m/s),
and relative humidity (%), are collected from weather stations
operated by Korea Meteorological Administration (KMA).
When multiple weather stations are located within the basin, the
Thiessen polygon method is applied to assign weights based on
the spatial influence of each station, facilitating the computation
of area-averaged meteorological variables (e.g., for Yongdam and
Namgang dam basins). In cases where no observation stations are
located within the basin (e.g., Boryeong dam basin), data from
the nearest station is utilized. Additionally, daily dam inflow data
(m3/s), representing runoff from the basin, and satellite-derived
LAI are incorporated. The dam inflow data are managed by
K-Water, and the satellite-derived LAI, used to validate ecological
parameters, is obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra satellite. The LAI observations,
recorded at 8-day intervals, are aggregated into monthly averages
(Running and Zhao, 2015). MODIS/Terra satellite data have
been widely recognized for their relatively accurate estimates
of vegetation activity indicators such as LAI and GPP (Li et al.,
2015; Fu et al., 2017; Pu et al., 2023). Data from 2016 to 2020 are
employed for parameter estimation, while data from 2021 to 2023
are used to validate the RHESSys model.

Various types of GIS data are employed to simulate hydrological
and vegetation-related components, which are important in
ecohydrological studies (Durlević et al., 2024; Vujović et al., 2025).
A Digital Elevation Model (DEM) serves as the fundamental source
of elevation data for the target basin. From the DEM (30 × 30
m2), hydrological modeling parameters, including slope, aspect,
stream network, contributing area, and the topographic wetness
index, are derived. Soil properties, such as porosity, field capacity,
wilting point, and effective soil depth, are obtained from soil
maps (30 × 30 m2). Information on infiltration and evaporation
characteristics, as well as vegetation distribution, is derived from
land use maps (30 × 30 m2). Additionally, vegetation distribution
maps or forest type maps (25 × 25 m2) are utilized to estimate
ecological parameters corresponding to different vegetation types.
These spatial data sets collectively inform the determination of
initial ecological parameter values, soil parameter estimation, and
spatial unit classification. The spatial data utilized in this study are
presented in Supplementary Figure S1.

2.3 Modeling framework

The assessment of cloud seeding impacts on vegetation activity
within a basin follows a two-stage process: (1) calibration of
the ecohydrological model and (2) simulation of hydrological
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FIGURE 1

Geographical Locations, river networks, and forest maps of study areas (BR, Boryeong dam basin; YD, Yongdam dam basin; NG, Namgang dam basin).

and ecological variables using cloud seeding scenarios as input.
The model is constructed based on observed meteorological,
hydrological, and ecological data and topographical information,
with the target basin hierarchically divided into spatial units
to simulate both hydrological and ecological processes. Once
the validation is complete, multiple scenarios—with and without
cloud seeding, which are called SEED and UNSD, respectively—
are used to simulate hydrological and ecological components
from 2020 to 2023. The hydrological outputs include runoff, soil
moisture content, and evapotranspiration, while ecological outputs
encompass GPP, NPP, and vegetation respiration. By comparing the
outputs from cloud SEED and UNSD scenarios, the effects of cloud
seeding on vegetation activity are assessed. For instance, an increase
in primary productivity may indicate an enhancement in vegetation
activity due to cloud seeding implementation.

2.4 RHESSys model

This study employs the RHESSys as the ecohydrological model.
The RHESSys is a coupled modeling framework that integrates
the simulation of water, carbon, and nitrogen fluxes, driven by
interactions among the atmosphere, soil, and vegetation (Tague and
Band, 2004). As a process-based and spatially distributed model,
the RHESSys is capable of simulating hydrological, vegetation, soil,
and water quality dynamics across a wide range of spatial scales,
from 0.1 to 60,000 km2. Moreover, by capturing the cycling and

spatial distribution of water, carbon, and nitrogen at fine spatial
resolutions, the RHESSys is particularly well-suited for assessing
hydrological-ecological interactions, making it a valuable tool for
research on sustainable watershed management and ecosystem
dynamics (Chen et al., 2020). The RHESSys model has been widely
applied to mid-latitude regions including the Rocky Mountains in
the United States and Mediterranean forests (Tague et al., 2013;
Rog et al., 2021). In South Korea, Yoo et al. (2024) validated the
applicability of the RHESSys for ecological simulations in Boryeong
dam basin.

The calibration of the RHESSys model consists of two
processes: parameter estimation and validation. For ecological
parameter estimation, an initial spin-up phase is conducted, during
which the initial values of ecological parameters are artificially set
for the simulation period. This step ensures that the simulated
vegetation state at the beginning of the simulation accurately
reflects the conditions of the target basin. To further refine this
initialization, the leaf area index (LAI) data observed in October
2016 from the MODIS/Terra satellite is utilized as a reference in this
study. A 400-year spin-up simulation is performed to stabilize the
ecological parameters, after which key hydrological and ecological
parameters are estimated for the calibration period (2016–2020).

