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Chronic inflammatory diseases such as autoimmune disorders, cancer, 

cardiovascular diseases and neurodegenerative disorders are a significant cause 

of morbidity and mortality in the industrialized world. Socioeconomically 

disadvantaged communities bear a disproportionately high burden of these 

inflammatory diseases. This review synthesizes evidence linking various domains 

of the Social Determinants of Health (SDoH)—economic stability, education 

access and quality, healthcare access and quality, neighborhood and built 

environment, and social and community context—to inflammatory pathways and 

mechanisms. Across domains, biological mechanisms such as cytokine 

dysregulation, toll-like receptor (TLR) activation, hypothalamic-pituitary-adrenal 

(HPA) axis alterations and gut microbiome disruption act together to sustain 

proinflammatory states that drive adverse health outcomes in marginalized 

communities. Although causality is obscured by interrelated determinants, 

identifying inflammation as a shared pathway between various determinants 

highlights the need for structural interventions to reduce chronic disease burden.
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Introduction

Incidence of In
ammatory diseases are rapidly rising and the prevalence of such 

diseases is anticipated to continue increasing in the coming decades (1). Chronic 

in
ammatory diseases are recognized as the most significant causes of death in the 

industrialized world, as more than 50% of all deaths are attributed to diseases 

associated with in
ammation (2). These conditions include allergies (3), metabolic 

disorders (4), cancer (5), autoimmune diseases (6), and neurodegenerative diseases (7). 

However, the burden of chronic in
ammatory diseases is disproportionately bore by 

communities with higher rates of socioeconomic disadvantage and barriers to 

healthcare access (8). These broad social factors have been conceptualized by Healthy 

People 2,030 as social determinants of health (SDoH), which are organized into five 

domains: economic stability, education access and quality, health care access and 

quality, neighborhood and built environment, and social and community context (9). 

This review aims to highlight in
ammatory exposures across the five SDoH domains 

and mechanisms by which social determinants have been proposed to in
uence 

chronic low-grade in
ammation.
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Systemic inflammation and socioeconomic 
status overview

In
ammation is essential for fighting pathogens and malignant 

cells, alongside promoting tissue repair. However, systemic and 

chronic activation of the immune system underpins the 

development of in
ammatory disease (10). Sub-clinical, systemic 

in
ammation describes elevated expression of in
ammatory 

molecules and heightened immune activity that may not yet 

manifest with overt clinical symptoms. The prolonged and systemic 

expression of in
ammatory molecules is associated with harmful 

effects including oxidative stress, fibrosis, mitochondrial 

dysfunction, and cellular senescence (11). The sustained effects of 

in
ammatory responses in the absence of a pathogenic target are 

largely associated with several mechanisms of chronic disease 

development. For instance, the prolonged production of reactive 

oxygen species by immune cells and corresponding oxidative stress 

are associated with further stimulation of an in
ammatory 

response, creating damage associated with organ dysfunction and 

metabolic dysregulation.

In measuring systemic in
ammation, Interleukin-6 (IL-6) and 

C-reactive protein (CRP) are frequently used biomarkers (12). IL-6 

is synthesized at the beginning of many immune responses and has 

several effects ranging from promoting antibody production to 

inducing acute-phase protein synthesis (13). C-reactive protein is 

an acute-phase protein released by the liver in response to IL-6 

production, and is commonly used as a non-specific in
ammation 

marker (14). Furthermore, the systemic, heightened presence of 

leukocytes and expression of in
ammatory cytokines in the 

absence of overt clinical symptoms are suggestive of chronic 

in
ammation. Given the broad functions and triggers of 

in
ammation, mechanisms and biomarkers of in
ammation can 

vary vastly and have a wide range of effects (12). CRP and IL-6 

have traditionally facilitated insights into the association between 

systemic in
ammation and chronic disease but have been recently 

joined by many other measurements of in
ammation (15). As an 

example, differential white blood cell counts, were shown to be 

predictive of all-cause mortality, alongside cancer, cardiovascular 

and cerebrovascular specific mortality (16).

A large body of evidence highlights the association of 

socioeconomic status (SES) with low-grade in
ammation 

(summarized in Figure 1). For instance, a meta-analysis of 43 

studies which assessed the relationship between socioeconomic 

status, during both childhood and adulthood, and biomarkers of 

systemic in
ammation found a significant negative correlation 

between SES and CRP and IL-6 (17). Although the effect was 

attenuated after controlling for BMI and smoking, the correlation 

remained significant. Another systemic review investigating the 

relationship between childhood socioeconomic status and chronic 

in
ammation revealed a significant association between parental 

finance and in
ammation, as measured by CRP (18). 

Transcriptional profiling of placental biopsies and umbilical blood 

collected at birth suggested that both elevated immune activation 

and decreased fetal maturation are inversely associated with 

maternal deprivation (19). Maternal disadvantage was determined 

by income receipt of federal benefits, and education level. The 

significant association between SES and in
ammation, reported 

across several studies, after adjustment for factors including BMI, 

suggests more research is necessary to further interrogate the 

relationship as to understand if and which causal mechanisms exist.

Specific social determinants of health

Dietary determinants

Food insecurity
Food insecurity and diet quality have been proposed to mediate 

the association between economic stability and low-grade 

in
ammation (20). Low income is consistently associated with 

lower dietary quality scores, and socioeconomic disparities in diet 

quality have widened over time (21). A study examining diet 

quality among residents of disadvantaged neighborhoods found 

that a minority of residents met dietary guidelines (22). The low 

affordability of healthy food has been shown to explain substantial 

portions of the association between SES and diet quality (23, 24). 

However, beyond high costs of healthy food, researchers have also 

proposed biological mechanisms by which low SES further 

in
uences poor diet quality. The associated stressors and 

uncertainty of poverty, especially extreme poverty, have been 

shown to affect stress, appetite, and the hunger-related hormones 

which shaping eating habits (25). Furthermore, food insecurity has 

been suggested to promote dependence on energy dense, palatable 

diets and alter metabolism through stress-related mechanisms, 

including the hypothalamus-pituitary-adrenal (HPA) axis (26).

