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Assessing cognitive performance
in nature: brain size and
personality correlates of
novel object recognition
in nest-guarding male
pumpkinseed sunfish
Keith McAllister †, Maria Dolan †, Caleb J. Axelrod †,
Beren W. Robinson and Frédéric Laberge*

Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
Studying the factors that determine cognitive performance in animals is

challenging under natural conditions but necessary to ensure that the

laboratory test results are relevant to wild populations. We took advantage of

nest fidelity in parental male pumpkinseed sunfish (Lepomis gibbosus) to conduct

a novel object recognition (NOR) assay in the field. We assessed consistent

individual differences in behaviour across the object familiarisation and test

phases of the NOR assay and collected anatomical measurements, including

brain size, after assay completion. We hypothesised that brain size would

influence pumpkinseed cognitive ability and predict NOR performance after

accounting for individual behavioural differences. Parental males showed

repeatable reactions to nest disturbance and to the presence of objects at the

nest periphery between assay phases, as well as correlated object investigation

behaviours. We found evidence of novel object recognition memory at the

population level, although it varied widely among individuals. Individual

differences in object interactivity did not influence NOR performance, but

relative brain mass (corrected for body length) did. Parental male pumpkinseed

with relatively larger brains performed more poorly than males with relatively

smaller brains. We interpret this negative relationship between brain size and

NOR performance in the context of severe energy limitations faced by parental

males during reproduction. Specifically, males maintaining energetically costly

larger brains are likely operating near their upper energetic limit, with little or no

spare resources available for investment in demanding learning processes. If this

is the case, our findings emphasise that relationships between brain size and

cognitive test performance may depend on energy availability and

expenditure rates.
KEYWORDS

animal personality, brain size, cognition, fish, learning and memory, novel

object recognition
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Introduction

Cognition is commonly defined as the ability of individuals to

process, integrate, and use information from their environment,

and it has often been suggested as a key driver of variation in animal

performance and fitness (Shettleworth, 2010). Animal cognition is

tested using a variety of learning, memory, or problem-solving

paradigms. The assumption is often made that performance on

these tests represents a direct measure of cognitive ability (Benson-

Amram et al., 2016; Buechel et al., 2018; Kotrschal et al., 2013;

MacLean et al., 2014). However, a variety of factors beyond

cognitive ability can influence performance in tests designed to

evaluate animal cognition (Boogert et al., 2018). These include

consistent individual differences in behaviour within populations

(Carere and Locurto, 2011; Sih and Del Giudice, 2012), external

environmental factors (physical, social, developmental), and

internal factors (reproductive status, health, stress) (Cauchoix

et al., 2020; Kotrschal and Taborsky, 2010; Lambert and Guillette,

2021; Lupien et al., 2009). This potentially complex web of

influences on test performance is difficult to untangle. Accurate

estimates of cognitive ability and its variation within and across

species require accounting for these additional influences on

performance in cognitive tests.

There is long-standing interest in uncovering relationships

between brain size and cognitive abilities among vertebrates (see

Healy, 2021; Jerison, 1973; Striedter, 2005) and invertebrates

(Greenspan and van Swinderen, 2004). Increased brain size is

thought to occur only when sufficient cognitive challenges are

present because the high energetic costs of growth and

maintenance of nervous tissue should deter unnecessary brain

enlargement (Niven and Laughlin, 2008). Changes in the

efficiency of neural activity patterns without changes in brain size

may also affect cognition (Chittka and Niven, 2009; Dubois et al.,

2018), especially if brain size is constrained, but such differences are

often understudied because they are harder to measure than brain

size. Evidence linking variation in whole brain size (relative to body

size or absolute size) to specific cognitive abilities has been obtained

in comparative studies (e.g., Benson-Amram et al., 2016; MacLean

et al., 2014; Reader et al., 2011). Comparing cognitive abilities

among species is challenging due to difficulties in establishing

equivalent testing contexts (Macphail, 1982) and isolating causal

from correlated factors that drive variation among species (Peiman

and Robinson, 2017). It is therefore also advantageous to evaluate

variation in cognitive performance and brain size within species

(see Logan et al., 2018). In support of this view, artificial selection

for brain size affects some complex forms of cognitive performance

in the guppy (Poecilia reticulata), such as numerical discrimination

and executive functions that support goal-directed behaviours (e.g.,

Buechel et al., 2018; Kotrschal et al., 2013; Triki et al., 2023). The

ability to perform different cognitive tasks also correlates positively

with brain size in Long–Evans rats (Anderson, 1993).

Individual behavioural differences unrelated to brain size or

cognitive ability may also influence performance in cognitive tests.

The closely related concepts of animal personality and behavioural

syndromes refer to stable behavioural differences expressed across
Frontiers in Ethology 02
time and contexts among individuals of the same species (Carere

and Locurto, 2011; Sih and Bell, 2008). Personality focuses on

repeatable behavioural differences, whereas syndromes emphasise

correlations between different behavioural traits within individuals.

Individual differences, such as those along the familiar shy–bold

continuum (i.e., shy: less active, less exploratory versus bold: more

active, more exploratory; Wilson et al., 1994), can correlate with

variation in learning task performance due to differences in

exploration. For example, a positive correlation between

exploratory tendency and learning performance, independent of

stress, emotional reactivity, or physical attributes, has been observed

in outbred CD-1 mice (Matzel et al., 2006). The potential link

between personality and cognition led Sih and Del Giudice (2012)

to propose the concept of cognitive syndrome. A cognitive

syndrome implies correlated suites of individual cognitive

characteristics that result in different cognitive styles among

individuals, influencing the ways animals acquire, process, store,

or act on information, independent of overall cognitive ability.

Many examples have shown a relationship between cognitive styles

and learning performance (Daniel and Bhat, 2020; Gibelli et al.,

2019; Jones et al., 2020; Lucon-Xiccato and Bisazza, 2017; Mazza

et al., 2018; Schuster et al., 2017). Interestingly, Burns and Rodd

(2008) showed that cognitive styles (i.e., speed vs. accuracy of

decisions) in guppies are associated with brain morphology—

hasty decisions were associated with a smaller telencephalon—but

not with performance in a spatial memory task. In the same species,

artificial selection for brain size influenced personality and

performance on a numerical discrimination task in a sex-specific

manner (Kotrschal et al., 2013; Kotrschal et al., 2014). These last

studies highlight the complexity and potential variability of

relationships between personality, brain size, and cognition.

Studying cognition in natural conditions can be challenging

(Morand-Ferron et al., 2016; Salena et al., 2021), so most cognitive

testing is conducted under controlled laboratory conditions.

However, captive housing and domestication can confound

cognitive results by profoundly altering phenotypes (Milla et al.,

2021). For example, transferring wild fish into captivity can reduce

brain size within 2–6 weeks through phenotypic plasticity (Joyce

and Brown, 2020; Park et al., 2012; Turschwell and White, 2016).

Captivity can also induce foraging deficits on natural prey in fish

(Olla et al., 1998; Vehanen et al., 2009). Fish personality differences

that are relatively stable in natural conditions also seem to

disappear under laboratory housing (Wilson et al., 1993).

