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Chronic inflammatory diseases such as autoimmune disorders, cancer,
cardiovascular diseases and neurodegenerative disorders are a significant cause
of morbidity and mortality in the industrialized world. Socioeconomically
disadvantaged communities bear a disproportionately high burden of these
inflammatory diseases. This review synthesizes evidence linking various domains
of the Social Determinants of Health (SDoH)—economic stability, education
access and quality, healthcare access and quality, neighborhood and built
environment, and social and community context—to inflammatory pathways and
mechanisms. Across domains, biological mechanisms such as cytokine
dysregulation, toll-like receptor (TLR) activation, hypothalamic-pituitary-adrenal
(HPA) axis alterations and gut microbiome disruption act together to sustain
proinflammatory states that drive adverse health outcomes in marginalized
communities. Although causality is obscured by interrelated determinants,
identifying inflammation as a shared pathway between various determinants
highlights the need for structural interventions to reduce chronic disease burden.
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Introduction

Incidence of Inflammatory diseases are rapidly rising and the prevalence of such
diseases is anticipated to continue increasing in the coming decades (1). Chronic
inflammatory diseases are recognized as the most significant causes of death in the
industrialized world, as more than 50% of all deaths are attributed to diseases
associated with inflammation (2). These conditions include allergies (3), metabolic
disorders (4), cancer (5), autoimmune diseases (6), and neurodegenerative diseases (7).
However, the burden of chronic inflammatory diseases is disproportionately bore by
communities with higher rates of socioeconomic disadvantage and barriers to
healthcare access (8). These broad social factors have been conceptualized by Healthy
People 2,030 as social determinants of health (SDoH), which are organized into five
domains: economic stability, education access and quality, health care access and
quality, neighborhood and built environment, and social and community context (9).
This review aims to highlight inflammatory exposures across the five SDoH domains
and mechanisms by which social determinants have been proposed to influence
chronic low-grade inflammation.
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Systemic inflammation and socioeconomic
status overview

Inflammation is essential for fighting pathogens and malignant
cells, alongside promoting tissue repair. However, systemic and
chronic activation of the immune system underpins the
development of inflammatory disease (10). Sub-clinical, systemic
inflammation describes elevated expression of inflammatory
molecules and heightened immune activity that may not yet
manifest with overt clinical symptoms. The prolonged and systemic
expression of inflammatory molecules is associated with harmful
effects including oxidative stress, fibrosis, mitochondrial
dysfunction, and cellular senescence (11). The sustained effects of
inflammatory responses in the absence of a pathogenic target are
largely associated with several mechanisms of chronic disease
development. For instance, the prolonged production of reactive
oxygen species by immune cells and corresponding oxidative stress
are associated with further stimulation of an inflammatory
response, creating damage associated with organ dysfunction and
metabolic dysregulation.

In measuring systemic inflammation, Interleukin-6 (IL-6) and
C-reactive protein (CRP) are frequently used biomarkers (12). IL-6
is synthesized at the beginning of many immune responses and has
several effects ranging from promoting antibody production to
inducing acute-phase protein synthesis (13). C-reactive protein is
an acute-phase protein released by the liver in response to IL-6
production, and is commonly used as a non-specific inflammation
marker (14). Furthermore, the systemic, heightened presence of
leukocytes and expression of inflammatory cytokines in the
absence of overt clinical symptoms are suggestive of chronic
inflammation. Given the broad functions and triggers of
inflammation, mechanisms and biomarkers of inflammation can
vary vastly and have a wide range of effects (12). CRP and IL-6
have traditionally facilitated insights into the association between
systemic inflammation and chronic disease but have been recently
joined by many other measurements of inflammation (15). As an
example, differential white blood cell counts, were shown to be
predictive of all-cause mortality, alongside cancer, cardiovascular
and cerebrovascular specific mortality (16).

A large body of evidence highlights the association of
(SES)  with
(summarized in Figure 1). For instance, a meta-analysis of 43

socioeconomic  status low-grade  inflammation
studies which assessed the relationship between socioeconomic
status, during both childhood and adulthood, and biomarkers of
systemic inflammation found a significant negative correlation
between SES and CRP and IL-6 (17). Although the effect was
attenuated after controlling for BMI and smoking, the correlation
remained significant. Another systemic review investigating the
relationship between childhood socioeconomic status and chronic
inflammation revealed a significant association between parental
measured by CRP (18).

Transcriptional profiling of placental biopsies and umbilical blood

finance and inflammation, as

collected at birth suggested that both elevated immune activation

and decreased fetal maturation are inversely associated with
maternal deprivation (19). Maternal disadvantage was determined
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by income receipt of federal benefits, and education level. The
significant association between SES and inflammation, reported
across several studies, after adjustment for factors including BMI,
suggests more research is necessary to further interrogate the
relationship as to understand if and which causal mechanisms exist.

Specific social determinants of health
Dietary determinants
Food insecurity

Food insecurity and diet quality have been proposed to mediate

stability and
inflammation (20). Low income is consistently associated with

the association between economic low-grade
lower dietary quality scores, and socioeconomic disparities in diet
quality have widened over time (21). A study examining diet
quality among residents of disadvantaged neighborhoods found
that a minority of residents met dietary guidelines (22). The low
affordability of healthy food has been shown to explain substantial
portions of the association between SES and diet quality (23, 24).
However, beyond high costs of healthy food, researchers have also
proposed biological mechanisms by which low SES further
influences poor diet quality. The associated stressors and
uncertainty of poverty, especially extreme poverty, have been
shown to affect stress, appetite, and the hunger-related hormones
which shaping eating habits (25). Furthermore, food insecurity has
been suggested to promote dependence on energy dense, palatable
diets and alter metabolism through stress-related mechanisms,
including the hypothalamus-pituitary-adrenal (HPA) axis (26).