Nutrient deficiencies
Poor diet contributes to low-grade in
ammation through several 

mechanisms, including the absence of necessary nutrients that are 

associated with healthy immune regulation. A study using National 

Health and Nutrition Examination Survey (NHANES) data 

compared nutrient and food group intake among children aged 2– 

5 years with the family income to poverty ratio (PIR). The results 

suggested children in the low PIR cohort had lower dietary fiber, 

dairy, and calcium intakes, alongside lower Healthy Eating Index 

(HEI) scores overall (27). Dietary fiber is associated with several 

processes that mitigate low-grade in
ammation as it metabolized 

by intestinal microbial species into short chain fatty acids (SCFAs). 

The resulting SCFAs regulate the immune response through several 

mechanisms, including increased gene expression of NF-κB 

mediators (28), generation of regulatory T cells (29), and 

improving epithelial barrier integrity (30). Insufficient fiber intake 

may promote heightened in
ammation by facilitating the 

translocation of damage-associated molecular patterns (DAMPs) 

due to compromised barrier integrity, as well as promote immune 

dysregulation by reducing SCFA signaling (31).

Alongside fiber, several notable anti-in
ammatory micronutrients 

are less abundant in low-income diets. Anthocyanins and quercetin, 

for example, are 
avonoids that are predominantly found in fresh 

foods. Flavonoids have been shown to decrease NF-κB expression 

(32) and attenuate expression of pro-in
ammatory cytokines (33). 
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However, 
avonoid intake has been reported to be lower in low- 

income cohorts than in high-income counterparts (34). Additionally, 

vitamin D is a key nutrient associated with maintaining healthy 

immune function through its anti-in
ammatory properties. In cell 

lines and peripheral blood mononuclear cells (PBMCs), treatment 

with vitamin D provided strong evidence of its anti-in
ammatory 

properties, with marked decreases in anti-in
ammatory cytokines 

including IL-6, TNF-α, MCP-1, and IL-10. Potential mechanisms of 

anti-in
ammatory action by vitamin D included decreased protein 

expression of Toll-like receptors (TLR), lower levels of 

phosphorylated p38, and decreased reactive oxygen species (35). 

However, there is some evidence that vitamin D may be a reverse 

acute-phase reactant; meaning, that low levels of vitamin D may 

result from the presence of in
ammation rather than be the cause of 

in
ammation (36). However, there are some data from randomized 

controlled trials showing vitamin D supplementation resulted in 

improved regulation of in
ammation, with reductions in CRP 

and TNF-α, alongside increased signaling of Regulatory T cells 

(37, 38). Like deficiencies in other key anti-in
ammatory nutrients, 

vitamin D deficiency is positively associated with low income in the 

United States (39).

Intake of foods with synthetic ingredients

In addition to insufficient intake of key anti-in
ammatory 

nutrients, intake of highly-processed and ultra-processed foods 

(UPF) is largely associated with increased in
ammation and 

dysregulation of the immune system. Evidence suggests ultra- 

processed food consumption is on the rise, with increased 

availability in low-income communities (40). However, the 

definition of UPF however is controversial. Sugar, salt, and cooking 

oils—each of which have known in
ammatory effects (41)—are not 

considered ultra-processed (42). Consuming a meal of bread, 

FIGURE 1 

Integrative framework for social and biological determinants of chronic inflammation. This diagram maps social, environmental, and dietary 

conditions to specific immunologic pathways promoting inflammation and highlighting converging mechanisms—cytokine dysregulation, HPA 

axis alteration, innate immune receptor activation, and microbiome shifts.
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cheese, and tomato sauce would constitute consuming a processed 

diet but, combining them into a cheese pizza would be defined as 

an ultra-processed diet. While this manuscript cannot settle this 

debate, for purposes of simplicity we will consider UPF as those 

containing ingredients which are either synthetic or require 

industrial processing to extract because such foods are nearly 

always defined as ultra-processed. For example, adding 

hydrogenated oils or high-fructose corn syrup to an otherwise 

minimally processed recipe will beget an UPF designation.

Ultra-processed diets overwhelmingly lack previously 

described nutrients which maintain healthy functioning of the 

immune system (43). Alongside their low nutritional value, 

many UPF have artificially heightened levels of in
ammatory 

ingredients, such as cholesterol and processed saturated fatty 

acids. While naturally occurring, saturated fats tend to include 

several different lipid moieties, whereas processed fats are 

typically restricted to the highly in
ammatory palmitic acid and 

steric acid (41). Given that these specific saturated fats are 

components of bacterial lipopolysaccharide (LPS), they can 

activate anti-bacterial mechanisms through activation of TLR4 

(44). Industrial processing and storage mechanisms necessary 

for UPF development have also been implicated in the 

formation of dietary cholesterol oxidation products, which are 

associated with several disease etiologies (45).

In in-vivo models, high cholesterol diets led to in
ammasome 

activation in the intestinal epithelium, resulting in both local and 

systemic in
ammation (46). There is also a well-established role of 

cholesterol and its oxidation products in atherosclerosis 

development. High cholesterol intake is associated with higher 

circulating quantities of low-density lipoprotein (LDL), as opposed 

to high-density lipoprotein (HDL) which promotes cellular ef
ux 

of cholesterol (47). Elevated levels of LDL lead to deposition in the 

arterial wall, where it is oxidized and aggregated, both of which 

further trigger immune activity. Modified LDL also activates TLRs 

on macrophages, triggering TLR signaling to mount an immune 

response, and are engulfed by macrophages to further amplify 

the immune response and trigger downstream cytokine production 

and in
ammasome activation (48). Alongside the known 

mechanism in atherosclerosis development, the formation of 

aggregated cholesterol crystals and resulting NLRP3 in
ammasome 

signaling has been implicated in the development of colon cancer 

(49). Both cholesterol and processed saturated fatty acids have been 

shown to modify the gut microbiota with effects on TLR4 (50); the 

resulting oxidative stress has also been shown to promote oxidized 

modifications of LDL.