During this process, an appropriate range for parameter
estimation is predefined, and an optimal parameter set is
determined through Monte Carlo random sampling. The model’s
validity is assessed by comparing simulated and observed
streamflow (representing hydrological parameters) and LAI
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(representing ecological parameters) using evaluation metrics. The
optimized parameters are then employed to generate hydrological
and ecological variables for the validation period (2021–2023).
Similarly, the simulated results are compared against observed
data to evaluate the model’s performance during this period.
If significant discrepancies arise between the simulations and
observations, the optimal parameter set is re-estimated. For a
more detailed description of the parameter estimation process,
please refer to Yoo et al. (2024) and the National Institute of
Meteorological Sciences (2024).

2.5 Evaluation metrics

Parameter estimation performance is assessed using the Nash-
Sutcliffe Efficiency (NSE), Percent Bias (Pbias), and the Correlation
Coefficient (R) [Equations 1–3]. Generally, for hydrological
parameters, a simulation is considered adequately estimated if
the criteria of NSE lie between 0.5 and 0.7, Pbias < 10%, and
a correlation coefficient of at least 0.7 (Yoo et al., 2024). For
ecological parameters, estimation is deemed appropriate when
the correlation coefficient between the simulated and observed
monthly LAI exceeds 0.7. Given that ecological processes exhibit
lower temporal variability compared to hydrological processes,
evaluation metrics are computed on a monthly rather than a daily
basis. Furthermore, daily comparisons are inherently challenging
due to the high uncertainty associated with spatially distributed
LAI across target basins, necessitating reliance on satellite
observations. Since such observations typically have a temporal
resolution of 8 or 16 days, they are aggregated to a monthly scale
for assessment.

NSE = 1 −
∑t

i=1 (Si − Oi)2

∑t
i=1 (Oi − O)2 (1)

Pbias = 100 ×
∑t

i=1 (Si − Oi)∑t
i=1 Si

(2)

R =
∑t

i=1 (Si − S)(Oi − O)√∑t
i=1 (Si − S)2

√∑t
i=1 (Oi − O)2

(3)

Here, Si represents the simulated values, while Oidenotes the
observed values. S and O refer to the mean of the simulated and
observed values, respectively. The variable i represents numbers
ranging from 1 to t, corresponding to the simulation periods.

2.6 Change ratio

Vegetation activity is evaluated by comparing the results of two
scenarios: without cloud seeding (UNSD) and with cloud seeding
(SEED). To quantify the impact of cloud seeding, the changes
are expressed as a ratio. Specifically, the change ratio (CR) is
determined as the relative difference of simulations between SEED
and UNSD, normalized by UNSD, as defined in Equation 4.

CR = 100 × (Sseed − Sunsd)
Sunsd

(%) (4)

Here, Sunsd represents the simulated values of the UNSD
scenario, while Sseed denotes the simulated values of the
SEED scenario.

2.7 Lagged correlation analysis

The effects of rainfall on hydrological and ecological
components typically manifest with a temporal lag. Yoo et al.
(2022) reported that increased antecedent 5-day precipitation
enhances the contribution of cloud seeding to runoff. Soil moisture
is also strongly influenced by precedent precipitation, with 5-day
antecedent precipitation commonly used as a key criterion for soil
wetness in the rainfall-runoff analysis. However, from a longer-
term perspective, particularly in the context of plant growth,
precipitation over a period of 1–3 months is considered more
relevant as a precursor (Méndez-Barroso et al., 2009; Wei et al.,
2016). Given that soil moisture is directly linked to vegetation
dynamics, including GPP and NPP, it is subject to the influence of
preceding precipitation, akin to hydrological components.

Thus, we examine the lagged correlation between antecedent
precipitation and following ecological components. The cross-
correlation coefficient, a metric that quantifies the degree of
similarity or synchrony between two time series, measures how
closely the temporal variability or trends of one dataset align
with those of another when a time shift is applied (Podobnik
et al., 2010; Altmann, 2011). To assess the relationship between
precipitation and time-lagged responses in soil moisture, GPP, NPP,
and vegetation respiration, we apply a lag time in 10-day intervals
(e.g., 10, 20, 30 days, etc.) [Equation 5].

ρ(τ ) =
∑t

i=1 (Xi − X)(Yi+τ − Y)√∑t
i=1 (Xi − X)2

√∑t
i=1 (Yi+τ − Y)2

(5)

Here, X and Y represent the two variables subjected to
correlation analysis. Specifically, X denotes 1-month cumulative
precipitation at time point i, while Y corresponds to 1-month
average soil moisture content, cumulative GPP, NPP, and vegetation
respiration, each with τ -day lags. X and Y denote the mean values
of X and Y, respectively. The interpretation of the time-lagged
cross-correlation coefficient is identical to that of a conventional
correlation coefficient: values close to 1 or −1 indicate strong
positive or negative correlations, respectively, whereas a value of
0 signifies no correlation.