Nutrient deficiencies

Poor diet contributes to low-grade inflammation through several
mechanisms, including the absence of necessary nutrients that are
associated with healthy immune regulation. A study using National
Health and Nutrition Examination Survey (NHANES) data
compared nutrient and food group intake among children aged 2-
5 years with the family income to poverty ratio (PIR). The results
suggested children in the low PIR cohort had lower dietary fiber,
dairy, and calcium intakes, alongside lower Healthy Eating Index
(HEI) scores overall (27). Dietary fiber is associated with several
processes that mitigate low-grade inflammation as it metabolized
by intestinal microbial species into short chain fatty acids (SCFAs).
The resulting SCFAs regulate the immune response through several
mechanisms, including increased gene expression of NF-kB
mediators (28), generation of regulatory T cells (29), and
improving epithelial barrier integrity (30). Insufficient fiber intake
may promote heightened inflammation by facilitating the
translocation of damage-associated molecular patterns (DAMPs)
due to compromised barrier integrity, as well as promote immune
dysregulation by reducing SCFA signaling (31).

Alongside fiber, several notable anti-inflammatory micronutrients
are less abundant in low-income diets. Anthocyanins and quercetin,
for example, are flavonoids that are predominantly found in fresh
foods. Flavonoids have been shown to decrease NF-kB expression
(32) and attenuate expression of pro-inflammatory cytokines (33).
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FIGURE 1
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Integrative framework for social and biological determinants of chronic inflammation. This diagram maps social, environmental, and dietary
conditions to specific immunologic pathways promoting inflammation and highlighting converging mechanisms—cytokine dysregulation, HPA
axis alteration, innate immune receptor activation, and microbiome shifts.

However, flavonoid intake has been reported to be lower in low-
income cohorts than in high-income counterparts (34). Additionally,
vitamin D is a key nutrient associated with maintaining healthy
immune function through its anti-inflammatory properties. In cell
lines and peripheral blood mononuclear cells (PBMCs), treatment
with vitamin D provided strong evidence of its anti-inflammatory
properties, with marked decreases in anti-inflammatory cytokines
including IL-6, TNF-a, MCP-1, and IL-10. Potential mechanisms of
anti-inflammatory action by vitamin D included decreased protein
of Toll-like (TLR),
phosphorylated p38, and decreased reactive oxygen species (35).

expression receptors lower levels of
However, there is some evidence that vitamin D may be a reverse
acute-phase reactant; meaning, that low levels of vitamin D may
result from the presence of inflammation rather than be the cause of
inflammation (36). However, there are some data from randomized

controlled trials showing vitamin D supplementation resulted in
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improved regulation of inflammation, with reductions in CRP
and TNF-q, alongside increased signaling of Regulatory T cells
(37, 38). Like deficiencies in other key anti-inflammatory nutrients,
vitamin D deficiency is positively associated with low income in the
United States (39).

Intake of foods with synthetic ingredients

In addition to insufficient intake of key anti-inflammatory
nutrients, intake of highly-processed and ultra-processed foods
(UPF) is largely associated with increased inflammation and
dysregulation of the immune system. Evidence suggests ultra-
processed food consumption is on the rise, with increased
availability in low-income communities (40). However, the
definition of UPF however is controversial. Sugar, salt, and cooking
oils—each of which have known inflammatory effects (41)—are not
considered ultra-processed (42). Consuming a meal of bread,
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cheese, and tomato sauce would constitute consuming a processed
diet but, combining them into a cheese pizza would be defined as
an ultra-processed diet. While this manuscript cannot settle this
debate, for purposes of simplicity we will consider UPF as those
containing ingredients which are either synthetic or require
industrial processing to extract because such foods are nearly
defined as
hydrogenated oils or high-fructose corn syrup to an otherwise

always ultra-processed. For example, adding
minimally processed recipe will beget an UPF designation.

Ultra-processed  diets overwhelmingly lack previously
described nutrients which maintain healthy functioning of the
immune system (43). Alongside their low nutritional value,
many UPF have artificially heightened levels of inflammatory
ingredients, such as cholesterol and processed saturated fatty
acids. While naturally occurring, saturated fats tend to include
several different lipid moieties, whereas processed fats are
typically restricted to the highly inflammatory palmitic acid and
steric acid (41). Given that these specific saturated fats are
components of bacterial lipopolysaccharide (LPS), they can
activate anti-bacterial mechanisms through activation of TLR4
(44). Industrial processing and storage mechanisms necessary
for UPF development have also been implicated in the
formation of dietary cholesterol oxidation products, which are
associated with several disease etiologies (45).

In in-vivo models, high cholesterol diets led to inflammasome
activation in the intestinal epithelium, resulting in both local and
systemic inflammation (46). There is also a well-established role of
cholesterol and its oxidation products in atherosclerosis
development. High cholesterol intake is associated with higher
circulating quantities of low-density lipoprotein (LDL), as opposed
to high-density lipoprotein (HDL) which promotes cellular efflux
of cholesterol (47). Elevated levels of LDL lead to deposition in the
arterial wall, where it is oxidized and aggregated, both of which
further trigger immune activity. Modified LDL also activates TLRs
on macrophages, triggering TLR signaling to mount an immune
response, and are engulfed by macrophages to further amplify
the immune response and trigger downstream cytokine production
Alongside the

mechanism in atherosclerosis development, the formation of

and inflammasome activation (48). known
aggregated cholesterol crystals and resulting NLRP3 inflammasome
signaling has been implicated in the development of colon cancer
(49). Both cholesterol and processed saturated fatty acids have been
shown to modify the gut microbiota with effects on TLR4 (50); the
resulting oxidative stress has also been shown to promote oxidized
modifications of LDL.