Abundant evidence in animals and limited evidence in humans 

also suggests chemical additives in highly processed food, such 

as emulsifiers and sweeteners, directly contribute to a pro- 

in
ammatory state (51). Results from an in-vivo study showed 

exposure to saccharin, a commonly used artificial sweetener, 

induced in
ammation by elevating expression of proin
ammatory 

cytokines, TNF-α and iNOS, and inducing changes to the 

microbiota (52). Another in-vivo study determined commonly 

used dietary emulsifiers, carboxymethylcellulose (CMC) and 

polysorbate-80 (P80), increased expression of genes pertaining to 

virulence of otherwise mutualistic bacteria and in
ammation (53). 

Exposure to CMC and P80 has also been shown to increase 

intestinal permeability and result in changes in the gut microbiome 

that are associated with low-grade in
ammation (54).

Furthermore, a study in a cohort of nearly six hundred people 

found a positive association between both emulsifier and highly 

processed food consumption and heightened in
ammation and 

intestinal permeability; the association persisted after controlling 

for energy intake, BMI, and red and processed meat intake (55). 

The impact of CMC consumption on microbial composition has 

also been highlighted in humans using a randomized controlled- 

feeding study. Relative to control subjects, CMC consumption 

increased postprandial abdominal discomfort, reduced microbial 

diversity and led to changes in their metabolome, including a 

decrease in short-chain fatty acids (56). When looking at 

sweeteners, short-term and long-term results showed non- 

caloric artificial sweetener consumption induced alteration in 

the gut microbiota and glycemic response (57).

Psychological determinants

Chronic stress

Chronic stress is another proposed mechanism by which low 

income is associated with low-grade in
ammation. Chronic 

stress has been linked with low-grade in
ammation and chronic 

disease across several studies (58–61). Researchers have 

proposed that the activation of the HPA axis links chronic stress 

with low-grade in
ammation. This phenomenon was supported 

across two viral-challenge studies, in which participants with 

recent exposure to a long-term threatening stressful experience 

displayed higher glucocorticoid resistance and increased 

production of in
ammatory cytokines (62).

A randomized controlled trial in which participants were 

subjected to stress reduction interventions observed significant 

decreases in levels of CRP (63). Furthermore, in a study 

concerning childhood SES, investigators hypothesized early-life 

social adversity contributes to defensive biological programming 

which involves a heightened in
ammatory state. The study 

measured CRP and IL-6 levels and conducted transcriptional 

profiling of healthy volunteers; the volunteers had no history of 

chronic disease but differed in spending their first 5 years of life 

in either low or high SES environments. The results suggested 

that participants raised in low SES environments had increased 

IL-6 production, which persisted after controlling for levels of 

perceived stress, smoking, adiposity, exercise, alcohol use, and 

sleep quality. Furthermore, transcriptional profiling revealed low 

SES was associated with an upregulation of genes involved in 

translating adrenergic signals to leukocyte transcription and 

genes with NF-κB response elements, which are characterized as 

proin
ammatory genes. However, in the low SES cohort, there 

was also a downregulation of genes with response elements for 

the glucocorticoid receptor, which carry out the anti- 

in
ammatory action of cortisol, commonly considered as the 

“stress hormone” (64). Both the in
ammatory markers and 

transcriptional profiling results suggest a heightened 
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in
ammatory state among participants reared in low SES 

environments, which was hypothesized to act through resistance 

to cortisol output. While chronic stress has been consistently 

linked with low-grade in
ammation, multifaceted analyses of 

social stressors, such as social strain and living in a single-parent 

family, and CRP have produced inconclusive results, suggesting 

that more research is necessary to characterize specific stressors 

that contribute to low-grade in
ammation (65).

Chronic stress has also been proposed to contribute to low- 

grade in
ammation through alterations to the microbiome. 

Abundant mouse and human studies have suggested a link 

between several types of stress and changes in the microbiome 

(66). In mice subjected to social disruption stress, levels of gut 

Bacteroides and Parabacteroides increased. Additionally, levels of 

Coprococcus, Dorea, and Pseudobutyrivibrio decreased, which 

were inversely correlated with IL-6 levels, and antibiotic 

administration blocked the stress-induced IL-6 increase (67). 

Similarly, a study assessing the effects of acute stress on 

pregnant women similarly observed stress-induced increases in 

IL-6, as well as TNF-α, were positively associated with 

abundance of Bacteroides. Increased IL-6 levels were also 

associated with abundance of Prevotella (68). Furthermore, in a 

cohort of Belgian children, high stress, as defined by negative 

life events and low parasympathetic activity, was associated with 

lower alpha diversity (69). Low alpha diversity has been linked 

to low-grade in
ammation, with a potential mechanism being 

reduced access to complex carbohydrates and less production of 

short chain fatty acids (70). However, reverse causation is 

possible given that chronic stress may alter the habitat of the 

gut in ways that benefit survival of some microbes over others.

Political determinants

The term “political determinants of health” was coined by 

Professor Daniel Dawes (71). The term is meant to contrast the 

more standard “social determinants of health” to communicate 

that many of the issues which fall under SDOH are not an 

innate part of a society. Rather, the cause and solution to these 

problems would require alterations in political decision making.

Education access and quality

Educational attainment both captures early childhood 

determinants of health and largely predicts occupational and 

subsequently economic attainment (72). A gradient has emerged 

in the past 50 years in which higher levels of schooling are 

increasingly linked with better health outcomes and increased 

lifespan, partly through pathways in
uencing systemic 

in
ammation. Individuals with lower educational levels may 

experience greater exposure to chronic psychosocial stress, 

reduced access to preventive healthcare, and higher rates of poor 

dietary and lifestyle factors. These factors are all associated with 

elevated in
ammatory markers such as CRP and IL-6. The 

education-health gradient has been observed regardless of 

gender or race, although the health effects are stronger for 

women and white individuals (73). Here to, the association may 

be through reverse causation as greater health may better 

facilitate school performance.