3 Results

3.1 Calibration of RHESSys model

The optimal hydrological parameters are identified through
the comprehensive estimation procedures outlined in Sections
2.2 and 2.3. The calibrated model successfully reproduces the
observed peak discharge, peak timing, and baseflow variations
across three basins (Figure 2, Supplementary Figure S2, and
Supplementary Table S1). Notably, the model demonstrates
relatively strong and robust performance in Boryeong dam
basin compared to other dam basins (Supplementary Table S1
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FIGURE 2

Calibration (2016–2020) and validation (2021–2023) results based on comparisons of runoff (a) and LAI (b) in the Boryeong dam basin. The black and
blue lines represent time series of daily runoff and monthly LAI respectively simulated from the calibrated RHESSys model, and red dots indicate the
observations. The scatter plot embedded in runoff time series presents the linear relationship between observed (x-axis) and simulated (y-axis) daily
runoff.

and Figure 2a). Calibration over the period 2016–2020 is
well-supported by three evaluation metrics, with most NSE
values exceeding 0.5. Moreover, the Pbias values, which reflect
discrepancies in total runoff volume, remain within approximately
±10%, indicating satisfactory model performance in Boryeong
and Yongdam dam basins. Correlation coefficients exceeding
0.65 further reinforce the reliability of the simulation results for
all basins (Supplementary Table S1). However, in Namgang dam
basin, which covers a relatively larger area, the performance metrics
are slightly lower than those of the other two basins. Nevertheless,
the evaluation metrics for the validation period (2021–2023)
exhibit an overall improvement relative to the calibration period,
suggesting that the parameterization remains appropriate.

The suitability of the ecological parameters is evaluated
by comparing the simulated LAI during the model calibration
period (2016–2020) and validation period (2021–2023) with
MODIS/Terra satellite observations for the corresponding periods
(Supplementary Figure S3). In the case of Boryeong dam basin,
the correlation coefficient for the calibration period is 0.627, while
for the validation period, it increases to 0.729. This indicates that
the RHESSys model calibrated in this study effectively captures
the monthly dynamics of LAI (Figure 2b). Similarly, for Yongdam
and Namgang dam basins, the correlation coefficients for the
calibration period are 0.868 and 0.794, respectively, while for the
validation period, they are 0.849 and 0.752, demonstrating satisfied
performance. These results suggest that the ecological parameters
are appropriately calibrated for all basins, ensuring reliable LAI
simulation. Furthermore, the model’s capacity to provide GPP and
NPP within reasonable ranges has been independently verified by
Yoo et al. (2024).

3.2 Cloud seeding scenarios

Multiple cloud seeding scenarios are generated referring
to previous research findings. The National Institute of
Meteorological Sciences (2023) and Yoo et al. (2024) conducted
numerical simulations of cloud seeding for Boryeong dam basin in
2021 using the WRF model, whose performance was subsequently

validated by Moon et al. (2025), confirming its ability to reliably
reproduce ground-observed precipitation. The simulations were
performed at 24-h intervals, with the first 6 h allocated for model
spin-up and the subsequent 18 h dedicated to forecasting. The
results indicated that cloud seeding contributed to an approximate
18% enhancement in the annual precipitation over Boryeong dam
basin. Figure 3 presents the time series of annual precipitation in
2021, derived by averaging the simulated values (UNSD, SEED)
over the grid cells within the basin. The findings suggest a general
increase in daily precipitation under SEED conditions, with more
pronounced enhancements on days with higher precipitation. For
instance, on July 7, the precipitation increased from 148.3 mm in
the UNSD scenario to 192.4 mm in the SEED scenario, while on
August 31, it increased from 180.8 mm to 286.3 mm.

Building on the simulation framework, this study adopts
scenario-based assumptions in which annual precipitation is
increased by 5%, 10%, 15%, and 20% through hypothetical cloud
seeding over Boryeong, Yongdam, and Namgang dam basins
during 2020–2023 (Supplementary Figure S4). This uniform N%
increase in annual precipitation follows previous approaches
(Acharya et al., 2011; Yoo et al., 2022). For example, Acharya
et al. (2011) demonstrated that directly adding a 1–5% increment
to observed daily winter precipitation—a period typically targeted
for cloud seeding—effectively enhanced seasonal precipitation
totals. Similarly, following Yoo et al. (2022, 2024), we impose
precipitation enhancement only on days with daily rainfall
exceeding 20 mm, thereby reflecting more realistic seeding effects.
Empirical evidence from historical cloud seeding experiments in
the United States, Israel, and China further supports the plausibility
of the enhancement ranges (5–20%) adopted in this study (Ben,
1990; Acharya et al., 2011; Wang et al., 2019).

3.3 Comparison of cloud seeding’s effect at
three dam basins

In this section, we assess the hydrological and ecological
effects from cloud seeding across three dam basins of varying
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FIGURE 3

Time series of daily precipitation under both UNSD (a) and SEED (b) cloud seeding simulations over Boryeong dam basin in 2021 (Yoo et al., 2024).