Collectively, physical and social environments, particularly

impoverished laboratory conditions, likely affect cognitive testing

and may limit the relevance of laboratory results for inferring

cognition in natural populations. Studies examining multiple

potential determinants of cognitive performance in natural

conditions are challenging and therefore rare, but they are

necessary to improve our understanding of animal cognition.

Here, we performed cognitive testing under natural conditions

using a pumpkinseed sunfish (Lepomis gibbosus) ecotype system,

which exhibits variation in relative brain size between littoral and

pelagic lake habitats without differences in gross brain morphology

(Axelrod et al., 2018). This species also shows individual variation
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in behaviour along the shy–bold continuum in natural populations

(Wilson et al., 1993). Novel object recognition (NOR) testing

(Ennaceur and Delacour, 1988; Hamilton, 2018; Sivakumaran

et al., 2018) on nest-guarding “parental” male pumpkinseed

during the reproductive season allowed us to evaluate consistent

behavioural differences across test phases as well as recognition

memory performance. Anatomical measurements, including brain

size, were obtained by collecting individuals after testing was

completed. Although we are unaware of evidence directly linking

brain size to NOR performance, we expected that larger brains

would enhance NOR by supporting increased cognitive processing,

thereby facilitating performance on demanding tasks. NOR is likely

cognitively demanding because detecting novelty requires

substantial memory storage capacity to discriminate novel from

familiar features in the environment (e.g., Brady et al., 2008).

Moreover, relevant work in guppies suggests that larger brains

may enhance performance in more cognitively demanding tasks,

such as reversal learning and numerical discrimination, but not in

simple colour or spatial discriminations (Buechel et al., 2018; Burns

and Rodd, 2008; Kotrschal et al., 2013). The key questions we

addressed were whether pumpkinseed exhibit NOR in a natural

setting and whether NOR performance is associated with brain size

and/or personality traits. We hypothesised that variation in whole

brain size (amplified by the mean difference between littoral and

pelagic ecotypes) would influence cognitive ability, predicting that

larger brains would improve NOR performance after accounting for

individual differences in behaviour.
Methods

Study system

Behavioural data were collected from nest-guarding (hereafter

“parental”) male pumpkinseed at littoral and pelagic sites in July

2019 (n = 62) and 2020 (n = 33) during daylight hours in Ashby

Lake, Addington Highlands, Ontario, Canada (45.0944° N,

77.3496° W), a small (surface area, 2.59 km2; maximum depth,

36.6 m), post-glacial and oligotrophic inland lake. Two

pumpkinseed ecotypes coexist in Ashby Lake by inhabiting either

the inshore littoral or offshore pelagic lake habitat during the

summer growing season (Robinson et al., 1993, Robinson et al.,

2000; Gillespie and Fox, 2003; Jastrebski and Robinson, 2004;

Berchtold et al., 2015). This population is typical of at least 12

polyphenic populations in the region (Weese et al., 2012). During

the summer spawning and growing season, littoral individuals are

common in bays with soft sediments, macrophyte vegetation, and

coarse woody debris, and feed on large but cryptic benthic

macroinvertebrates as well as floating insect prey. Higher

densities of pelagic individuals occupy numerous hard rock shoals

surrounded by deep, open-water habitat and feed on locally

abundant zooplankton prey (Daphnia spp.) (Jarvis et al., 2020).

Ecotypes differ along a continuum of variation in body and head

anatomical traits related to feeding ecology (Robinson et al., 1993,

Robinson et al., 2000; Gillespie and Fox, 2003; Jastrebski and
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Robinson, 2004; Robinson and Wilson, 1996; Weese et al., 2012;

Jarvis et al., 2020). Our previous work showed that the mean brain

size, adjusted for body size, is 8.3% larger in adult littoral compared

to pelagic individuals, with no differences in the size of five brain

regions (Axelrod et al., 2018). Ecotypes can interbreed (Jarvis et al.,

2017) and are genetically similar (Weese et al., 2012; Colborne et al.,

2016), thus reducing large genetic effects that might confound

ecotype comparisons.

Male reproduction provides an ideal opportunity to reliably

observe and sample mature male pumpkinseed in the wild because

of their intense nest-guarding behaviour. Parental males construct

solitary nests in either habitat (Jastrebski and Robinson, 2004;

Colborne et al., 2016), typically in water less than 2 m deep from

late May to early August (Danylchuk and Fox, 1996). Cuckoldry is

possible but has not been observed in Ashby Lake (Gross, 1980;

Rios-Cardenas and Webster, 2005). Parental male reproduction is

costly. Parental males can lose between 6% and 15% of their wet

body weight while nesting (Colgan and Gross, 1977; Gross, 1980,

Gross, 1982; Coleman and Fischer, 1991; Rios-Cardenas and

Webster, 2005) and face increased mortality postreproduction

(Gross, 1980; Gillooly and Baylis, 1999). Successful parental male

reproduction ranges from 11 to 21 days (mean, 15 days; Danylchuk

and Fox, 1996) depending on water temperature (Cargnelli and

Neff, 2006), and has four phases (Colgan and Gross, 1977): territory

establishment and nest construction; active courting of and

spawning with reproductive females who subsequently leave the

nest after spawning; a larval brooding phase; and a vacating phase as

larvae disperse and the male terminates reproduction. Successful

egg development requires continuous fanning of oxygen-rich water

beginning immediately following fertilisation and persists for a

minimum of 3 days for each spawned clutch (Gross, 1980;

Coleman and Fischer, 1991), longer for multiple clutches (Cooke

et al., 2008). Throughout, parental males also vigorously and

aggressively defend against predatory intruders (Keenleyside,

1972; Colgan and Gross, 1977; Gross, 1980; Cooke et al., 2008).

Parental males may feed opportunistically, but rarely at the expense

of parental brood care or nest defence (Thorp et al., 1989).

Reproductive success increases with male body condition

(Danylchuk and Fox, 1996; Cargnelli and Neff, 2006). Variation

in energy reserves and metabolism over winter, largely due to size

differences, permits larger males to nest earlier than smaller males,

who must feed longer prior to nesting because of their greater

winter energy deficit (Danylchuk and Fox, 1996; Cargnelli and Neff,

2006). Larger males in very good condition may spawn a second

time (Danylchuk and Fox, 1996; Rios-Cardenas and Webster,

2005). Throughout July, we located and uniquely identified

natural nest sites by swimming and boat surveys in both habitats.

The lower number of natural nests at pelagic shoals was

supplemented by installing shallow plastic basins (diameter, 36

cm; height, 12 cm) filled with 3 cm of the preferred nesting substrate

of coarse gravel (n = 37). Our study is necessarily limited to nesting

males, so the results are correspondingly limited in their

generalisability to the whole population, although we argue they

still provide an effective study model for the use of cognitive tests in

a natural setting.
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Behavioural observations

Parental male behaviour was assessed from remote video

recordings made by placing a small low-intrusion camera

(Wasp®, Ariss, Ontario, Canada) approximately 1 m away from

the nest perimeter to simultaneously view the nest and its resident

parental male. We used a spontaneous NOR task to estimate the

cognitive performance of parental males (Blaser and Heyser, 2015;

Lucon-Xiccato and Dadda, 2014; Sivakumaran et al., 2018). This

task normally relies on the innate predisposition of subjects to

explore new rather than familiar objects. This exploration bias is

considered to reflect the sensitivity of memory for familiar objects

and, consequently, the ability to discriminate between old and

new stimuli.