Abundant evidence in animals and limited evidence in humans
also suggests chemical additives in highly processed food, such
as emulsifiers and sweeteners, directly contribute to a pro-
inflammatory state (51). Results from an in-vivo study showed
exposure to saccharin, a commonly used artificial sweetener,
induced inflammation by elevating expression of proinflammatory
cytokines, TNF-o and iINOS, and inducing changes to the
microbiota (52). Another in-vivo study determined commonly
used dietary emulsifiers, carboxymethylcellulose (CMC) and
polysorbate-80 (P80), increased expression of genes pertaining to
virulence of otherwise mutualistic bacteria and inflammation (53).
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Exposure to CMC and P80 has also been shown to increase
intestinal permeability and result in changes in the gut microbiome
that are associated with low-grade inflammation (54).

Furthermore, a study in a cohort of nearly six hundred people
found a positive association between both emulsifier and highly
processed food consumption and heightened inflammation and
intestinal permeability; the association persisted after controlling
for energy intake, BMI, and red and processed meat intake (55).
The impact of CMC consumption on microbial composition has
also been highlighted in humans using a randomized controlled-
feeding study. Relative to control subjects, CMC consumption
increased postprandial abdominal discomfort, reduced microbial
diversity and led to changes in their metabolome, including a
decrease in short-chain fatty acids (56). When looking at
sweeteners, short-term and long-term results showed non-
caloric artificial sweetener consumption induced alteration in
the gut microbiota and glycemic response (57).

Psychological determinants
Chronic stress

Chronic stress is another proposed mechanism by which low
income is associated with low-grade inflammation. Chronic
stress has been linked with low-grade inflammation and chronic
(58-61).
proposed that the activation of the HPA axis links chronic stress

disease across several studies Researchers have
with low-grade inflammation. This phenomenon was supported
across two viral-challenge studies, in which participants with
recent exposure to a long-term threatening stressful experience
displayed higher glucocorticoid resistance and increased
production of inflammatory cytokines (62).

A randomized controlled trial in which participants were
subjected to stress reduction interventions observed significant
decreases in levels of CRP (63). Furthermore, in a study
concerning childhood SES, investigators hypothesized early-life
social adversity contributes to defensive biological programming
which involves a heightened inflammatory state. The study
measured CRP and IL-6 levels and conducted transcriptional
profiling of healthy volunteers; the volunteers had no history of
chronic disease but differed in spending their first 5 years of life
in either low or high SES environments. The results suggested
that participants raised in low SES environments had increased
IL-6 production, which persisted after controlling for levels of
perceived stress, smoking, adiposity, exercise, alcohol use, and
sleep quality. Furthermore, transcriptional profiling revealed low
SES was associated with an upregulation of genes involved in
translating adrenergic signals to leukocyte transcription and
genes with NF-kB response elements, which are characterized as
proinflammatory genes. However, in the low SES cohort, there
was also a downregulation of genes with response elements for
which

inflammatory action of cortisol, commonly considered as the

the glucocorticoid receptor, carry out the anti-

“stress hormone” (64). Both the inflammatory markers and

transcriptional  profiling  results suggest a  heightened
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inflammatory state among participants reared in low SES
environments, which was hypothesized to act through resistance
to cortisol output. While chronic stress has been consistently
linked with low-grade inflammation, multifaceted analyses of
social stressors, such as social strain and living in a single-parent
family, and CRP have produced inconclusive results, suggesting
that more research is necessary to characterize specific stressors
that contribute to low-grade inflammation (65).

Chronic stress has also been proposed to contribute to low-
grade inflaimmation through alterations to the microbiome.
Abundant mouse and human studies have suggested a link
between several types of stress and changes in the microbiome
(66). In mice subjected to social disruption stress, levels of gut
Bacteroides and Parabacteroides increased. Additionally, levels of
Coprococcus, Dorea, and Pseudobutyrivibrio decreased, which
were inversely correlated with IL-6 levels, and antibiotic
administration blocked the stress-induced IL-6 increase (67).
Similarly, a study assessing the effects of acute stress on
pregnant women similarly observed stress-induced increases in
IL-6, as well as TNF-a, were positively associated with
abundance of Bacteroides. Increased IL-6 levels were also
associated with abundance of Prevotella (68). Furthermore, in a
cohort of Belgian children, high stress, as defined by negative
life events and low parasympathetic activity, was associated with
lower alpha diversity (69). Low alpha diversity has been linked
to low-grade inflammation, with a potential mechanism being
reduced access to complex carbohydrates and less production of
short chain fatty acids (70). However, reverse causation is
possible given that chronic stress may alter the habitat of the
gut in ways that benefit survival of some microbes over others.

Political determinants

The term “political determinants of health” was coined by
Professor Daniel Dawes (71). The term is meant to contrast the
more standard “social determinants of health” to communicate
that many of the issues which fall under SDOH are not an
innate part of a society. Rather, the cause and solution to these
problems would require alterations in political decision making.

Education access and quality

Educational attainment both captures early childhood
determinants of health and largely predicts occupational and
subsequently economic attainment (72). A gradient has emerged
in the past 50 years in which higher levels of schooling are
increasingly linked with better health outcomes and increased
partly

inflammation. Individuals with lower educational levels may

lifespan, through pathways influencing systemic
experience greater exposure to chronic psychosocial stress,
reduced access to preventive healthcare, and higher rates of poor
dietary and lifestyle factors. These factors are all associated with
elevated inflammatory markers such as CRP and IL-6. The

education-health gradient has been observed regardless of
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gender or race, although the health effects are stronger for
women and white individuals (73). Here to, the association may
be through reverse causation as greater health may better
facilitate school performance.