FIGURE 4

Trends in hydrological component increases across three dam
basins under four cloud seeding scenarios (5, 10, 15, 20% increases).
Green, orange, and blue lines represent results for the Boryeong
(BR), Yongdam (YD), and Namgang (NG) dam basins, respectively.
Dashed lines with cross markers indicate runoff, solid lines with
circle markers represent soil moisture, and dotted lines with
X-shaped markers denote evapotranspiration.

scales and forest characteristics. We evaluate the impact of cloud
seeding-induced precipitation increases of 5%, 10%, 15%, and
20% by comparing the annually averaged change ratio (CR) of
key hydrological and ecological components for each basin. The
hydrological components considered include runoff, soil moisture
content, and evapotranspiration, while the ecological components
encompass GPP, NPP, and vegetation respiration. Furthermore,
we analyze WUE, which quantifies the relative ratio of vegetation
productivity (GPP) to hydrological flux (evapotranspiration, ET)
(WUE = GPP/ET) (Baldocchi, 1994). The WUE has been widely
employed to examine the interactions between climate conditions
and vegetation productivity, providing insights into terrestrial
ecosystem metabolism (Briggs and Shantz, 1913; El Masri et al.,
2019). Figures 4, 5 present the comparative results, with colors
distinguishing different dam basins and line and symbol styles
differentiating the components.

FIGURE 5

Similar to Figure 4 but for ecological components. Dashed lines with
cross markers indicate NPP, solid lines with circle markers represent
GPP, and dotted lines with X-shaped markers denote vegetation
respiration.

3.3.1 Hydrological components
With increasing amounts of cloud seeding, the CRs of

hydrological components across three dam basins exhibit a
consistently linear upward trend. Overall, runoff emerges as
the most sensitive component to cloud seeding, followed by
soil moisture, while evapotranspiration exhibits only a marginal
increase. For instance, the CRs of runoff rise from approximately
5% to over 25% as annual precipitation increases from 5%
to 20% due to cloud seeding across all basins. In contrast,
the corresponding increase in soil moisture remains below 5%,
even under a 20% enhancement in rainfall. The hydrological
response of Boryeong dam basin is particularly notable, as it
shows a relatively greater increase in runoff and soil moisture.
Although the CRs of soil moisture and evapotranspiration
are lower than that of runoff, they still demonstrate a clear
linear relationship with precipitation changes. Interestingly, the
relative magnitudes of CRs for each hydrological component vary
across the basins, reflecting differences in their intrinsic basin
characteristics (Figure 4).
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Another noteworthy finding is that Namgang dam basin,
the largest among the three, exhibits the smallest increase in
both runoff and soil moisture. When precipitation increases by
20%, the CRs for Namgang dam basin reach 20.1% for runoff
and 3.4% for soil moisture—representing the lowest increments
among the three basins. While additional precipitation enhances
various hydrological components, larger basins tend to experience
greater hydrological losses, particularly through soil infiltration
during water transit from upstream areas to the outlet. This
leads to a reduced runoff response to precipitation inputs.
Consequently, although the Namgang basin offers substantial total
water storage potential due to its size, its relative hydrological
responsiveness—particularly in terms of runoff and soil moisture—
is more muted compared to smaller basins. Furthermore, in this
basin, the added precipitation appears to preferentially enhance
evapotranspiration, thereby contributing to the minimal increase
in soil moisture.

3.3.2 Ecological productivity
The CRs of ecological components also exhibit a nonlinear yet

overall increasing trend with greater amounts of cloud seeding,
although the magnitude of these responses is generally lower than
that observed for hydrological components. However, compared
to hydrological components, the differences and variability among
dam basins are relatively more pronounced. The upward trend in
CRs for GPP and NPP, which serve as indicators of vegetation
activity, is most evident in Boryeong dam basin, followed by the
Yongdam and Namgang dam basins (Figure 5). In Boryeong dam
basin, the CR for NPP reaches 7.8%, and that for GPP reaches 4.1%
when the precipitation amount increases by 20%, representing the
highest levels of enhancement among the three basins. In contrast,
Namgang dam basin shows the lowest increases in CR, with NPP
and GPP rising by 5.2% and 3.1%, respectively. Interestingly,
the order of increasing vegetation activity among three basins
aligns with the proportion of forested area within each basin—
Boryeong dam: 83.7%, Yongdam dam: 79.8%, Namgang dam:
78.1%—suggesting a potential relationship between cloud seeding-
induced ecological response and forest cover. A more detailed
analysis of this relationship will be provided in Section 4.4.

Among the ecological components, NPP exhibits the most
substantial increase due to cloud seeding, followed by GPP
and vegetation respiration. Notably, the most pronounced
enhancement is observed in the primary production solely
driven by vegetation activity—specifically, the amount of carbon
absorbed from the atmosphere by forests—underscoring the
significant impact of cloud seeding on forest carbon sequestration.
Furthermore, unlike other dam basins, Namgang dam basin
demonstrates a distinctive trend: as the precipitation increase
induced by cloud seeding rises from 5% to 15%, the increments
in GPP and NPP diminish. This finding suggests that large-scale
cloud seeding does not necessarily translate into a proportional
enhancement of vegetation activity. Instead, an effective strategy for
stimulating vegetation growth through cloud seeding may require
consideration of factors such as the proportion of forested area,
forest composition, and tree species, rather than focusing solely on
basin size.