The NOR task involves two phases: the initial object

familiarisation phase and a test phase with the introduction of a

novel object. In the object familiarisation phase, a snorkel diver

placed the camera and two identical buoyant objects, A1 and A2,

just inside the nest perimeter on opposite sides of the nest relative to

the camera view (Figure 1A). Parental male behaviour was then

recorded for 30 min. After this time, the diver returned to remove

objects A1 and A2 and replaced them with a new version of the

original objects (A3) and one novel object, B1, placed at the
Frontiers in Ethology 04
locations of the original objects (Figure 1B). Another 30 min of

male behaviour was recorded with the new objects in place. The

parental male fled the nest during both installations of the novel

objects, but typically quickly returned in less than a minute after the

diver departed, most likely to resume guarding the spawn. Object

types A and B were D-shaped pool noodle half sections (orange, 51

mm long × 25 mmmaximum width) and ping pong balls (white, 40

mm diametre), respectively (Figure 1). They floated, anchored to

stones with transparent fishing line. We minimised risks of intrinsic

bias or curiosity effects by using a cross-over design, assigning half

of the individuals to one of the two objects during the

familiarisation phase (Koivisto et al., 2025) and counterbalancing

the side of the novel object to control for side bias.

Upon completion of the test, the parental male was captured

using a long-handled net, euthanised, and preserved in 10% neutral

buffered formalin for brain size measurement. Capture time

following the NOR assay varied because male responses to net

intrusion differed, with some males captured immediately upon

return and others requiring a longer period, typically less than 10

min. Stress following capture was minimised by immediately

passing the netted male to assistants on a closely moored boat for

anaesthesia verified by tail pinching (< 3 min in low-dose clove oil

solution), followed by euthanasia in a 0.1 mg/ml solution of clove oil

for a minimum of 5 min. Methods of capture, handling, and

euthanasia of animals were approved by the University of Guelph

Animal Care Committee (Protocol No. 4180) under the guidelines

of the Canadian Council on Animal Care. Scientific sampling was

licensed through the Ontario Ministry of Natural Resources (Permit

No. 1092282 and No. 1095398).

Video recordings were scored for male behaviour using

JWatcher software (version 1.0, 2000). Behaviour of males

collected in 2019 was scored by KM, while behaviour of 2020

males was scored by MD (i.e., observer and year are confounded).

Only behaviours focused on the buoyant objects were considered

(i.e., interactions with anchoring rocks or lines were not included).

First, counts of interactions with objects were made separately for

contact with the mouth, contact with the tail, and circling of the

object. Approaching an object within half a body length was also

considered an interaction and counted. Separate counts were

obtained for the two objects. Infrequent interactions with artificial

objects involving contacts and circling resulted in little variation

among individuals. To increase variation, we calculated two object

interaction statistics from these count data. The first summed all

noncontact interactions with objects (NCIO = sum of counts of

approaches plus circles around objects), and the second summed all

contact interactions with objects (CIO = sum of counts of contacts

with mouth and tail). Second, elapsed time was determined for four

behaviours during each phase of the assay: (1) latency to return

(LTR) to the nest after diver-induced disruption, (2) latency until

first interaction (LTI) with an object after return to the nest, (3) total

time spent investigating objects (TTI), defined as the time between

the first and last object interaction during a phase of the assay, and

(4) total time spent on each of the right and left sides of the nest,

where side occupancy was determined by head position. LTR may

reflect how an individual reacts to disturbance, while LTI may
FIGURE 1

Novel object recognition assay. (A) Familiarisation phase, in which
two identical objects, A1 and A2, are placed just inside the nest
perimeter. The nest-guarding male pumpkinseed is visible on the
right side of the nest in this panel. (B) Test phase, in which a new
specimen of the old object (A3) and a novel object B1 are placed
within the nest perimeter.
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reflect curiosity or fear regarding the objects installed at the nest

periphery by the diver. TTI likely reflects willingness to explore and

gain information about objects. High counts of interactions with

objects (noncontact or contact) may reflect a willingness to

investigate objects, while nest side occupancy may reflect a less

overt object or nesting preference. Most fish ceased interactions

with objects before the end of the 30-min period of each assay

phase, which we interpret as indicating that the assay duration was

sufficient to assess individual behaviour.

Repeatability of scoring between observers was evaluated using

the intraclass correlation coefficient (ICC), estimated from a

subsample of 15 nesting male trials from 2019 independently

scored by each observer (Bell et al., 2009). We used a restricted

maximum likelihood (REML) model to estimate the ICC as the per

cent variance in behaviour due to a random fish effect, after

accounting for fixed effects of habitat, test phase, and observer.

Mean repeatability for fish (averaged over separate analyses of left

and right side counts; Supplementary Table S1) was high for time

spent on each side (ICCmean = 0.93), object circling (ICCmean =

0.92), moderate for latency to return (ICC = 0.74), total time

interacting (ICC = 0.64), mouth contacts (ICCmean = 0.67), and

object approaches (ICCmean = 0.60), and lowest for tail contacts

with object (ICCmean = 0.29), indicating greater variation in

observer error.
Novel object recognition performance

We used two different variables to assess NOR performance: the

sum count of noncontact interactions with objects (NCIO) and the

time spent on each side of the nest. Contact interactions with

objects (CIO) were not used as a measure of NOR performance

because only 28% of individuals expressed contact behaviours. For

each variable, discrimination ratios (DR) were calculated for both

the object familiarisation and test phases of NOR assays using the

formula: DR = (Tnew − Told) / Ttotal, where Tnew represents time or

counts measured on the side of the novel object, Told represents time

or counts on the side of the original object, and Ttotal represents the

summed time or counts on both sides. The side of the novel object

in the test phase determined the “new” side in the object

familiarisation phase for the purpose of DR calculations. The

change in discrimination ratios between the two phases of the

assays (DDR = DRtest − DRfamiliarisation) was used to quantify NOR

performance while controlling for individual object or side

preferences. Our main interest was in the general ability to

remember and discriminate objects rather than in preference or

avoidance, so absolute values of DDR (|DDR|) are analysed. As a

result, our measure of novel object recognition memory includes

individuals expressing either novel object preference or avoidance.
Brain size measurements

Brain mass was used to estimate brain size. Brains of males

preserved for less than 7 months were removed by dissection as per
Frontiers in Ethology 05
Axelrod et al. (2018), trimmed to remove excess fat and cranial

nerves, blotted to remove excess formaldehyde, and weighed using

an Accu-124D scale (Fisher Scientific, Waltham, MA, USA) to a

precision of 0.0001 g. Standard length (± 1 mm) was also measured

and used to control for and explore the effects of body size on

performance. Body condition was also estimated using the Scaled

Mass Index (Peig and Green, 2010).