Childhood health

Educational context shapes childhood health outcomes, as 

most children spend up to 40 h of their week in school and 

receive approximately 35% of their daily nutrient intake while at 

school (74). As such, the school environment is a critical setting 

for interventions which reduce health inequities present in early 

childhood. Children with marginalized backgrounds commonly 

experience nutritional inequities that promote low-grade 

in
ammation, including a lower consumption of fruits and 

vegetables and higher consumption of sodium, added sugars, 

and processed saturated fats (75, 76). Federally assisted meal 

programs such as the National School Lunch Program (NSLP) 

feed over 30 million children daily and have been considered 

essential in improving diet quality of underserved populations 

(75). NSLP lunches are required to meet nutritional standards 

laid out by the Dietary Guidelines for Americans (DGA). 

Children who participate in the NSLP have been shown to eat a 

healthier lunch than nonparticipants in the program regardless 

of income level or race (77). Even so, NSLP lunches allow for 

the selection of foods which meet DGA intake requirements for 

all major nutrients except for dietary fiber, which has been 

previously discussed to have strong implications for regulation 

of the immune system. Despite this requirement, students’ 

average daily consumption of selected lunches did not meet 

intake recommendations for calcium, iron, fiber, and vitamins 

A and C (75). Nationally less than half of elementary students 

meet intake requirements for iron and vitamins A and C and 

very few consume the recommended amount of dietary fiber 

(78). However, the extent of these deficiencies is strongly shaped 

by the SDoH. Children from low-income households and 

under-resourced school districts are more likely to depend on 

school-provided meals as their primary source of nutrition and 

may have limited access to nutrient-rich foods outside of school. 

Socioeconomic status, neighborhood food environments, and 

school funding policies intersect to magnify nutritional 

inequities and their downstream in
ammatory consequences. 

Increases in dietary fiber intake has been found to lower 

concentrations of serum CRP and fibrinogen in overweight and 

average weight adolescents, suggesting that dietary fiber may 

have protective effects against systemic in
ammation (79, 80). 

Intake of vitamins A, C, and E have also been shown to have an 

inverse correlation with levels of CRP and IL-6 in children (81).

There is also evidence to suggest that higher education in a 

school environment which promotes attitudes of self-efficacy 

regarding personal health produces healthier behaviors 

throughout life (76). This relationship is potentially mediated by 

increased exposure to health education and interventions in 

schools, which are not offered equitably. Students at Title 1 

schools, which are schools that serve a large percentage of low- 
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income students, scored significantly lower when surveyed on 

nutritional knowledge and dietary behaviors compared to students 

of non-Title 1 schools. However, Title 1 students also demonstrated 

higher scores of self-efficacy when it came to selecting healthy 

meals which proved to be a more significant predictor of healthy 

dietary behaviors (82). School-based health centers (SBHC) provide 

another avenue for access to health services and the acquisition of 

healthy behaviors. Studies have shown that students with access to 

SBHCs showed greater participation in physical activity and met 

more nutritional intake guidelines compared to peers not using 

these facilities (83).

Vocational differences

Over the past several decades, increasing globalization and 

automation in the workforce has increased the economic returns 

of higher education while reducing demand for less skilled 

labor. As income inequality has become more stratified by 

education level, correlations between education and mortality 

have become stronger (84). Higher education is also associated 

with increased likelihood of jobs providing non-wage related 

benefits, such as employer provided healthcare, paid leave, and 

retirement funds, all of which contribute to positive 

employment outcomes (85). Conversely, lower educational 

attainment coincides with increased occupational stress and 

precarity of employment conditions which encompass several 

in
ammatory exposures (86).

Higher educational attainment has been inversely correlated 

with an individual’s likelihood of participating in shift work 

(87). Shift work is broadly defined as a working schedule in 

which takes place outside of traditional daytime hours of 7 AM– 

6 PM (88). This type of work is commonly characterized by an 

irregular work schedule which includes regular evening and 

nighttime work, rotating shifts, or split shifts (89). Shift work 

has been identified as a risk factor for systemic in
ammation 

which predisposes this class of employees to a host of other 

chronic disorders such as cardiovascular disease, cancer, and 

metabolic syndrome(88–91). A study of shift workers in Atlanta 

found a 93% higher concentration of CRP in collected blood 

samples compared to day workers. In addition, concentrations 

of the pro-in
ammatory cytokines IL-1β and TNF-α were 96% 

and 20% higher among this cohort (92). Both IL-1β and TNF-α 
also have been shown to circulate in the body at higher levels 

following periods of sleep deprivation (93). In the same study, 

IL-6 concentrations in the blood were 190% higher among shift 

workers, while plasma cortisol levels were 39% higher (92).

The correlation between shift work and in
ammation has 

been hypothesized to be related to the misalignment between 

workers’ endogenous circadian rhythm and the sleep wake 

cycles shift work demands of employees (91). On average shift 

workers report sleeping 30–70 min less per day than dayworkers 

(90, 92). Furthermore, 10%–20% of shift workers experience 

shift work disorder (SWD), a condition characterized by 

insomnia or excessive daytime sleepiness in the context of a 

work schedule which interferes with one’s endogenous sleep- 

wake cycle (90). A study of full-time shift workers found that 

conditions of short-term circadian misalignment consisting of a 

12 hour inversion of the behavioral to environmental cycles 

resulted in an 11% increase to CRP produced within 24 h of 

misalignment (91).

Occupational exposures

Employment precarity is informed by multiple factors such 

as low SES and minority status in a population (94, 95). 