3.3.3 Water use efficiency
Consistent with previous analyses, the CRs of annual and

seasonal WUE are estimated and compared across the three dam
basins under scenarios of 5%, 10%, 15%, and 20% increases in
precipitation. The results indicate that cloud seeding generally
enhances WUE (Figure 6). In Boryeong dam basin, for instance,
annual WUE increased by approximately 2.5% in response to a
20% increase in precipitation (Figure 6a). The most substantial
improvement is observed in spring, followed by winter and
summer, whereas a decreasing trend was evident in fall. Specifically,
spring WUE increased by up to 7.5%. Given that WUE is
calculated as the ratio of GPP to evapotranspiration, the observed
variations are primarily attributable to changes in GPP, as the
CRs of evapotranspiration under cloud seeding scenarios remained
relatively stable (Figures 4, 5).

The variation in CRs of WUE across three dam basins
highlights distinct regional disparities. Although WUE generally
exhibits an increasing trend in response to enhanced precipitation,
the most substantial increase is observed in Boryeong dam basin,
while Namgang dam basin shows the smallest rate of increase. This
pattern aligns with the trends observed in GPP and NPP. However,
compared to GPP and NPP, the magnitude of WUE enhancement
remains relatively modest—reaching a maximum of approximately
2% under a 20% increase in precipitation (Figure 6b). This limited
response is likely attributable to a simultaneous increase in
evapotranspiration, driven by elevated plant respiration under
cloud seeding conditions, which partially offsets the gains in GPP
and thus moderates the overall increase in WUE. Collectively, these
findings suggest that, similar to other ecological parameters, WUE
is more strongly governed by the proportion of forest cover within
the basin than by its spatial extent.

3.4 Sensitivity of three basins’ ecological
effects induced by cloud seeding

This section examines the relationship between basin’s forest
characteristics and vegetation vitality indicators in response to a
20% increase in precipitation. The basin characteristics considered
include: (1) total basin area (km2), (2) the proportion of forested
land area within the basin (%), calculated as 100 × (forested
area/total basin area), and (3) the proportion of broadleaf forest
relative to the total forested area (%), calculated as 100 × (broadleaf
forest area/total forest area). Correspondingly, vegetation vitality
is assessed using four ecological indicators: GPP, NPP, respiration,
and WUE. Figure 7 presents scatter plots for three basins, where the
x-axis denotes the basin-specific forest characteristics, and the y-
axis represents the corresponding rate of increase (CR) in ecological
components in response to a cloud seeding-induced 20% increase
in precipitation.

It is observed that vegetation vitality generally declines with
increasing basin area, with NPP exhibiting a pronounced decrease
from 7.6% to 5%. This pattern implies that larger basins are less
likely to exhibit enhanced ecological effects from cloud seeding.
In contrast, a higher proportion of forested area within a basin is
positively associated with post-seeding vegetation activity, thereby
suggesting an inverse relationship when compared to basin size.
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FIGURE 6

Comparison of CRs in WUE under cloud seeding scenarios from 2020 to 2023: Seasonal and annual mean CRs in Boryeong dam basin (a) and annual
mean CRs across three dam basins (b).

For example, the GPP increases from 3.1% to 4.2% as forest
cover rises from 78% to 84%. These results indicate that greater
forest cover is conducive to amplifying the ecological benefits of
cloud seeding. Furthermore, an increased proportion of broadleaf
species within the forest exhibits a similar positive association with
vegetation productivity, mirroring the trend observed for total
forest cover. Given that broadleaf species typically exhibit higher
photosynthetic productivity compared to coniferous species, it is
reasonable to infer that areas dominated by broadleaf trees are more
likely to experience substantial productivity gains as a result of
cloud seeding.

3.5 Forest-dependent lagged impact of
cloud seeding

This section examines the temporal lag and persistence of
the effects of seeding-induced precipitation enhancement on soil
moisture and vegetation activity, as indicated by GPP, NPP, and
WUE. A cross-correlation analysis is performed between the
cumulative precipitation over the current month and the time-
lagged responses of soil moisture content, GPP, NPP, and vegetation
respiration across three dam basins. The results of the lagged
correlation analysis for GPP are presented in Figure 8, where the
blue dashed line denotes the confidence interval derived from the
T-test. Correlation coefficients exceeding this confidence interval in
absolute value are considered statistically significant at the lag time.
The corresponding analysis results for soil moisture content, NPP,
and WUE are provided in Supplementary Figures S5–S7.

The correlogram patterns exhibit general similarity across
all four variables; however, notable differences emerge in the
way correlations manifest between soil moisture, representing the
hydrological component, and GPP, NPP, and WUE, representing
the ecological component. In the case of soil moisture, the
highest correlation coefficient is observed at the time of
rainfall occurrence (lag = 0) across all dam basins, with
correlations becoming insignificant after approximately 50–60
days (Supplementary Figure S5). This suggests that soil moisture

responds relatively promptly to the effects of cloud seeding.
In contrast, GPP and NPP exhibit peak correlation coefficients
with a noticeable delay of approximately 30 days, about
a month, following seeding-induced rainfall, highlighting a
temporal discrepancy in their response dynamics (Figure 8 and
Supplementary Figure S6).