Childhood health

Educational context shapes childhood health outcomes, as
most children spend up to 40 h of their week in school and
receive approximately 35% of their daily nutrient intake while at
school (74). As such, the school environment is a critical setting
for interventions which reduce health inequities present in early
childhood. Children with marginalized backgrounds commonly
that
inflammation, including a lower consumption of fruits and

experience nutritional inequities promote low-grade
vegetables and higher consumption of sodium, added sugars,
and processed saturated fats (75, 76). Federally assisted meal
programs such as the National School Lunch Program (NSLP)
feed over 30 million children daily and have been considered
essential in improving diet quality of underserved populations
(75). NSLP lunches are required to meet nutritional standards
laid out by the Dietary Guidelines for Americans (DGA).
Children who participate in the NSLP have been shown to eat a
healthier lunch than nonparticipants in the program regardless
of income level or race (77). Even so, NSLP lunches allow for
the selection of foods which meet DGA intake requirements for
all major nutrients except for dietary fiber, which has been
previously discussed to have strong implications for regulation
of the immune system. Despite this requirement, students’
average daily consumption of selected lunches did not meet
intake recommendations for calcium, iron, fiber, and vitamins
A and C (75). Nationally less than half of elementary students
meet intake requirements for iron and vitamins A and C and
very few consume the recommended amount of dietary fiber
(78). However, the extent of these deficiencies is strongly shaped
by the SDoH. Children from low-income households and
under-resourced school districts are more likely to depend on
school-provided meals as their primary source of nutrition and
may have limited access to nutrient-rich foods outside of school.
Socioeconomic status, neighborhood food environments, and
school funding policies intersect to magnify nutritional
inequities and their downstream inflammatory consequences.
Increases in dietary fiber intake has been found to lower
concentrations of serum CRP and fibrinogen in overweight and
average weight adolescents, suggesting that dietary fiber may
have protective effects against systemic inflammation (79, 80).
Intake of vitamins A, C, and E have also been shown to have an
inverse correlation with levels of CRP and IL-6 in children (81).

There is also evidence to suggest that higher education in a
school environment which promotes attitudes of self-efficacy
healthier

throughout life (76). This relationship is potentially mediated by

regarding personal health produces behaviors
increased exposure to health education and interventions in
schools, which are not offered equitably. Students at Title 1

schools, which are schools that serve a large percentage of low-
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income students, scored significantly lower when surveyed on
nutritional knowledge and dietary behaviors compared to students
of non-Title 1 schools. However, Title 1 students also demonstrated
higher scores of self-efficacy when it came to selecting healthy
meals which proved to be a more significant predictor of healthy
dietary behaviors (82). School-based health centers (SBHC) provide
another avenue for access to health services and the acquisition of
healthy behaviors. Studies have shown that students with access to
SBHCs showed greater participation in physical activity and met
more nutritional intake guidelines compared to peers not using
these facilities (83).

Vocational differences

Over the past several decades, increasing globalization and
automation in the workforce has increased the economic returns
of higher education while reducing demand for less skilled
labor. As income inequality has become more stratified by
education level, correlations between education and mortality
have become stronger (84). Higher education is also associated
with increased likelihood of jobs providing non-wage related
benefits, such as employer provided healthcare, paid leave, and
funds, all of which
employment outcomes (85).

retirement contribute to positive
Conversely, lower educational
attainment coincides with increased occupational stress and
precarity of employment conditions which encompass several
inflammatory exposures (86).

Higher educational attainment has been inversely correlated
with an individual’s likelihood of participating in shift work
(87). Shift work is broadly defined as a working schedule in
which takes place outside of traditional daytime hours of 7 AM-
6 PM (88). This type of work is commonly characterized by an
irregular work schedule which includes regular evening and
nighttime work, rotating shifts, or split shifts (89). Shift work
has been identified as a risk factor for systemic inflammation
which predisposes this class of employees to a host of other
chronic disorders such as cardiovascular disease, cancer, and
metabolic syndrome(88-91). A study of shift workers in Atlanta
found a 93% higher concentration of CRP in collected blood
samples compared to day workers. In addition, concentrations
of the pro-inflammatory cytokines IL-1p and TNF-a were 96%
and 20% higher among this cohort (92). Both IL-1f and TNF-o
also have been shown to circulate in the body at higher levels
following periods of sleep deprivation (93). In the same study,
IL-6 concentrations in the blood were 190% higher among shift
workers, while plasma cortisol levels were 39% higher (92).

The correlation between shift work and inflammation has
been hypothesized to be related to the misalignment between
workers’ endogenous circadian rhythm and the sleep wake
cycles shift work demands of employees (91). On average shift
workers report sleeping 30-70 min less per day than dayworkers
(90, 92). Furthermore, 10%-20% of shift workers experience
shift work disorder (SWD), a condition characterized by
insomnia or excessive daytime sleepiness in the context of a
work schedule which interferes with one’s endogenous sleep-
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wake cycle (90). A study of full-time shift workers found that
conditions of short-term circadian misalignment consisting of a
12 hour inversion of the behavioral to environmental cycles
resulted in an 11% increase to CRP produced within 24 h of
misalignment (91).

Occupational exposures

Employment precarity is informed by multiple factors such
as low SES and minority status in a population (94, 95).
Research has shown that decreasing education level is associated
with increasing occupational precariousness. As the quality and
stability of available employment declines, the risk that
employees encounter occupational hazards increases (95). Lower
educational attainment has been most strongly associated with
heightened risk of exposure to chemical hazards and, to a lesser
extent, physical and ergonomic hazards (95).