Year, habitat, and standard length all had significant effects on

raw brain mass (Supplementary Table S2). Our focus on

relationships between brain size relative to body size, personality,

and measures of NOR performance, therefore, required adjusting

brain mass for year and body size effects. We estimated “relative”

brain mass as the residual values of log10-transformed brain mass

regressed against log10-transformed standard length and a year

factor (YrSz-adj. BM). Standard length was chosen over body mass

for size correction because it is a more stable estimate of body size.

We also considered “absolute” brain mass in a few models below,

estimated as brain mass adjusted only for the effect of year (Yr-adj.

BM). Brain mass was not adjusted for habitat because brain

mass differences between ecotypes were either included as a

habitat parameter in models or removed through the model

selection process.
Statistics

Ecotype differences in behaviour and brain mass
We evaluated the influences of habitat on brain mass and five

behavioural response variables (mean LTR, mean LTI, NCIO1,

CIO1, TTI1) while statistically controlling for standard length

using univariate ANCOVA models. Standard length, brain mass,

and the five behaviours were normalised with a log10-

transformation after adding one to each value (excluding

standard length). An interaction between habitat and standard

length was not included in the final models, as it was consistently

nonsignificant in preliminary analyses. We used these univariate

analyses to help interpret the multivariate variation in personality

described below.

Individual differences in behaviour
Personality can influence cognitive performance in fishes (e.g.,

Daniel and Bhat, 2020), so we developed individual personality

scores as parameters in some models. Consistency of behaviour

differences among individuals over time (repeatability) was assessed

with the intraclass correlation coefficient of LTR, LTI, NCIO, and

CIO between phase one and phase two of the NOR assay.

Consistent differences expressed across contexts, possibly

indicative of individual personality, were first assessed through

pairwise Spearman ’s rank correlations among different

behaviours. Here, individual values of LTR and LTI for each

phase of the NOR assay were averaged to obtain mean LTR and

mean LTI values. Only TTI1, CIO1, and NCIO1 rank values from

phase one were used to avoid the effects of object learning on scores

in phase two. Higher correlation coefficients indicate stronger

evidence of consistent individual differences in behaviour and
frontiersin.org
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help interpret multivariate personality scores estimated below.

Variation in shy–bold personality has been assessed in juvenile

pumpkinseed under natural and artificial conditions (Wilson et al.,

1993), but not under natural conditions using parental males. We

applied an exploratory common factor analysis (CFA) approach to

identify latent “personality” variables that contribute to multivariate

behavioural correlations. Factor analysis was chosen over principal

components because CFA accounts for behavioural measurement

error (indicated by variation in behavioural ICC scores above).

Accounting for error avoids inflated estimates of component

variance and of loadings, especially when only a few behaviours

are considered (Snook and Gorsuch, 1989). Additionally, CFA

permits statistical tests of the relevant number of latent

components (Schmitt, 2011). Common factors were estimated

using maximum likelihood of log10-transformed values (plus one)

of five behaviours (mean LTR and LTI, TTI1, CIO1, and NCIO1). A

Factorparsimax rotation was employed because exploratory

analyses are often subject to larger cross-loadings among

behaviours and among common factors (Schmitt, 2011). Six

individuals with missing values of LTI in either assay phase were

removed from the CFA. Predictors of individual common factor

scores one and two (CF1 and CF2) were then assessed using general

linear models including parameters for nesting year (2019, 2020),

habitat (littoral, pelagic), and log10-transformations of standard

length and relative brain mass (YrSz-adjusted BM). Including

explicit effects of year, habitat, and body size on variation in CF1

and CF2 here allowed us to evaluate these effects independently of

the relative brain mass effect.

Predictors of NOR performance
First, we assessed whether parental males as a group expressed

novel object recognition using separate one-sample t-tests on |DDR|
values obtained with nest side occupancy (time spent |DDR|) and
noncontact interactions with objects (NCIO |DDR|). This

determined whether mean absolute recognition values (i.e.,

considering preference and avoidance behaviour together)

departed significantly from a null hypothesis of zero. This test

was performed for littoral and pelagic fish combined (the whole

parental population), and again for each ecotype separately in case

habitat influenced object recognition ability. Histograms of |DDR|
and standard DDR were also plotted to assess variation in NOR

performance among individuals.

Next, we assessed predictors of each NOR performance variable

using general linear models that include fixed factors for habitat,

year, individual differences in behaviour (CF1 and CF2 scores),

brain mass, and two-way interactions between each CF and brain

mass. Two versions of brain mass were modelled separately: relative

brain mass (i.e., YrSz-adj. BM) and absolute brain mass (i.e., only

Yr-adj. BM). Models that included relative brain mass also included

log10-transformed standard length to partition body size effects and

relative brain mass effects on NOR performance separately, because

body size may influence behaviour for ecological reasons

independent of a brain contribution. Models including absolute

brain mass did not include log10 standard length to

avoid collinearity.
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The number of parameters (up to eight) risks overparameterising

NOR performance models. Thus, we first selected models using

Bayesian (BIC) and Akaike information criteria (AICc). Four

models were compared for each of two NOR performance response

variables. In addition to the full model (e.g., eight predictors: year,

habitat, SL, YrSz-adj. brain mass, CF1, CF2, plus two interactions

between YrSz-adj. brain mass and CF1, and CF2, respectively), we

evaluated three reduced models: a main effects model (year, habitat,

SL, YrSz-adj. brain mass, CF1, CF2); a brain and behaviour

interaction model (YrSz-adj. brain mass, CF1, CF2, and two

interactions between YrSz-adj. brain mass and CF1, and CF2); and

a brain and behaviour main effects model (YrSz-adj. brain mass, CF1,

CF2). We resolved disagreements between BIC and AICc selection in

favour of BIC because its model selection is more consistent with

changing sample size (Brewer et al., 2016). All statistical analyses were

performed using JMP Pro statistical analysis software version 18 or

GraphPad Prism version 8.4.3.
Results

Assay participation

NOR performance was assessed on 89 individuals, representing

94% of nests sampled. Four individuals were not sampled because

they did not return to the nest after the diver disturbance, and two

individuals were rejected due to the improper positioning of the

camera to view behaviour. Basic information summarising variation

in the behaviours measured in the two phases of the NOR assay is

presented in Supplementary Table S3. An additional six individuals

were rejected from the NOR performance analyses that follow: four

because of faulty brain dissection, and two littoral individuals

because of very high leverage on model fit.
Ecotype differences

Consistent with prior findings of differences in brain size

between ecotypes of nonnesting pumpkinseed, the brains of nest-

guarding males in the littoral habitat were on average 5.2% heavier

than their counterparts in the pelagic habitat (tHab = 2.36, p = 0.021,

adj. mean ± SE littoral = 0.129 ± 0.0016 g, pelagic = 0.123 ± 0.0016

g). As expected, standard length had a strong positive effect on brain

mass (tSL = 13.7, p = 0.0001), and an unexpected effect between

years was also evident (tYr = − 8.38, p = 0.0001; Supplementary

Figure S1). The relative brain mass of individuals collected in 2020

was, on average, 23.5% heavier than those from 2019, but the reason

for this difference is unclear. To account for this difference between

years, we included a year effect in our models. There is also

consistent evidence of a year effect on body size and body

condition (all p ≤ 0.008; Supplementary Table S2), extending year

effects beyond the effect on relative brain mass. On average, parental

males in 2019 were larger than those in 2020, but the mean

condition of parental males in 2019 was 5% lower than that of

those in 2020.
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There was also strong evidence of habitat effects on nest-