The lag duration of significant correlations for GPP and NPP
varies across dam basins. In Boryeong dam basin, this correlation
persists for up to 100 days, whereas in Namgang dam basin, it
lasts approximately 70–80 days. Integrating these findings with the
results presented in the previous section, it can be inferred that
a higher proportion of forested area within a basin corresponds
to a greater rate of increase in GPP and NPP in response to
cloud seeding, as well as a prolonged duration of this effect
(Figure 8 and Supplementary Figure S6). In contrast, a different
pattern is observed for WUE. The lag time corresponding to
the highest correlation coefficient ranges from approximately 40
to 60 days. While the correlograms for Boryeong and Yongdam
dam basins exhibit a pattern similar to that of GPP and NPP,
Namgang dam basin demonstrates relatively weaker statistical
significance (Supplementary Figure S7). These findings suggest that
the persistence of cloud seeding effects on ecological water use
efficiency is more strongly governed by the proportion of vegetation
cover rather than by basin size.

4 Discussion

Based on the correlation analysis of three dam basins, it is
plausible to hypothesize that “the proportion of forest within a
basin, particularly the proportion of broadleaf trees, has a more
significant influence on the impact of cloud seeding than the
overall basin size.” Although the reliability of this analysis is
constrained by the limited sample size, the methodology employed
in this study can be readily applied to a larger set of dam basins
across South Korea. Expanding the analysis in this way would
enable more robust validation of the proposed hypothesis or
the emergence of alternative insights, thereby contributing to a

Frontiers in Forests and Global Change 09 frontiersin.org

https://doi.org/10.3389/ffgc.2025.1639721
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Yoo et al. 10.3389/ffgc.2025.1639721

FIGURE 7

Response of the CRs for vegetation activity (y-axis) to a 20% increase in precipitation, shown as a function of basin-specific characteristics (x-axis).
Each panel presents three data points, corresponding to the estimated CRs (y-axis) and the associated forest attributes (x-axis) for the three study
basins.
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FIGURE 8

Time-Lagged correlation correlograms between 1-month cumulative precipitation and following GPP. Correlation coefficients for each N-day lag
are calculated under four cloud seeding scenarios with precipitation increases of 5%, 10%, 15%, and 20%, indicated by different bar colors. The blue
dashed lines denote the confidence interval derived from the T-test. (a) Boryeong dam basin. (b) Yongdam dam basin. (c) Namgang dam basin.

more comprehensive understanding of the relationship between
basin characteristics and cloud seeding outcomes. Notably, the
findings of this study—specifically, that larger forested areas may
enhance ecological response to cloud seeding—are supported by
previous research emphasizing the ecological benefits of broadleaf
afforestation (Semenyutina et al., 2016; Wu et al., 2020; Hüblová
and Frouz, 2021; Cukor et al., 2022).

Previous studies have consistently demonstrated that
vegetation responses to precipitation exhibit distinct time-
lagged correlations across diverse climatic regions (Gessner et al.,
2013; Ding et al., 2020; Kong et al., 2020). For instance, Gessner
et al. (2013) reported 1–3 month lags across Central Asia, while
Kong et al. (2020) highlighted daily-scale lags of 8–20 days.
Extending this line of inquiry, Yoo et al. (2024) identified that
cloud seeding events exhibit similar lagged effects, with vegetation
activity strongly linked to interventions occurring 1–2 months
prior, thereby supporting the role of cloud seeding in enhancing
carbon uptake. Building on these foundations, this study advances
the field by showing that the temporal dynamics of vegetation
activation induced by cloud seeding are not uniform but rather
strongly dependent on forest type and coverage, underscoring the

importance of ecosystem-specific characteristics in shaping the
ecological outcomes of weather modification.

Forest management, land use changes, and population pressure
are all critical factors that can interact with or modify the
ecological effects of cloud seeding. Practices such as afforestation,
logging, or wildfire occurrences can directly alter hydrological
cycles, while land use changes may shift soil water retention
and the surface heat–moisture balance, producing heterogeneous
ecological responses even under identical magnitudes of cloud
seeding (Wang et al., 2021; Zhang et al., 2021). In densely populated
regions, the benefits of cloud seeding may be preferentially
absorbed into water use demands, drought alleviation, or
agriculture, rather than ecosystem revitalization. Conversely,
enhanced precipitation induced by cloud seeding could drive land
use changes through agricultural expansion or modified irrigation
practices (Douglas et al., 2009), while increased water availability
may facilitate new forest management strategies or accelerate urban
and industrial growth.

In addition to the observed enhancement of forest productivity
through cloud seeding, it is also necessary to consider vegetation
activation on regional hydrological and climatic conditions.
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Weather modification has been reported to generate feedback
to local or regional climate systems through changes in
evapotranspiration, surface albedo, and boundary layer processes
(Bonan, 2008; Mahmood et al., 2014). Wu et al. (2016), for
example, demonstrated in the central African tropical rainforest
that increases in forest cover and LAI modified evapotranspiration
and surface albedo, ultimately exerting a significant impact on
precipitation patterns. Recent studies further highlight that, beyond
precipitation enhancement alone, cloud seeding may influence
surrounding systems—such as the lower atmosphere, hydrological
cycle, and regional moisture flows—underscoring the importance
of evaluating unintended feedback. Thus, while cloud seeding
may provide ecological benefits, future investigations should
systematically assess long-term land–atmosphere interactions.