Lead exposure remains a common hazard of industrial jobs
such as construction, often via inhalation of fumes or dust
contaminated by the heavy metal. Although the American
Conference of Governmental Industrial Hygienists (ACGIH)
states that individuals may experience blood lead levels of 20 pg/
dl without adverse effect, chronic exposure to lower levels of
lead is associated with dysfunction to multiple organ systems
(96). Chronic lead exposure has been correlated with significant
of TNF-0, IL-1B, and IL-6.
Furthermore, levels of these pro-inflammatory cytokines are

increases to serum levels
positively correlated with levels of angiogenic factors in lead
exposed individuals, suggesting this inflammatory response may
also promote cancer progression (97).

Ergonomic occupational hazards refer to working conditions
which can cause strain on the body through repetitive motion,
high exertion activities, or awkward posture (98). Notably,
although moderate leisure time physical activity correlates with
benefits to physical health and anti-inflammatory effects,
occupational physical activity does not confer the same benefits.
This phenomenon is referred to as the physical activity paradox
(99, 100). Studies show occupational physical activity has a
positive association with levels of CRP, suggesting this type of
physical exertion has inflammatory effects (99, 100). Higher
intensity of occupational physical activity was also associated
with lower income levels (100).

Neighborhood and built environment

There is a wealth of evidence that shows the neighborhoods and
homes in which people live are strong determinants of health
outcomes (101). Studies have displayed associations between low-
grade inflammation and factors ranging from the physical qualities
of the home itself (102) to broader neighborhood exposures like air
pollution (103). The hypothesized mechanisms behind these
associations range from microbial dysbiosis to activation of classic
inflammatory pathways.
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Chemical exposures

Marginalized  and  low-income  communities  are
disproportionately exposed to several classes of toxic chemicals,
which have well-established harmful effects through widely
encompassing sources of exposure(104-106). Inhalable particulate
matter with a diameter of <2.5pm (PM2.5), disproportionately
affect marginalized communities, as higher concentrations of air
pollution containing PM2.5 positively correlates with the
percentage of Black residents, historical redlining score, and low-
income census tracts(107-110) resulting in greater overall mortality
(109, 110). Indoor air pollution is an especially significant risk
factor, which sources of exposure including improper temperature
control, poor indoor ventilation, smoking, and gas stove use (111,
112). Birth cohorts have displayed longitudinal associations
between ambient PM2.5, PM10, and NO, with the inflammation-
association proteins IFN- y and IL-12B (113). In experimental
settings, PM2.5 exposure resulted in increased macrophage-
mediated IFN-y, IL-17, and IL-21 expression by T cells, as well as
the formation of reactive oxygen species and secretion of IL-1f and
TNF-o by macrophages (114, 115).
Additionally, heavy metal exposure, such as through
contaminated water or food sources, disproportionately effects
low-income and non-white communities (116-118). Heavy
metals including lead, arsenic, and cadmium have been linked
with chronic disease and immune dysregulation in both human
and experimental settings (119). High ambient exposure to
arsenic, chromium, cadmium, and nickel has been linked with
increased rates of breast and colon cancers in marginalized
communities (120). In animal models, lead exposure resulted in
gut dysbiosis and an increase in opportunistic pathogens, as well
as altered metabolism of key microbial species (121). Similarly,
human studies showed that, depending on the route of
lead

inflammatory

exposure, exposure was associated with enhanced

responses including several proinflammatory
cytokines and increased NF-kB signaling (122). Cadmium
exposure has also been shown to result in lower abundance of
SCFA-producing bacteria and increased TNF-a expression (123).
Similarly, arsenic exposure increased proinflammatory cytokine
expression, production of reactive oxygen species, and NF-kB
signaling in experimental models (124-126).

There are also significant neighborhood and community-based
disparities in exposure to persistent organic pollutants (POPs),
which have been shown to promote inflammation. Housing
conditions such as peeling paint, water leaks, cigarette smoke,
pesticide residues, and old furniture expose residents to harmful
chemicals and disproportionately affect urban communities with
low SES (127). Exposures to POPs, including polybrominated
diphenyl ethers (PBDEs), organochlorine pesticides (OCPs),
polycyclic aromatic hydrocarbons (PAHs), and polychlorinated
biphenyls (PCBs), are significantly higher in social housing multi-
family units than in single family dwellings (128), as well as in old
homes (129, 130), both of which are correlated with race and low
income (131). Several epidemiologic studies have shown significant
positive associations between serum concentrations of OCP and
inflammatory biomarkers, including CRP, TNF-0, and IFN-y . In
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in-vivo experimental studies, exposure to OCPs and PCBs through
several routes increased expression of proinflammatory cytokines
including IL-6, IL-10, TNF-0, and MCP-1 (132). Exposure to PCBs
was also shown to promote leukocyte infiltration, activate NF-kB
through the NEMO pathway, and alter metabolic processes of gut
microbiota, resulting in decreases of SCFA-producing species
(133-135). Likewise, exposure to PBDEs in experimental settings
led to activation of NF-kB, NLRP3 inflammasome activation, and
the production of reactive oxygen species due to mitochondrial
dysfunction (136). Furthermore, high exposure to PAH’s was
significantly correlated with CRP and biomarkers of oxidative
stress, as well as increased proinflammatory cytokine expression, in
cohorts of pregnant women (137, 138). Benzo(a)pyrene, one of the
most common PAH, induced oxidative stress, inflammatory
cytokine expression, and NF-kB activation upon exposure to
human endothelial cells and keratinocytes (139, 140). Given their
persistence in the environment, the inflammatory effects of
persistent organic pollutants span over long periods of time.