guarding male behaviour (except for mean LTI, p = 0.50) that

generally reflected greater object interactivity at pelagic compared

to littoral nests (Supplementary Table S4). Pelagic males returned

more quickly to their nest (low mean LTR; p = 0.016), had greater

numbers of noncontact and contact interactions with artificial

objects there (higher NCIO1, p = 0.0016, and CIO1, p = 0.0003 in

phase 1) and showed longer total time intervals investigating objects

(longer TTI1 in phase 1; p = 0.032) after accounting for effects of

standard length and year (Supplementary Table S4). A significant

influence of year only occurred for NCIO1, with counts higher in

2020 compared to 2019.
NOR performance: population patterns

We found evidence of novel object recognition memory in the

parental male population, justifying further exploration of the factors

that influence performance below. The mean time spent |DDR| for all
individuals combined was 0.17 and differed significantly from zero

(one-sample t-test: t88 = 7.3, p < 0.0001). The mean NCIO |DDR| was
0.64, which also differed significantly from zero (one-sample t test: t71
= 10.7, p < 0.0001). Evidence for object recognition varied widely

among individuals, with many fish expressing either positive or

negative DDR values, respectively indicating preference or

avoidance of the novel object, and some expressing DDR values of

zero, showing no evidence of object discrimination (Figure 2).
Frontiers in Ethology 07
There was no evidence that NOR performance was influenced by

habitat because the 95% CI of mean recognition responses for both

time spent and NCIO overlapped between littoral and pelagic

individuals. The mean [95% CI] recognition response in time spent

|DDR| for littoral individuals was 0.21 [0.13–0.29] (one-sample t-test:

t49 = 5.5, p < 0.0001), and in pelagic individuals it was 0.11 [0.09–0.13]

(one-sample t-test: t38 = 9.5, p < 0.0001). The mean [95% CI]

recognition response in NCIO |DDR| for littoral individuals was

0.67 [0.50–0.84] (one-sample t-test: t35 = 8.1, p < 0.0001) and in

pelagic individuals it was 0.61 [0.43–0.78] (one-sample t-test: t35 =

7.0, p < 0.0001).
Individual differences in behaviour

There was evidence of consistent individual differences in

behaviour among parental males. All behaviours except LTI

demonstrated significant intraclass correlations between the two

phases of the NOR assay, consistent with behaviour repeatability

(Table 1). There was also some evidence of consistent individual

behavioural differences across behaviours indicative of personality in

pumpkinseed. Mean LTI and TTI were negatively correlated

(Table 1), and TTI was not constrained by the 30-min duration of

assay phases because most individuals ceased interacting with the

objects before the end of the assay. The common factor analysis

further suggested personality in the parental male pumpkinseed. Two

common factors (CF1 and CF2) were sufficient to explain a
FIGURE 2

Frequency distribution of the change in discrimination ratios between the two phases of the novel object recognition assays (DDR) among
pumpkinseed individuals. (A) Absolute values of DDR based on nest-side occupancy (time spent). (B) Standard values of DDR based on nest-side
occupancy. (C) Absolute values of DDR based on counts of approaches toward and circling around objects (NCIO, noncontact interactions with
objects). (D) Standard values of DDR based on noncontact interactions with objects.
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significant proportion of behavioural covariation (CF1 = 38.1% and

CF2 = 20.0%; whole model c2 = 189.9, df = 10, p = 0.0001) (Figure 3).

Larger CF1 values identify individuals that tended to quickly begin

investigating objects after return to the nest (low LTI; rotated factor

loading = − 0.445), spend a longer time investigating objects (high

TTI; loading = 0.986), and have more noncontact and contact

interactions (high NCIO and CIO; respective factor loadings =

0.727, 0.451) (Supplementary Figure S2A). Mean LTR hardly

contributed to CF1 (loading = 0.042) and is not significantly

correlated with any other variable (Table 1). In contrast, larger CF2

values identify individuals that more quickly return to the nest site

after disturbance (mean LTR loading = − 0.319) and made more

noncontact and contact interactions with the artificial objects (high

NCIO and CIO; respective factor loadings = 0.565, 0.692)

(Supplementary Figure S2B).

Variation in both CF1 and CF2 was positively influenced by

standard length, although the statistical evidence was marginal for

CF2 (Table 2). Thus, larger individuals tended to investigate objects

with greater effort (higher CF1) and were more nest vigilant (higher

CF2). Furthermore, CF2 (but not CF1) was also influenced by

habitat. Individuals with higher values of CF2 tended to be from the

pelagic habitat, consistent with lower values of mean LTR and

higher values of NCIO and CIO observed at pelagic nest sites
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(Supplementary Table S4). An effect of year on CF1 was also

consistent with a year effect on NCIO1 that loaded strongly on

CF1 (Supplementary Table S4).
Predictors of NOR performance

The model selection process identified the simplest brain and

behaviour main effects models as the most parsimonious, and we

used this model to evaluate the effects of relative brain mass on

NOR performance (Supplementary Table S5), but these simple

models had low explanatory power (R2 of 4% and 9%). Relative

brain mass had a negative effect on both time spent and NCIO

|DDR|, although this was significant only for NCIO (Table 3;

Figure 4). Neither CF1 nor CF2 was significantly related to either

time spent or NCIO |DDR|. A more complex main effects model

was ranked 0.8 AICc units above the simplest relative brain mass

and behaviour main model for time spent |DDR | (Supplementary

Table S5), and this model yielded qualitatively similar results to

those reported above. Additional modelling indicated that absolute

brain mass was not related to either time spent or NCIO |DDR|. The
explanatory power of these additional models, including absolute

brain mass, was also very low (R2 = 0.01 and 0.04, respectively;

Supplementary Tables S6, S7).
TABLE 1 Intraclass correlation coefficient (ICC) evaluates repeatability
(between phases), and Spearman’s rank correlation (rs) evaluates
consistency (among behaviours) in pumpkinseed nest-guarding
behaviours expressed during the novel object recognition assay.