This study underscores the importance of considering basin-
specific forest characteristics when developing strategies to
maximize the vegetation-related benefits of cloud seeding.
However, several limitations must be acknowledged, and future
research directions are suggested. First, precipitation scenarios
adopted in this study, which assume a uniform percentage increase
in annual rainfall, may simplify the complex atmospheric dynamics
associated with cloud seeding. This assumption was necessary given
the absence of long-term observational records of cloud seeding
in South Korea, where large-scale, sustained experiments have not
yet been conducted. Nevertheless, our approach is consistent with
previous scenario-based studies (e.g., Acharya et al., 2011) and is
informed by recent WRF-based simulations (Yoo et al., 2022, 2024).
While such simplified scenarios inevitably limit the physical realism
of our analysis, they provide a valuable first step in exploring
the potential long-term ecological consequences of cloud seeding.
Future research should incorporate more detailed process-based
simulations and observational campaigns to validate and extend
these findings.

We also recognize that this study is limited to three dam basins,
which constrains the extent to which the findings can be generalized
across broader regions. The three sites, previously investigated in
national cloud seeding projects, represent diverse hydroclimatic
and forest characteristics among South Korean dams, thereby
lending contextual robustness to our results. These comparative
insights highlight the importance of site-specific evaluation, as
forest coverage and storage capacity can fundamentally alter
seeding outcomes. Expanding this framework to encompass
additional basins across South Korea and East Asia would enhance
the generalizability and validation of the conclusions, while further
analyses could also offer broader perspectives on basin-specific
modeling uncertainties.

5 Conclusion

In this study, we propose a modeling framework to evaluate
the ecological conservation and vegetation activity impacts of
cloud seeding across three dam basins of varying scales and
forest characteristics. To this end, we simulate hydrological
and ecological components using long-term cloud seeding data
(2020–2023) as input and assess the effects of cloud seeding on
vegetation activity, respiration rates, and water use efficiency. The
evaluation is conducted using the RHESSys model, calibrated

for the target basins, by comparing simulation results under
two scenarios: UNSD and SEED. Differences between these
scenarios are quantified to elucidate the impacts of cloud
seeding. The hydrological components analyzed include runoff, soil
moisture, and evapotranspiration, while the ecological components
encompass GPP, NPP, and vegetation respiration. This analysis
enables us to examine the ecohydrological responses to cloud
seeding and their interrelationships. Furthermore, we investigate
the effects of delayed additional precipitation on vegetation activity
and its sustained viability.

The key findings of this study are as follows. First,
ecohydrological modeling under cloud seeding scenarios suggests
that cloud seeding effectively enhances various hydrological and
ecological variables. Among the hydrological components, runoff
exhibits the highest annual increase due to cloud seeding, followed
by soil moisture and evapotranspiration. In terms of vegetation
activity, both GPP and NPP show the most pronounced increases.
Second, while similar trends in the increase rates of hydrological
and ecological components are observed across three dam basins,
these trends are modulated by basin characteristics. Specifically,
Namgang dam basin, which has a larger area but a lower
proportion of forest cover, exhibits lower vegetation activity
compared to Boryeong dam basin, which has a smaller area but
a higher proportion of forest cover. This finding suggests that the
effectiveness of cloud seeding is influenced more by factors such as
the proportion of forested area and the dominance of broadleaf tree
species rather than the overall basin size.

Third, the persistence of enhanced vegetation activity is
significantly influenced by the forest characteristics of each dam
basin. In terms of soil moisture, the highest correlation coefficient
is observed immediately following cloud seeding events across
all basins, indicating that soil moisture is the most immediate
hydrological component to respond to cloud seeding. The rates
of increase in GPP and NPP are higher in basins with greater
forest cover, with their effects also exhibiting greater persistence.
Furthermore, WUE results suggest that the proportion of
vegetation, rather than basin size, plays a pivotal role in sustaining
the effects of cloud seeding on vegetation water use efficiency.

This study demonstrates that cloud seeding can activate forests
and vegetation, offering broad practical implications. Nationally,
agencies such as the Korea Meteorological Administration, Korea
Forest Service, and Korea Rural Community Corporation may
employ these findings to support climate adaptation and improve
agricultural productivity. Internationally, organizations including
the WMO, FAO, United Nations Environment Programme
(UNEP), and United Nations Office for Disaster Risk Reduction
(UNDRR) could apply the results to refine weather modification
guidelines, strengthen ecosystem-based adaptation, and enhance
disaster risk reduction strategies. Overall, the study highlights
a significant potential to contribute to sustainable forest–water–
climate management while fostering global cooperation.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary material, further inquiries can be
directed to the corresponding author.