Research has shown that decreasing education level is associated 

with increasing occupational precariousness. As the quality and 

stability of available employment declines, the risk that 

employees encounter occupational hazards increases (95). Lower 

educational attainment has been most strongly associated with 

heightened risk of exposure to chemical hazards and, to a lesser 

extent, physical and ergonomic hazards (95).

Lead exposure remains a common hazard of industrial jobs 

such as construction, often via inhalation of fumes or dust 

contaminated by the heavy metal. Although the American 

Conference of Governmental Industrial Hygienists (ACGIH) 

states that individuals may experience blood lead levels of 20 µg/ 

dl without adverse effect, chronic exposure to lower levels of 

lead is associated with dysfunction to multiple organ systems 

(96). Chronic lead exposure has been correlated with significant 

increases to serum levels of TNF-α, IL-1β, and IL-6. 

Furthermore, levels of these pro-in
ammatory cytokines are 

positively correlated with levels of angiogenic factors in lead 

exposed individuals, suggesting this in
ammatory response may 

also promote cancer progression (97).

Ergonomic occupational hazards refer to working conditions 

which can cause strain on the body through repetitive motion, 

high exertion activities, or awkward posture (98). Notably, 

although moderate leisure time physical activity correlates with 

benefits to physical health and anti-in
ammatory effects, 

occupational physical activity does not confer the same benefits. 

This phenomenon is referred to as the physical activity paradox 

(99, 100). Studies show occupational physical activity has a 

positive association with levels of CRP, suggesting this type of 

physical exertion has in
ammatory effects (99, 100). Higher 

intensity of occupational physical activity was also associated 

with lower income levels (100).

Neighborhood and built environment

There is a wealth of evidence that shows the neighborhoods and 

homes in which people live are strong determinants of health 

outcomes (101). Studies have displayed associations between low- 

grade in
ammation and factors ranging from the physical qualities 

of the home itself (102) to broader neighborhood exposures like air 

pollution (103). The hypothesized mechanisms behind these 

associations range from microbial dysbiosis to activation of classic 

in
ammatory pathways.
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Chemical exposures

Marginalized and low-income communities are 

disproportionately exposed to several classes of toxic chemicals, 

which have well-established harmful effects through widely 

encompassing sources of exposure(104–106). Inhalable particulate 

matter with a diameter of <2.5 μm (PM2.5), disproportionately 

affect marginalized communities, as higher concentrations of air 

pollution containing PM2.5 positively correlates with the 

percentage of Black residents, historical redlining score, and low- 

income census tracts(107–110) resulting in greater overall mortality 

(109, 110). Indoor air pollution is an especially significant risk 

factor, which sources of exposure including improper temperature 

control, poor indoor ventilation, smoking, and gas stove use (111, 

112). Birth cohorts have displayed longitudinal associations 

between ambient PM2.5, PM10, and NO2 with the in
ammation- 

association proteins IFN- γ and IL-12B (113). In experimental 

settings, PM2.5 exposure resulted in increased macrophage- 

mediated IFN-γ, IL-17, and IL-21 expression by T cells, as well as 

the formation of reactive oxygen species and secretion of IL-1β and 

TNF-α by macrophages (114, 115).

Additionally, heavy metal exposure, such as through 

contaminated water or food sources, disproportionately effects 

low-income and non-white communities (116–118). Heavy 

metals including lead, arsenic, and cadmium have been linked 

with chronic disease and immune dysregulation in both human 

and experimental settings (119). High ambient exposure to 

arsenic, chromium, cadmium, and nickel has been linked with 

increased rates of breast and colon cancers in marginalized 

communities (120). In animal models, lead exposure resulted in 

gut dysbiosis and an increase in opportunistic pathogens, as well 

as altered metabolism of key microbial species (121). Similarly, 

human studies showed that, depending on the route of 

exposure, lead exposure was associated with enhanced 

in
ammatory responses including several proin
ammatory 

cytokines and increased NF-κB signaling (122). Cadmium 

exposure has also been shown to result in lower abundance of 

SCFA-producing bacteria and increased TNF-α expression (123). 

Similarly, arsenic exposure increased proin
ammatory cytokine 

expression, production of reactive oxygen species, and NF-κB 

signaling in experimental models (124–126).

There are also significant neighborhood and community-based 

disparities in exposure to persistent organic pollutants (POPs), 

which have been shown to promote in
ammation. Housing 

conditions such as peeling paint, water leaks, cigarette smoke, 

pesticide residues, and old furniture expose residents to harmful 

chemicals and disproportionately affect urban communities with 

low SES (127). Exposures to POPs, including polybrominated 

diphenyl ethers (PBDEs), organochlorine pesticides (OCPs), 

polycyclic aromatic hydrocarbons (PAHs), and polychlorinated 

biphenyls (PCBs), are significantly higher in social housing multi- 

family units than in single family dwellings (128), as well as in old 

homes (129, 130), both of which are correlated with race and low 

income (131). Several epidemiologic studies have shown significant 

positive associations between serum concentrations of OCP and 

in
ammatory biomarkers, including CRP, TNF-α, and IFN-γ . In 

in-vivo experimental studies, exposure to OCPs and PCBs through 

several routes increased expression of proin
ammatory cytokines 

including IL-6, IL-10, TNF-α, and MCP-1 (132). Exposure to PCBs 

was also shown to promote leukocyte infiltration, activate NF-κB 

through the NEMO pathway, and alter metabolic processes of gut 

microbiota, resulting in decreases of SCFA-producing species 

(133–135). Likewise, exposure to PBDEs in experimental settings 

led to activation of NF-κB, NLRP3 in
ammasome activation, and 

the production of reactive oxygen species due to mitochondrial 

dysfunction (136). Furthermore, high exposure to PAH’s was 

significantly correlated with CRP and biomarkers of oxidative 

stress, as well as increased proin
ammatory cytokine expression, in 

cohorts of pregnant women (137, 138). Benzo(α)pyrene, one of the 

most common PAH, induced oxidative stress, in
ammatory 

cytokine expression, and NF-κB activation upon exposure to 

human endothelial cells and keratinocytes (139, 140). Given their 

persistence in the environment, the in
ammatory effects of 

persistent organic pollutants span over long periods of time.