Alongside previously discussed exposures, phthalates, which are
known endocrine disrupting chemicals, are additional sources of
pro-inflammatory chemical exposures. There are well-established
racial disparities in phthalate exposure (141-143). Weathering of
construction materials in low-income housing (104, 144, 145),
certain personal care products (146), and discount retailers (147), all
of which have a greater presence in low-income and marginalized
communities, are highly associated with high phthalate exposure
(105). Several studies have suggested a causal link between
phthalates and inflammation, showing phthalate exposure increased
production of TNF-a by monocytes and macrophages, which has
been observed in both in-vitro and in-vivo studies (148). Phthalate
exposure has also been linked with heightened inflammation and
oxidative stress in pregnant women (149).

Housing conditions

In addition to abundant harmful chemical exposures,
marginalized communities are disproportionately exposed to
other inflammatory triggers due to poor housing quality (150).
The quality of one’s home physical environment has been linked
with low-grade inflammation through exposures such as mold
and poor temperature control. Moisture damage, for example,
has been linked with increased CRP levels, as well as increased
expression of IL-1B, IL-6, and TNF-a (151). A pilot study
further observed an increase in innate immune activity,
specifically pattern recognition receptor expression and cytokine
release, among subjects exposed to moisture damage, with
similar findings from in-vitro stimulation with model fungal
substances (152). Exposure to isolated components of fungal
specimens and mold from damp building environments also
increased leukocyte infiltration in the bronchial space and gene
expression of TNF-a in alveolar cell lines (153). Furthermore, an
interventional study showed that repairing moisture damage
decreased expression of IL-6, IL-4, and TNF-a (154).

Evidence suggests that improper temperature control and

indoor ventilation, which are also associated with low-income
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housing, have implications for low-grade inflammation (155, 156).
Short term temperature effects have been observed to correlate
with IL-6 expression, plasminogen activator inhibitor-1 (PAI-1)
levels, and CRP levels (157). Improper indoor temperature
control has also resulted in increased airway inflammation, with
IgG,
inflammatory cytokines in in-vivo models (158), as well Th2
(159).

randomized crossover trial, residence in homes with poor air

increased expression of IgE and leukocytes, and

responses in asthmatic mice Furthermore, in a
conditioning in hot environments lead to increased intestinal
fatty-acid binding protein (I-FABP), indicating decreased barrier
integrity (160).

Overcrowded housing is another factor thought to contribute
to chronic stress and related health outcomes in low-income
communities (161). A population-based study observed early life
household overcrowding, determined by number of people per
room, to be associated with several markers of inflammation,
including CRP and ICAM (162). In in-vivo models, mice
subjected to high density housing conditions displayed increases
in colonic CXCL1, TNF-a and IL22, hyperglycemia, and low-
grade gut inflammation, alongside increases in corticosterone

levels (163).

Neighborhood conditions

Alongside material home characteristics, poor neighborhood
conditions have also been implicated in low-grade inflammation.
For instance, noise pollution is a significant environmental
threat
minoritized communities (164). An in-vivo study observed

which disproportionately affects low-income and
chronic noise exposure led to increased intestinal inflammation
in rats with persistent elevation of TNF-o and IL1f, as well as
alternation of the gut microbiome (165). Additional studies have
observed an increase in IL-6 and other proinflammatory
monocytes in response to noise, which has been hypothesized to
occur in response to increases in stress hormone release upon
noise exposure (166).

Longitudinal studies suggest the aspects of the built environment
which influence walking and exercise habits may also contribute to
the association with inflammation (167). A study investigating the
association between walking behavior and built environment
suggested that leisure walking was associated with retail zone
walkability whereas commuter walking was associated with the
number of walkable social destinations and street connectivity
(167). Additional studies have observed correlations between gross
population density, intersection density, and walkability indexes
with physical activity (168). A cross-sectional survey of individual
health survey responses also reported greater walking behavior in
neighborhoods with more green space (169). Walking and exercise
behaviors are key regulators of inflammation. Regular exercise has
been shown to promote PGCla, which has been shown to increase
detoxification of ROS, promote vascularization, and suppress the
production of inflammatory cytokines, including TNF-a and IL-6,
in multiple in-vitro settings (170). Additionally, in a randomized
controlled trial, increasing the steps per day reduced IL-6 levels,

Frontiers in Epidemiology

10.3389/fepid.2025.1683955

even after adjusting for obesity (171). A recent meta-analysis also
reported lifelong exercise was associated with reduced levels of CRP
and IL-6 (172).

Alongside the suggested influence on walking behavior, there
are several reported health outcomes influenced by green space.
Using multiple metrics of green space availability, including
park cover, Normalized Different Vegetation Index (NDVI), and
NatureScore, green space is positively associated with SES and
percentages of non-Hispanic white residents (173). The presence
of green space has also been linked with regulation of low-grade
Multiple
associated with lower CRP and IL-6, as well as white blood cell

inflammation. metrics of greenness have been
counts, B-cells and monocytes (174). In a cross-sectional study,

residential greenness was also inversely associated with
isoprostanes, which are robust indicators of systemic oxidative
stress. Participants who lived in greener areas also had lower
levels of sympathetic activation, supporting the hypothesis that
stress levels may partially mediate the effect of green space on

disease outcomes (175).