Correlation ICC rs N p-value

LTR1 × LTR2 0.47 89 0.001

LTI1 × LTI2 0.07 72 0.38

NCIO1 × NCIO2 0.88 89 < 0.001

CIO1× CIO2 0.51 89 < 0.001

Mean LTR × mean LTI 0.11 83 0.31

Mean LTR × TTI1 − 0.10 89 0.33

Mean LTR × NCIO1 − 0.17 89 0.11

Mean LTR × CIO1 − 0.17 89 0.11

Mean LTI × TTI1 − 0.49 83 < 0.001

Mean LTI × NCIO1 − 0.37 83 < 0.001

Mean LTI × CIO1 − 0.34 83 0.001

TTI1 × NCIO1 0.85 89 < 0.001

TTI1 × CIO1 0.71 89 < 0.001

NCIO1 × CIO1 0.77 89 < 0.001
Behaviours were correlated between the object familiarisation (1) and test (2) phases of the
assay. Individual mean values of both phases of the assay (LTR and LTI) or only values in the
familiarisation phase of the assay (TTI1, CIO1, and NCIO1) were used for correlations among
behaviours. LTR, latency to return to the nest after diver-induced disruption; LTI, latency until
first interaction with an object after return to the nest; NCIO, sum number of noncontact
interactions (approaches and circling) with both objects; CIO, sum number of contact
interactions (mouth and tail contacts) with both objects; TTI, total time spent investigating
objects.
The p values of significant correlations are bolded.
FIGURE 3

Factor analysis of behavioural patterns expressed by nest-guarding
male pumpkinseed combining fish from both habitats (littoral blue and
pelagic red). The analysis identified two common factors accounting
for a total of 58.1% of the observed variation in five male behaviours.
Nesting male behaviour scores are plotted in the space defined by
two common factors, CF1 (x-axis, 38.1% of variation in behaviour) and
CF2 (y-axis, 20.0% of variation in behaviour), for means of log10-
transformed values of LTR and LTI averaged over the two phases of
the novel object recognition assay, and TTI1, CIO1, and NCIO1 from
phase one of the assay. Black vectors represent correlation loadings
of each behaviour with each common factor. Abbreviations: LTR,
latency to return to the nest after diver-induced disruption; LTI,
latency until first interaction with an object after return to the nest;
TTI, total time spent investigating objects; NCIO, total number of
noncontact approaches and circling of objects; CIO, total number of
mouth and tail contacts with objects.
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Discussion

We set out to evaluate the links between brain size, personality,

and NOR performance in parental male pumpkinseed tested under

natural conditions. Individuals with larger brains did not show

better performance as we predicted. Instead, we found some

evidence for the opposite relationship, in which individuals with

relatively larger brains performed poorly in comparison to those

with smaller brains. We also found no effect of behaviours related to

object exploration tendency explaining variation in NOR

performance, despite repeatability and consistency of these

behaviours among parental male pumpkinseed.
NOR performance

NOR was previously studied in different fish species under

controlled laboratory conditions (Hamilton, 2018), but others have
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argued that overreliance on captive-bred fish and lab-based studies

may hinder our ability to gain generalisable insights about fish

cognition (Salena et al., 2021). Here, we took advantage of nest

fidelity during the reproductive period of parental male

pumpkinseed to adapt the NOR assay for testing wild fish under

field conditions. We believe that this is the first application of NOR

to fish living in their natural environment, emphasising that NOR is

a versatile assay that can be used as a tool to study fish cognition

under a variety of circumstances when fish display a tendency to

investigate objects. Evidence that parental males expressed NOR

memory at the population level, despite a strong focus on nest

defence and lack of feeding, suggests that the NOR assay is relevant

to the cognitive ecology of this wild fish.

The chosen objects displayed at the nest periphery were

detected because they produced overt responses by most

individuals. However, responses to the novel object during the

test phase of the NOR assay were highly variable. The expected

preference for the novel object, based on the behaviour of rodents, is
TABLE 2 Summary of general linear models evaluating the influence of habitat, year, and morphology on variation in common factors CF1 and CF2.

Response variable Predictor variable Estimate ± SE df t p-value

CF1 (38.1%) Year (2019) − 0.306 ± 0.131 1 − 2.33 0.024

Habitat (littoral) − 0.087 ± 0.112 1 − 0.78 0.44

Standard Length 5.05 ± 1.65 1 3.04 0.003

YrSz-adj. BM 10.7 ± 21.7 1 0.49 0.62

Whole model R2 = 0.17 4.74 F = 3.79 0.007

CF2 (20.0%) Year (2019) − 0.125 ± 0.133 1 − 0.94 0.35

Habitat (littoral) − 0.289 ± 0.113 1 − 2.56 0.013

Standard Length 3.16 ± 1.67 1 1.89 0.062

YrSz-adj. BM − 34.3 ± 21.9 1 − 1.56 0.12

Whole model R2 = 0.23 4.74 F = 5.42 0.001
Brain mass was adjusted as the residuals of Log10 brain mass, linearly regressed against Log10 standard length with a year factor for all males combined (YrSz-adj. BM). Intercepts were included in all models.
The p values of significant correlations are bolded.
TABLE 3 Summary of reduced general linear models evaluating the influence of relative brain mass, after accounting for common behaviour factors
(CF1 and CF2), on response measures of pumpkinseed novel object recognition performance (absolute values of delta DR time spent and noncontact
interactions with objects [NCIO]).

Response Predictor variable Estimate ± SE df t p-value

Time spent |DDR| YrSz-adj. BM − 4.27 ± 2.88 1 − 1.48 0.14

CF1 − 0.01 ± 0.014 1 − 0.70 0.49

CF2 − 0.001 ± 0.014 1 − 0.10 0.92

Whole model R2 = 0.04 3.73 F = 0.95 0.42

NCIO |DDR| YrSz-adj. BM − 33.2 ± 15.0 1 − 2.22 0.03

CF1 0.006 ± 0.097 1 0.07 0.95

CF2 − 0.114 ± 0.068 1 − 1.67 0.10

Whole model R2 = 0.09 3.62 F = 2.12 0.11
Brain mass was adjusted as the residuals of Log10 brain mass linearly regressed against Log10 standard length, with a year factor, for all males combined (YrSz-adj. BM). Supplementary Table S5
summarises model comparisons among four more complex models. Intercepts were included in all models.
The p values of significant correlations are bolded.
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not always seen in fish (Hamilton, 2018). Adult guppies and

zebrafish preferred novel objects in NOR assays (Braida et al.,

2014; DePasquale et al., 2021; Lucon-Xiccato and Dadda, 2014;

Lucon-Xiccato and Dadda, 2016; Magyary, 2019; Oliveira et al.,

2015), while another study in zebrafish, newborn guppies, and a

cichlid species showed the opposite pattern of preference for the

familiar object (May et al., 2016; Miletto Petrazzini et al., 2012;

Wallace and Hofmann, 2021), which can also be conceived as

avoidance of the novel object. High variability expressed by parental

male pumpkinseed individuals suggests that NOR could be

expressed differently within the population, and justified our use

of absolute values of DDRs to assess performance, effectively

accounting for individual variation in preference or avoidance of

the novel object. Moreover, NCIO produced larger |DDR| values
than nest side preference, which may have provided greater

performance variation among test subjects to effectively assess

predictors of NOR performance, considering that we only found
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a significant predictor of performance with NCIO. Contacts with

objects happened too infrequently to be a good measure of NOR

performance, but this feature may be species-specific, because

mouth contacts with floating objects have been used to assess

NOR performance in zebrafish (Magyary, 2019). The most

frequent behaviour represented by NCIO was by far approaches

toward the objects (within half a body length but without contact

with the object), indicating that counting approaches toward

objects, regardless of whether contact with the object occurs,

could be the best measure to use in fish NOR assays. This aligns

with the use of measures of spatial proximity to the objects in most

previous studies of fish NOR (Braida et al., 2014; DePasquale et al.,

2021; Lucon-Xiccato and Dadda, 2014, Lucon-Xiccato and Dadda,

2016; May et al., 2016; Miletto Petrazzini et al., 2012; Oliveira et al.,

2015; Wallace and Hofmann, 2021).