Alongside previously discussed exposures, phthalates, which are 

known endocrine disrupting chemicals, are additional sources of 

pro-in
ammatory chemical exposures. There are well-established 

racial disparities in phthalate exposure (141–143). Weathering of 

construction materials in low-income housing (104, 144, 145), 

certain personal care products (146), and discount retailers (147), all 

of which have a greater presence in low-income and marginalized 

communities, are highly associated with high phthalate exposure 

(105). Several studies have suggested a causal link between 

phthalates and in
ammation, showing phthalate exposure increased 

production of TNF-α by monocytes and macrophages, which has 

been observed in both in-vitro and in-vivo studies (148). Phthalate 

exposure has also been linked with heightened in
ammation and 

oxidative stress in pregnant women (149).

Housing conditions

In addition to abundant harmful chemical exposures, 

marginalized communities are disproportionately exposed to 

other in
ammatory triggers due to poor housing quality (150). 

The quality of one’s home physical environment has been linked 

with low-grade in
ammation through exposures such as mold 

and poor temperature control. Moisture damage, for example, 

has been linked with increased CRP levels, as well as increased 

expression of IL-1β, IL-6, and TNF-α (151). A pilot study 

further observed an increase in innate immune activity, 

specifically pattern recognition receptor expression and cytokine 

release, among subjects exposed to moisture damage, with 

similar findings from in-vitro stimulation with model fungal 

substances (152). Exposure to isolated components of fungal 

specimens and mold from damp building environments also 

increased leukocyte infiltration in the bronchial space and gene 

expression of TNF-α in alveolar cell lines (153). Furthermore, an 

interventional study showed that repairing moisture damage 

decreased expression of IL-6, IL-4, and TNF-α (154).

Evidence suggests that improper temperature control and 

indoor ventilation, which are also associated with low-income 
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housing, have implications for low-grade in
ammation (155, 156). 

Short term temperature effects have been observed to correlate 

with IL-6 expression, plasminogen activator inhibitor-1 (PAI-1) 

levels, and CRP levels (157). Improper indoor temperature 

control has also resulted in increased airway in
ammation, with 

increased expression of IgE and IgG, leukocytes, and 

in
ammatory cytokines in in-vivo models (158), as well Th2 

responses in asthmatic mice (159). Furthermore, in a 

randomized crossover trial, residence in homes with poor air 

conditioning in hot environments lead to increased intestinal 

fatty-acid binding protein (I-FABP), indicating decreased barrier 

integrity (160).

Overcrowded housing is another factor thought to contribute 

to chronic stress and related health outcomes in low-income 

communities (161). A population-based study observed early life 

household overcrowding, determined by number of people per 

room, to be associated with several markers of in
ammation, 

including CRP and ICAM (162). In in-vivo models, mice 

subjected to high density housing conditions displayed increases 

in colonic CXCL1, TNF-α and IL22, hyperglycemia, and low- 

grade gut in
ammation, alongside increases in corticosterone 

levels (163).

Neighborhood conditions

Alongside material home characteristics, poor neighborhood 

conditions have also been implicated in low-grade in
ammation. 

For instance, noise pollution is a significant environmental 

threat which disproportionately affects low-income and 

minoritized communities (164). An in-vivo study observed 

chronic noise exposure led to increased intestinal in
ammation 

in rats with persistent elevation of TNF-α and IL1β, as well as 

alternation of the gut microbiome (165). Additional studies have 

observed an increase in IL-6 and other proin
ammatory 

monocytes in response to noise, which has been hypothesized to 

occur in response to increases in stress hormone release upon 

noise exposure (166).

Longitudinal studies suggest the aspects of the built environment 

which in
uence walking and exercise habits may also contribute to 

the association with in
ammation (167). A study investigating the 

association between walking behavior and built environment 

suggested that leisure walking was associated with retail zone 

walkability whereas commuter walking was associated with the 

number of walkable social destinations and street connectivity 

(167). Additional studies have observed correlations between gross 

population density, intersection density, and walkability indexes 

with physical activity (168). A cross-sectional survey of individual 

health survey responses also reported greater walking behavior in 

neighborhoods with more green space (169). Walking and exercise 

behaviors are key regulators of in
ammation. Regular exercise has 

been shown to promote PGC1α, which has been shown to increase 

detoxification of ROS, promote vascularization, and suppress the 

production of in
ammatory cytokines, including TNF-a and IL-6, 

in multiple in-vitro settings (170). Additionally, in a randomized 

controlled trial, increasing the steps per day reduced IL-6 levels, 

even after adjusting for obesity (171). A recent meta-analysis also 

reported lifelong exercise was associated with reduced levels of CRP 

and IL-6 (172).

Alongside the suggested in
uence on walking behavior, there 

are several reported health outcomes in
uenced by green space. 

Using multiple metrics of green space availability, including 

park cover, Normalized Different Vegetation Index (NDVI), and 

NatureScore, green space is positively associated with SES and 

percentages of non-Hispanic white residents (173). The presence 

of green space has also been linked with regulation of low-grade 

in
ammation. Multiple metrics of greenness have been 

associated with lower CRP and IL-6, as well as white blood cell 

counts, B-cells and monocytes (174). In a cross-sectional study, 

residential greenness was also inversely associated with 

isoprostanes, which are robust indicators of systemic oxidative 

stress. Participants who lived in greener areas also had lower 

levels of sympathetic activation, supporting the hypothesis that 

stress levels may partially mediate the effect of green space on 

disease outcomes (175).