Neighborhood access

Beyond intrinsic factors such as the built environment,
affect other
inflammation regulation. For instance, several neighborhoods

neighborhoods factors that are relevant to
within the United States are considered as “food deserts” or
“food swamps.” Food deserts are regions in which people live
more than 1 mile from a supermarket and lack healthy food
options, while food swamps describe regions that are more than
1 mile form a supermarket and have a greater proportion of
proinflammatory food options than fresh food (176). Food
desert severity has been suggested to mediate the relationship
between income and inflammation (177). Although assessment
of neighborhood access to green space or health food is subject
to limitations, including the fact that people are not necessarily
limited to nearby grocery stores and green spaces, new methods
to assess urban access beyond proximity measurements are
emerging and should be incorporated in further inquiry (178).
Alongside neighborhoods with predominantly low-income
residents and marginalized communities having reduced access
to healthy food, there is greater availability of tobacco products
(179). In marginalized communities tobacco products are
more widely advertised, in both the frequency and nature of
advertisement (180). Furthermore, a cross-sectional study of
tobacco retailers in Washington, D.C. found predatory tobacco
advertising tactics, specifically more appealing descriptors of
tobacco, are more prevalent in census tracts with a greater
proportion of Black residents. Similar findings were observed
among Hispanic/Latino residents (181). Moreover, abundant
evidence suggests flavored tobacco products are associated with
increased initiation and prolonged use among youth and young
adult tobacco users, compared to nonflavored products (182).
Several studies have established a strong association between
tobacco products and cigarette smoke with immune dysfunction,
ranging from both inflammatory to suppressive effects (183).
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Namely, cigarettes contain known immunomodulatory toxins,
including nicotine, carbon monoxide, acrolein, reactive oxidant
substances, and more (183). In in-vitro models, cigarette smoke
activates epithelial cells and induces chemokine expression but
simultaneously impairs innate immune responses to pathogens by
inhibiting secretion of key antimicrobial peptides (184). Results
from several case-control studies also displayed increases in
inflammatory markers including CRP, CCL17, and CCL11 (185).

Social and community context
Social support and cohesion

Social and community context broadly encompasses the
intertwined relationship and community dynamics including social
in the
workplace, and community (186). Across diverse metrics of social

cohesion, discrimination, and relationships home,
support, perceived social support was inversely correlated with
CRP, TNF-0, and IL-6 (187). While global measures of social
support did not correlate with CRP or IL-6 in a different study, the
frequency of positive social interactions associated with lower CRP
in middle-aged adults (188). Perceived social cohesion, assessed by
survey responses, has also been suggested to moderate the
relationship between SES and CRP levels (189). While further
studies are necessary to understand mechanisms by which this
association may occur, studies hypothesize the influence of stress
from poor cohesion or lack of social support, as well as the role of
social support in encouraging other healthy behaviors, have
implications for chronic inflammation. A cross-sectional study
using results from the Healthy Aging in Neighborhoods of
Diversity Across the Lifespan Study, a longitudinal study led by the
National Institutes of Health, showed neighborhood social
cohesion was associated with healthier behaviors, such as increased
physical activity, less cigarette use, and healthier diets; social
cohesion was more pronounced in white participants (190).

Discrimination

The effects of discrimination based on race, ethnicity, migratory
status, religion, class, and other factors on health outcomes have been
increasingly studied, including in the context of inflammation (191).
A longitudinal study assessing persistent exposure to various types of
racial discrimination, including disrespectful treatment from co-
workers, negative police encounters, or racial slurs, found that
persistent exposure to discriminatory events was positively
associated with a composite measure of inflammatory cytokines IL-
1B, IL-2, IL-5, IL-6, IL-17, TNFa, and MIP-1b in a cohort of Black
women (192). This association persisted after controlling for
exposure to childhood adversity, BMI, and health behaviors
including diet and exercise. Similar findings were concluded in a
longitudinal study assessing the effects of self-report discrimination
and community segregation on inflammatory cytokine expression
in a cohort of 400 Black participants (193). The physiological
processes hypothesized to link chronic social and economic
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disadvantage with racial and economic disparities have been
describe as the “weathering hypothesis” (194, 195). Discrimination
has been shown to over activate stress pathways, with investigators
observing constructs of discrimination to be predictors and
correlates of alterations in HPA axis activity (196). Several studies
have also implicated the conserved transcriptional respond to
adversity (CTRA), which describes increased transcription of pro-
inflammatory immune response genes, as well as reduced
expression of antiviral genes (197-200).

Exposure to discrimination and related stressors vary in nature
and length of exposure, both of which have been suggested to
influence the related effects on inflammation. Future inquiries
should distinguish the effects of discrimination across various
forms of chronic, low-grade inflammation. Discrimination and
social disadvantage are also intertwined with previously
described social conditions, such as occupational or air pollution
exposures, which are associated with inflammation themselves.
However, racial disparities across inflammatory markers and
chronic disease are consistently observed even after controlling
for several social conditions including educational attainment,
household wealth, various health behaviors, usage of medication,

and marriage (201-203).

Exposure to violence

Among adolescents, home neighborhood murder rate and
exposure to violence have been shown to interact to predict
counts of classical monocytes (204). In a cohort of 1,391
adolescents followed up to 18 years of age, childhood exposure
to violence was associated with elevated levels of soluble
urokinase plasminogen activator receptor (suPAR) and IL-6
(205). Furthermore, a longitudinal study involving 236 children
from the Chicago area concluded neighborhood violence was
associated with increased signaling of NF-kB and activator
protein 1 (AP-1) control pathways, as well as greater beta-

adrenergic and lower glucocorticoid signaling (206).

Adverse childhood experiences

Adverse childhood experiences (ACE), which are traumatic
events that occur before the age of 18, have also been associated
with higher inflammatory profiles. Specifically, among school-aged
children, those who experienced parental substance abuse displayed
higher levels of pro-inflammatory markers including IL-6 and IL-
1B (207). The presence of ACE was also associated with an altered
gut microbiota composition and response to cortisol in a cohort of
pregnant women (68). Similarly, in a cohort of healthy adults, those
with early childhood adversity demonstrated less response to
cortisol, enrichment of inflammatory gene expression in stress
responses, and increased activity of pro-inflammatory signaling
overall in comparison to adults without trauma experience (208).
Adolescents exposed to adversity also demonstrated elevated
transcription of genes pertaining to myeloid lineage immune cells
and CREB transcriptional activity, which has also been previously
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implicated in increased immune-related gene expression in the
context of adverse experiences (209, 210).