The only factor associated with parental male NOR

performance in our analyses was relative brain mass when

performance was assessed using NCIO |DDR|. The negative

relationship between relative brain mass and NCIO |DDR|

suggests that learning during nesting tends to be constrained in

males with larger brains. This result was consistent across model

selection exercises, indirectly providing evidence that this is a true

characteristic of our system, despite the low explanatory power of

these models. This low explanatory power is common in field-based

studies with high data variability and underlines the need to account

for other factors when assessing performance in cognitive tests of

this kind.

The negative relationship between relative brain mass and NOR

performance is initially counterintuitive and indeed runs contrary

to previous tests of links between cognitive performance and brain

size (Benson-Amram et al., 2016; Buechel et al., 2018; Kotrschal

et al., 2013; MacLean et al., 2014). We propose that this result may

reflect an energy constraint imposed by large brain size. Parental

male pumpkinseed face strong energetic constraints during the

breeding cycle because they stop active feeding. Parental males lose

between 6% and 9% of their body mass during spawning through

constant nest defence and brood care, and risk increased mortality

after reproduction (Gillooly and Baylis, 1999; Gross, 1980; Rios-

Cardenas and Webster, 2005). Investing in a larger brain should

come at a high energetic cost because nervous tissue is especially

costly to maintain (Niven and Laughlin, 2008; Padamsey and

Rochefort, 2023; Tait et al., 2024). Thus, large-brained

pumpkinseed may bear energetic costs that push them closer to

the limit of their energy budget than small-brained pumpkinseed.

There is also evidence that learning processes can be energetically

costly, as demonstrated by increased energy uptake in brain tissue

during learning (McNay et al., 2000; Plaçais et al., 2017), increased

susceptibility to stress following learning (Mery and Kawecki, 2005;

Jauman et al., 2013), and the inhibition of memory to favour

survival during food shortage (Plaçais and Preat, 2013). Although

the evidence for these energetic costs favours learning that is

dependent on protein synthesis and leads to long-term memory,

which is not directly relevant to the approximately one-hour time

frame of pumpkinseed NOR memory observed here, other work

also established high energetic costs for shorter working memory
FIGURE 4

Partial regression relationships between residual novel object
recognition performance (time spent or NCIO1) after accounting for
two behavioural variables (CF1 and CF2), plotted against residual
brain mass (adjusted for body size and year effects) (complete
model summaries in Table 3). (A) Novel object recognition
performance, estimated as the absolute values of DDR for nest
side occupancy (time spent), is not significantly related to relative
brain mass (p = 0.14, dashed best-fit line and 95% CI indicate the
nonsignificant trend). (B) Novel object recognition performance,
estimated as the absolute values of DDR for noncontact interactions
with objects (NCIO1), is negatively related to relative brain mass
(p = 0.03; best-fit line and 95% CI).
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processes (McNay et al., 2000). With this in mind, we hypothesise

that the negative relationship between relative brain mass and NOR

performance reflects an energy expenditure limit reached by males

with large relative brain size during breeding, inhibiting their ability

to learn. Conversely, males with smaller relative brain mass, and

thus lower energetic maintenance costs, had sufficient energy

reserves to invest in learning processes that allowed at least some

of them to express NOR memory. NOR learning should involve an

energetic cost for this interpretation to be valid. Interestingly, male-

specific inhibition of spatial learning during nest guarding has been

observed in another fish species, the Cocos Frillgoby (Carbia and

Brown, 2020), suggesting that learning processes in general may be

subject to energetic constraints during periods of no or diminished

foraging in fishes. Although individual male pumpkinseed vary in

vigilance and clutch defence during nest guarding (Rios-Cardenas

and Webster, 2005), we exclude a role for increased vigilance in

explaining the relationship between relative brain mass and NOR

performance because relative brain mass was not associated with

CF2, our best proxy for male vigilance near the nest (discussed

below), and CF2 did not influence NOR performance. If correct, our

finding implies that energetic constraints on learning may depend

on both the availability of external resources and the status of

internal reserves, which can vary based on individual characteristics

influencing the rate of energy consumption. Our approach

highlights the need to carefully evaluate multiple potential factors

that contribute to NOR performance in the field.

Observational studies, especially in nature, can suffer confounds

when unknown factors influence the outcome in ways that are

correlated with the effects of a known factor. Well-designed

experimental manipulations can avoid this, but usually at the

expense of ecological reality, which was an important goal here.

The littoral ecotype has, on average, a larger relative brain size than

the pelagic ecotype (Axelrod et al., 2018), and evaluating the effects

of relative brain size on cognitive performance was our primary

goal. However, by combining littoral and pelagic individuals to

maximise variation in relative brain size in our NOR performance

analyses, we risk a confound between brain size and habitat effects,

should the latter also influence behaviour in the NOR test. For

example, if the littoral habitat exposes individuals to greater

ecological “novelty” than the pelagic habitat, then littoral fish

might have a higher reactive threshold (i.e., lower interactivity) to

the NOR test novelty compared with pelagic fish. If true, this would

undermine our interpretation of the effects of relative brain size on

NOR performance. Evidence of behavioural differences between

habitats presented in Supplementary Table S4 makes such a

confound plausible. We reject this habitat confound risk for two

reasons. First, an individual’s NOR score removes individual

differences in overall interactivity by calculating the difference in

interactive behaviours taken in the familiarisation and test phases of

the assay. Potential group differences in interactivity, such as those

due to habitat, are removed in the same way. Second, we can

evaluate the impact of a generic habitat effect on NOR performance

by including it in the final NOR performance models shown in

Table 3. Such post hoc analyses including a habitat parameter did

not change the negative effect of relative brain size on NOR
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performance (Supplementary Table S8). Habitat is a significant

predictor of NOR performance for time spent, but not for NCIO.

Littoral fish had slightly higher average NOR scores for time spent

than those in the pelagic habitat. Accounting for this habitat effect

strengthened the trend for a negative effect of relative brain size on

NOR performance measured using time spent (p = 0.07;

Supplementary Table S8). The observational nature of our study

precludes rejecting all possible confounds, but the protections just

outlined suggest that confounds involving an influence of habitat on

NOR performance are unlikely to undermine our basic observation

of a negative effect of relative brain size on NOR performance.