Neighborhood access

Beyond intrinsic factors such as the built environment, 

neighborhoods affect other factors that are relevant to 

in
ammation regulation. For instance, several neighborhoods 

within the United States are considered as “food deserts” or 

“food swamps.” Food deserts are regions in which people live 

more than 1 mile from a supermarket and lack healthy food 

options, while food swamps describe regions that are more than 

1 mile form a supermarket and have a greater proportion of 

proin
ammatory food options than fresh food (176). Food 

desert severity has been suggested to mediate the relationship 

between income and in
ammation (177). Although assessment 

of neighborhood access to green space or health food is subject 

to limitations, including the fact that people are not necessarily 

limited to nearby grocery stores and green spaces, new methods 

to assess urban access beyond proximity measurements are 

emerging and should be incorporated in further inquiry (178).

Alongside neighborhoods with predominantly low-income 

residents and marginalized communities having reduced access 

to healthy food, there is greater availability of tobacco products 

(179). In marginalized communities tobacco products are 

more widely advertised, in both the frequency and nature of 

advertisement (180). Furthermore, a cross-sectional study of 

tobacco retailers in Washington, D.C. found predatory tobacco 

advertising tactics, specifically more appealing descriptors of 

tobacco, are more prevalent in census tracts with a greater 

proportion of Black residents. Similar findings were observed 

among Hispanic/Latino residents (181). Moreover, abundant 

evidence suggests 
avored tobacco products are associated with 

increased initiation and prolonged use among youth and young 

adult tobacco users, compared to non
avored products (182). 

Several studies have established a strong association between 

tobacco products and cigarette smoke with immune dysfunction, 

ranging from both in
ammatory to suppressive effects (183). 
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Namely, cigarettes contain known immunomodulatory toxins, 

including nicotine, carbon monoxide, acrolein, reactive oxidant 

substances, and more (183). In in-vitro models, cigarette smoke 

activates epithelial cells and induces chemokine expression but 

simultaneously impairs innate immune responses to pathogens by 

inhibiting secretion of key antimicrobial peptides (184). Results 

from several case-control studies also displayed increases in 

in
ammatory markers including CRP, CCL17, and CCL11 (185).

Social and community context

Social support and cohesion

Social and community context broadly encompasses the 

intertwined relationship and community dynamics including social 

cohesion, discrimination, and relationships in the home, 

workplace, and community (186). Across diverse metrics of social 

support, perceived social support was inversely correlated with 

CRP, TNF-α, and IL-6 (187). While global measures of social 

support did not correlate with CRP or IL-6 in a different study, the 

frequency of positive social interactions associated with lower CRP 

in middle-aged adults (188). Perceived social cohesion, assessed by 

survey responses, has also been suggested to moderate the 

relationship between SES and CRP levels (189). While further 

studies are necessary to understand mechanisms by which this 

association may occur, studies hypothesize the in
uence of stress 

from poor cohesion or lack of social support, as well as the role of 

social support in encouraging other healthy behaviors, have 

implications for chronic in
ammation. A cross-sectional study 

using results from the Healthy Aging in Neighborhoods of 

Diversity Across the Lifespan Study, a longitudinal study led by the 

National Institutes of Health, showed neighborhood social 

cohesion was associated with healthier behaviors, such as increased 

physical activity, less cigarette use, and healthier diets; social 

cohesion was more pronounced in white participants (190).

Discrimination

The effects of discrimination based on race, ethnicity, migratory 

status, religion, class, and other factors on health outcomes have been 

increasingly studied, including in the context of in
ammation (191). 

A longitudinal study assessing persistent exposure to various types of 

racial discrimination, including disrespectful treatment from co- 

workers, negative police encounters, or racial slurs, found that 

persistent exposure to discriminatory events was positively 

associated with a composite measure of in
ammatory cytokines IL- 

1β, IL-2, IL-5, IL-6, IL-17, TNFα, and MIP-1b in a cohort of Black 

women (192). This association persisted after controlling for 

exposure to childhood adversity, BMI, and health behaviors 

including diet and exercise. Similar findings were concluded in a 

longitudinal study assessing the effects of self-report discrimination 

and community segregation on in
ammatory cytokine expression 

in a cohort of 400 Black participants (193). The physiological 

processes hypothesized to link chronic social and economic 

disadvantage with racial and economic disparities have been 

describe as the “weathering hypothesis” (194, 195). Discrimination 

has been shown to over activate stress pathways, with investigators 

observing constructs of discrimination to be predictors and 

correlates of alterations in HPA axis activity (196). Several studies 

have also implicated the conserved transcriptional respond to 

adversity (CTRA), which describes increased transcription of pro- 

in
ammatory immune response genes, as well as reduced 

expression of antiviral genes (197–200).

Exposure to discrimination and related stressors vary in nature 

and length of exposure, both of which have been suggested to 

in
uence the related effects on in
ammation. Future inquiries 

should distinguish the effects of discrimination across various 

forms of chronic, low-grade in
ammation. Discrimination and 

social disadvantage are also intertwined with previously 

described social conditions, such as occupational or air pollution 

exposures, which are associated with in
ammation themselves. 

However, racial disparities across in
ammatory markers and 

chronic disease are consistently observed even after controlling 

for several social conditions including educational attainment, 

household wealth, various health behaviors, usage of medication, 

and marriage (201–203).

Exposure to violence

Among adolescents, home neighborhood murder rate and 

exposure to violence have been shown to interact to predict 

counts of classical monocytes (204). In a cohort of 1,391 

adolescents followed up to 18 years of age, childhood exposure 

to violence was associated with elevated levels of soluble 

urokinase plasminogen activator receptor (suPAR) and IL-6 

(205). Furthermore, a longitudinal study involving 236 children 

from the Chicago area concluded neighborhood violence was 

associated with increased signaling of NF-κB and activator 

protein 1 (AP-1) control pathways, as well as greater beta- 

adrenergic and lower glucocorticoid signaling (206).