Healthcare access and quality

Healthcare access and quality describes the availability and
accessibility of quality, timely, comprehensive, and respectful
healthcare services and resources. Although limited research
directly examines the association between this social determinant
and inflammatory markers, particularly through mechanistic
pathways, there are several notable findings to report.

Delayed care

Insurance status, encompassed within healthcare access, has
previously been associated with control of chronic conditions.
Additionally, in a study utilizing NHANES participants from 1988-
1994, those in the public/no insurance group had significantly
elevated CRP compared to those with private insurance (211).
Proposed mechanisms underlying this association include the
observation that underinsured individuals often delay their care,
resulting in worsening disease and inflammation for these
individuals as they receive treatment only when their disease
presents in a severe stage (212). A lack of awareness of disease may
also contribute to chronic inflammation, as patients with lower
insurance reimbursements also have significantly higher CRP/IL-6
levels post-surgery (213). In the case of a chronic inflammatory
conditions such as lupus, those with public insurance have also
been shown to have higher rates of hospitalization and
readmissions compared to those on private insurance. Even among
those who receive care, there is greater healthcare fragmentation,
with patients often receiving services across multiple locations.
Fragmented care is known to results in increased risk of
comorbidities, hospitalizations, and overall healthcare costs (214).
Together, these studies suggest that individuals without insurance
are more likely to delay seeking care, which can lead to more
advanced disease at presentation and a sustained inflammatory
state that may remain undetected or unmanaged.

Medication availability

Unsurprisingly, insurance status also affects an individual’s
ability to adhere to their medication regimen. A 2012 study
found that patients hospitalized for cardiovascular disease were
more likely to be incapable of staying adherent to their
medications (215). A later study also showed that those on
public insurance or uninsured had elevated CRP, which was
associated with functional limitations (216). This association is
clinically relevant, given that functional limitations have been
shown to predict poor medication adherence in prior studies
(217). This highlights a potential feedback loop where poor
insurance coverage leads to delays in care and worse medication
adherence, which leads to elevated inflammation and promotes
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functional impairments, which in turn makes it more difficult
for patients to manage their chronic conditions.

Discussion

There are several mechanisms by which SDoH contribute to a
heightened inflammatory state that elevates the risk of chronic
disease development. Both an absence of resources and reduced
frequency of lifestyle factors that mitigate inflammation, as well
as toxic and stress-inducing exposures actively contribute to
heightened inflammation. Placing these inflammatory triggers
within the context of Bronfenbrenner’s social-ecological model
(218) identifies the exosystem as enriched for harmful exposures
(Figure 2). However, in nearly every context where people are
born, live, learn, work, play, and age, lifestyle factors and
exposures influence regulation of the immune system.
Furthermore, exposures beginning in childhood, and even in
utero, can influence chronic low-grade inflammation later in life,
as evidenced by fetal impacts of maternal deprivation, anti-
inflammatory behaviors developed in school age, and the
inflammatory impacts of adverse childhood experiences.

There are limitations of this review which should be further
addressed

inflammation describes a broad condition. While measuring

in future inquiries. Firstly, chronic low-grade
certain biomarkers, such as CRP and IL-6 is a common approach
to assess this condition, levels of inflammatory cytokines, reactive
oxygen species, and proxies for gut permeability have also been
assessed to show evidence of systemic inflammation. The broad
characterization of inflammation may also generalize more specific
underlying processes. However, as there is strong evidence
suggesting chronic low-grade inflammation, described broadly,
underpins the development of several chronic diseases, this broader
framework to conceptualize the large influence of SDoH on
inflammatory disease risk may guide further inquiry into more
specific pathways and mechanisms, as well as possible interventions
to mitigate the burden of chronic disease.

Additionally,

determinants of health often do not operate independently but

inflammatory  conditions across  social
are rather intertwined. For instance, the neighborhoods people
live in can shape not only their built environment, but their
opportunities for and access to economic prosperity, education,
healthcare, and social cohesion. Researchers note deriving causal
conclusions from observational studies is obscured by the
interconnection between these factors, although experiments
similarly present limitations in generalizability considering the
cumulative effects of factors in real world settings (101).
Likewise, the directionality of reported observations is not
fully clear from observational studies. For example, while lower
educational attainment has been shown to be associated with
greater CRP levels, further studies are necessary to confirm
whether lack of education might contribute to elevated
inflammation or greater inflammation might interfere with one’s
ability
directionality, biomarkers of SDoH may still inform research,

to attain higher education levels. Regardless of

especially if the connections can be elucidated through multi-
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variant assessments of the SDoH against the specific biomarkers.
For example, identifying specific biomarkers of the various
SDoH parameters could reduce reliance on survey data and
better determine which determinant is most impactful for each
given individual. Ultimately, careful conclusions should be made
from the presented research and when considering the
application of these findings to interventions. For example, the
noted biomarkers of inflammation present plausible mechanisms
for the resultant harms to population health, however the
solutions will require political and societal interventions rather
than pharmacologic blockade of inflammatory pathways.

The abundant exposures that contribute to a proinflammatory
state thought to underpin the development of several chronic
diseases are largely connected to disparities in health outcomes.
Several of the discussed mechanisms by which social contexts
contribute to inflaimmation, from ultra-processed food to
deteriorating housing conditions to discrimination predominantly
affect low-income and historically marginalized communities.
Through discriminatory practices such as historical redlining, Black
and non-white communities were sequestered to neighborhoods

which continue to be those with the highest inflammatory
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exposures (219). Persistent barriers across the five domains of
SDoH for low-income and marginalized communities have been
consistently shown to shape disparities in health outcomes (220),
and the presented framework highlights inflammation as a key
mechanism of this association.
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