Frontiers in Forests and Global Change 12 frontiersin.org

https://doi.org/10.3389/ffgc.2025.1639721
https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org


Yoo et al. 10.3389/ffgc.2025.1639721

Author contributions

CY: Conceptualization, Formal analysis, Supervision, Writing
– original draft. WN: Conceptualization, Formal analysis,
Investigation, Methodology, Visualization, Writing – original
draft. S-KS: Data curation, Formal analysis, Validation, Writing
– review & editing. K-HC: Conceptualization, Supervision,
Validation, Writing – review & editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was
supported by the National Institute of Meteorological Sciences
(NIMS) through Research on Weather Modification and Cloud
Physics (KMA2018-00224) and the Regional Innovation System &
Education (RISE) program through the Jeju RISE center, funded
by the Ministry of Education (MOE) and the Jeju Special Self-
Governing Province, Republic of Korea (2025-RISE-17-001).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/ffgc.2025.
1639721/full#supplementary-material

References

Abshaev, A. M., Flossmann, A., Siems, S. T., Prabhakaran, T., Yao, Z., and
Tessendorf, S. (2022). “Rain enhancement through cloud seeding,” in Unconventional
Water Resources (Cham: Springer International Publishing), 21–49.

Acharya, A., Piechota, T. C., Stephen, H., and Tootle, G. (2011). Modeled
streamflow response under cloud seeding in the North Platte River watershed. J.
Hydrol. 409, 305–314. doi: 10.1016/j.jhydrol.2011.08.027

Ager, A. A., Day, M. A., Short, K. C., and Evers, C. R. (2016). Assessing the impacts
of federal forest planning on wildfire risk mitigation in the Pacific Northwest, USA.
Landsc. Urban Plan. 147, 1–17. doi: 10.1016/j.landurbplan.2015.11.007

Al Hosari, T., Al Mandous, A., Wehbe, Y., Shalaby, A., Al Shamsi, N., Al Naqbi,
H., et al. (2021). The UAE cloud seeding program: a statistical and physical evaluation.
Atmosphere 12:1013. doi: 10.3390/atmos12081013

Al-Jamal, M. S., Sammis, T. W., Mexal, J. G., Picchioni, G. A., and Zachritz, W. H.
(2002). A growth-irrigation scheduling model for wastewater use in forest production.
Agric. Water Manag. 56, 57–79. doi: 10.1016/S0378-3774(02)00003-3

Altmann, U. (2011). “Investigation of movement synchrony using windowed
cross-lagged regression,” in Analysis of Verbal and Nonverbal Communication and
Enactment. Eds. A. Vinciarelli, M. Pantic, and A. Nijholt (Berlin, Heidelberg:
Springer), 335–345.

Alzahrani, A. S., and Abdelbaki, A. M. (2025). Evaluating cloud seeding initiatives
for sustainable water supply in arid environments: insights from Al Baha, Saudi Arabia.
Ain Shams Eng. J. 16:103591. doi: 10.1016/j.asej.2025.103591

Baldocchi, D. (1994). An analytical solution for coupled leaf
photosynthesis and stomatal conductance models. Tree Physiol. 14, 1069–1079.
doi: 10.1093/treephys/14.7-8-9.1069

Ben, Z. P. (1990). Springflow enhancement in Northern Israel due to cloud seeding.
Isr. J. Earth Sci. 39, 103–117.

Bonan, G. B. (2008). Forests and climate change: forcings, feedbacks, and the climate
benefits of forests. Science 320, 1444–1449. doi: 10.1126/science.1155121

Briggs, L. J., and Shantz, H. L. (1913). The Water Requirement of Plants (Nos.
284-285). Washington, DC: US Government Printing Office.

Bruintjes, R. T. (1999). A review of cloud seeding experiments to enhance
precipitation and some new prospects. Bull. Am. Meteorol. Soc. 80, 805–820.
doi: 10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2

Chen, B., Liu, Z., He, C., Peng, H., Xia, P., and Nie, Y. (2020). The regional
hydro-ecological simulation system for 30 years: a systematic review. Water 12:2878.
doi: 10.3390/w12102878

Chun, J. A., Baik, J., Kim, D., and Choi, M. (2018). A comparative assessment
of SWAT-model-based evapotranspiration against regional-scale estimates. Ecol. Eng.
122, 1–9. doi: 10.1016/j.ecoleng.2018.07.015

Chungnam Institute (2016). Study on the Evaluation of Boryeong Dam’s Water
Supply Capacity and Drought Response Measures. Gongju-si: Chungnam Institute.

Cukor, J., Vacek, Z., Vacek, S., Linda, R., and Podrázský, V. (2022). Biomass
productivity, forest stability, carbon balance, and soil transformation of agricultural
land afforestation: a case study of suitability of native tree species in the submontane
zone in Czechia. Catena 210:105893. doi: 10.1016/j.catena.2021.105893

Ding, Y., Li, Z., and Peng, S. (2020). Global analysis of time-lag and-accumulation
effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 92:102179.
doi: 10.1016/j.jag.2020.102179

Douglas, E. M., Beltrán-Przekurat, A., Niyogi, D., Pielke, R. A. Sr., and Vörösmarty,
C. J. (2009). The impact of agricultural intensification and irrigation on land–
atmosphere interactions and Indian monsoon precipitation—a mesoscale modeling
perspective. Glob. Planet. Change 67, 117–128. doi: 10.1016/j.gloplacha.2008.12.007
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