Of note, there was a strong effect of year on parental male

relative brain mass, body size, and body condition. The pattern of

larger parental males in 2019 than in 2020, but better condition in

2020 than in 2019, is consistent with carryover effects on male

spawning of a more severe winter in 2018–2019 compared to 2019–

2020. Historical climate records of the nearest weather station

(Bancroft, ON, 40 km distant) exhibit a lower mean winter

monthly temperature and an additional month of ground snow

cover in winter 2018–2019 than in 2019–2020. Smaller individuals

face a higher probability of an energetic deficit in spring as winter

length increases, because they have greater energy consumption

than larger males during a period when food intake is severely

reduced. This size-related energy deficit drives variation in the

timing of spawning in parental males of different sizes over a single

spawning season (Danylchuk and Fox, 1996) and is widely thought

to generate increased risk of winter mortality in smaller compared

to larger fish (reviewed in Suski and Ridgway, 2009). It seems

reasonable, then, that a severe energy deficit arising from the 2018–

2019 winter restricted spawning parentals to larger males in 2019,

while the milder following winter permitted more smaller males to

spawn and likely accounts for the higher condition of parental

males in 2020. A severe energy deficit accruing over the 2018–2019

winter may also have triggered a plastic response to shrink relative

brain size to minimise maintenance costs over the longer period of

severely reduced food consumption. While our evidence of a plastic

relative brain size response to winter severity is circumstantial, the

consistent difference in relative brain size between ecotypes over

years suggests that both ecotypes responded to various winter

carryover effects in the same way. Importantly, post hoc analyses

adding the effect of body condition (Scaled Mass Index) to the NOR

performance models shown in Supplementary Table S9 did not

change these results, and thus the negative relationship between

relative brain mass and NOR performance appears impervious to

year-to-year and ecotype differences in brain size.
Nest-guarding parental male personality

The exploratory common factor analysis revealed two groups of

correlated behaviours that potentially reflect personality differences

among parental male pumpkinseed sunfish. Although debate about

animal personality continues (Roche et al., 2016), consistent

individual differences in behaviour form the foundation of the

concept (Carere and Locurto, 2011; Sih and Bell, 2008).
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We interpret the first common factor as a proactive exploration

personality because individuals with higher CF1 values exhibited

greater engagement with novel objects after returning to their nest

(e.g., low latency to interact, longer total time interacting, higher

noncontact and contact interactions with objects). LTR is less likely

to represent object exploration behaviour compared with LTI and

TTI, and more likely reflects a reaction to disturbance by the snorkel

diver at the nest. We provisionally interpret variation in CF2 as

differences in nesting vigilance personality. Males with higher

values exhibited stronger responses to disturbance, such as

returning more rapidly to their nest after the diver visit (low

LTR) and showing greater reactivity toward novel objects (higher

NCIO and CIO), independent of total time interacting. Personality

traits, including exploration and boldness, are often associated with

growth and body size (Biro and Stamps, 2008; Ferderer et al., 2022;

Kelleher et al., 2017; Mayer et al., 2016). Larger males tended to be

more proactively vigilant than smaller males in this study. This is

consistent with the idea that when facing a trade-off between

present and future reproductive investment (Sargent and Gross,

1986), parental males may optimise reproductive success by

increasing current investment as they age (Coleman et al., 1985).

Pelagic males also expressed greater vigilance, likely due to

increased risk of nest invasion and fry predation (Popiel et al.,

1996), because conspecific density is much higher at pelagic than

littoral sites (Jarvis et al., 2020). Thus, intrinsic and extrinsic factors

likely regulate personality differences here.

This is a rare demonstration of personality in the context of

male reproduction in the wild, because both personalities identified

on CF1 and CF2 map to several aspects of personality axes

identified in fishes (e.g., shyness–boldness, exploration–avoidance,

activity, aggressiveness, sociability; Conrad et al., 2011). However,

two key uncertainties exist about these individual personality

differences: the extent to which individual differences remain

consistent across time and across contexts (Roche et al., 2016)

other than nest-guarding; and how individual differences influence

parental male reproductive success. Our standardised novel object

recognition context provides only a narrow perspective on

personality variation in these pumpkinseed, because we assess

male behaviour over a short interval and only in the context of

nest-guarding. Stable individual differences in behaviour over time

have been reported in sunfish. Wilson and Godin (2009) reported

that individual differences in shy–bold behaviour of wild juvenile

bluegill sunfish (Lepomis macrochirus), assessed with sequential

standardised laboratory tests, were maintained for up to 3 months

in individuals released and recaptured from the field. However,

evidence that individual differences in behaviour are stable across

different natural contexts is weaker. Wilson et al. (1993) reported

that differences in shyness–boldness assessed in juvenile

pumpkinseed in the field were not consistent with standardised

behavioural assessments under laboratory conditions. Furthermore,

repeatable individual differences in behaviour observed in foraging

or predation risk contexts in the field were inconsistent between

those contexts (Coleman and Wilson, 1998). More tests are needed

to confirm the concordance of differences measured during NOR
Frontiers in Ethology 12
assays with other methods used to assess personality (Toms

et al., 2010).

The consequences of individual differences in parental male

pumpkinseed behaviour here are also uncertain. While we found no

evidence that personality influenced NOR performance in parental

males, other studies suggest considerable scope for performance

and fitness effects of personality in centrarchid sunfishes that are

consistent with other species (e.g., Conrad et al., 2011; Mittelbach

et al., 2014). In wild juvenile pumpkinseed, consistent individual

differences in behaviour assessed in the field predicted individual

differences in predation risk, diet, and parasite load (Wilson et al.,

1993). In juvenile bluegill sunfish, boldness is also related to a

movement syndrome involving increasingly intermittent

locomotion (Wilson and Godin, 2009, Wilson and Godin, 2010),

greater risk of capture by angling (Wilson et al., 2011), and greater

aerobic capacity (Binder et al., 2016). However, evidence of an

influence of personality on parental care and reproductive success is

sparse. Male personality could influence competition among males

for limited nest sites or influence female choice of parental males by

signalling superior parental care (Conrad et al., 2011). For example,

Mittelbach et al. (2014) reported that largemouth bass (Micropterus

salmoides) assessed as bolder using laboratory assays have higher

reproductive success in the field, although why is not clear. One

hypothesis is that this may reflect correlated behaviour in male

parental care that enhances offspring survival. Vargas et al. (2018)

using zebrafish Danio rerio and Scherer et al. (2025) using the

biparental cichlid Pelvicachromis pulcher separately reported that

male “proactivity” and boldness, respectively, predict greater male

parental care and subsequent offspring survival. Thus, the vigilance

personality identified in parental male pumpkinseed here may

influence nestling survival from conspecific nest raiding. Testing

the function of personality on male reproductive success requires

additional study.
Conclusions

We evaluated sunfish cognitive performance in a natural setting

using a NOR test on parental pumpkinseed males during nest

guarding and found that these sunfish demonstrate the ability to

recognise novel objects, indicating that cognition can be measured

in the wild using this approach. Contrary to our expectations and

observations from laboratory experiments, we found that a larger

brain size may hinder learning performance. We hypothesise that

this reflects an energy expenditure limit reached by males with

relatively larger brains during breeding. Differences between our

results in a natural setting and previously reported associations

between brain morphology and performance in laboratory

experiments suggest that nest-guarding pumpkinseed may

experience strong constraints on learning during the extended

reproductive period. The pronounced effect of energetic context

on cognition and its potential determinants warrant further

investigation to improve our understanding of the relationships

among animal personality, brain size, and cognitive performance.
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Plaçais, P.-Y., de Tredern, É., Scheunemann, L., Trannoy, S., Goguel, V., Han, K.-A.,
et al. (2017). Upregulated energy metabolism in the Drosophila mushroom body is the
trigger for long-term memory. Nat. Commun. 8, 15510. doi: 10.1038/ncomms15510
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