Adverse childhood experiences

Adverse childhood experiences (ACE), which are traumatic 

events that occur before the age of 18, have also been associated 

with higher in
ammatory profiles. Specifically, among school-aged 

children, those who experienced parental substance abuse displayed 

higher levels of pro-in
ammatory markers including IL-6 and IL- 

1β (207). The presence of ACE was also associated with an altered 

gut microbiota composition and response to cortisol in a cohort of 

pregnant women (68). Similarly, in a cohort of healthy adults, those 

with early childhood adversity demonstrated less response to 

cortisol, enrichment of in
ammatory gene expression in stress 

responses, and increased activity of pro-in
ammatory signaling 

overall in comparison to adults without trauma experience (208). 

Adolescents exposed to adversity also demonstrated elevated 

transcription of genes pertaining to myeloid lineage immune cells 

and CREB transcriptional activity, which has also been previously 
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implicated in increased immune-related gene expression in the 

context of adverse experiences (209, 210).

Healthcare access and quality

Healthcare access and quality describes the availability and 

accessibility of quality, timely, comprehensive, and respectful 

healthcare services and resources. Although limited research 

directly examines the association between this social determinant 

and in
ammatory markers, particularly through mechanistic 

pathways, there are several notable findings to report.

Delayed care

Insurance status, encompassed within healthcare access, has 

previously been associated with control of chronic conditions. 

Additionally, in a study utilizing NHANES participants from 1988– 

1994, those in the public/no insurance group had significantly 

elevated CRP compared to those with private insurance (211). 

Proposed mechanisms underlying this association include the 

observation that underinsured individuals often delay their care, 

resulting in worsening disease and in
ammation for these 

individuals as they receive treatment only when their disease 

presents in a severe stage (212). A lack of awareness of disease may 

also contribute to chronic in
ammation, as patients with lower 

insurance reimbursements also have significantly higher CRP/IL-6 

levels post-surgery (213). In the case of a chronic in
ammatory 

conditions such as lupus, those with public insurance have also 

been shown to have higher rates of hospitalization and 

readmissions compared to those on private insurance. Even among 

those who receive care, there is greater healthcare fragmentation, 

with patients often receiving services across multiple locations. 

Fragmented care is known to results in increased risk of 

comorbidities, hospitalizations, and overall healthcare costs (214). 

Together, these studies suggest that individuals without insurance 

are more likely to delay seeking care, which can lead to more 

advanced disease at presentation and a sustained in
ammatory 

state that may remain undetected or unmanaged.

Medication availability

Unsurprisingly, insurance status also affects an individual’s 

ability to adhere to their medication regimen. A 2012 study 

found that patients hospitalized for cardiovascular disease were 

more likely to be incapable of staying adherent to their 

medications (215). A later study also showed that those on 

public insurance or uninsured had elevated CRP, which was 

associated with functional limitations (216). This association is 

clinically relevant, given that functional limitations have been 

shown to predict poor medication adherence in prior studies 

(217). This highlights a potential feedback loop where poor 

insurance coverage leads to delays in care and worse medication 

adherence, which leads to elevated in
ammation and promotes 

functional impairments, which in turn makes it more difficult 

for patients to manage their chronic conditions.

Discussion

There are several mechanisms by which SDoH contribute to a 

heightened in
ammatory state that elevates the risk of chronic 

disease development. Both an absence of resources and reduced 

frequency of lifestyle factors that mitigate in
ammation, as well 

as toxic and stress-inducing exposures actively contribute to 

heightened in
ammation. Placing these in
ammatory triggers 

within the context of Bronfenbrenner’s social-ecological model 

(218) identifies the exosystem as enriched for harmful exposures 

(Figure 2). However, in nearly every context where people are 

born, live, learn, work, play, and age, lifestyle factors and 

exposures in
uence regulation of the immune system. 

Furthermore, exposures beginning in childhood, and even in 

utero, can in
uence chronic low-grade in
ammation later in life, 

as evidenced by fetal impacts of maternal deprivation, anti- 

in
ammatory behaviors developed in school age, and the 

in
ammatory impacts of adverse childhood experiences.

There are limitations of this review which should be further 

addressed in future inquiries. Firstly, chronic low-grade 

in
ammation describes a broad condition. While measuring 

certain biomarkers, such as CRP and IL-6 is a common approach 

to assess this condition, levels of in
ammatory cytokines, reactive 

oxygen species, and proxies for gut permeability have also been 

assessed to show evidence of systemic in
ammation. The broad 

characterization of in
ammation may also generalize more specific 

underlying processes. However, as there is strong evidence 

suggesting chronic low-grade in
ammation, described broadly, 

underpins the development of several chronic diseases, this broader 

framework to conceptualize the large in
uence of SDoH on 

in
ammatory disease risk may guide further inquiry into more 

specific pathways and mechanisms, as well as possible interventions 

to mitigate the burden of chronic disease.

Additionally, in
ammatory conditions across social 

determinants of health often do not operate independently but 

are rather intertwined. For instance, the neighborhoods people 

live in can shape not only their built environment, but their 

opportunities for and access to economic prosperity, education, 

healthcare, and social cohesion. Researchers note deriving causal 

conclusions from observational studies is obscured by the 

interconnection between these factors, although experiments 

similarly present limitations in generalizability considering the 

cumulative effects of factors in real world settings (101).

Likewise, the directionality of reported observations is not 

fully clear from observational studies. For example, while lower 

educational attainment has been shown to be associated with 

greater CRP levels, further studies are necessary to confirm 

whether lack of education might contribute to elevated 

in
ammation or greater in
ammation might interfere with one’s 

ability to attain higher education levels. Regardless of 

directionality, biomarkers of SDoH may still inform research, 

especially if the connections can be elucidated through multi- 
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variant assessments of the SDoH against the specific biomarkers. 

For example, identifying specific biomarkers of the various 

SDoH parameters could reduce reliance on survey data and 

better determine which determinant is most impactful for each 

given individual. Ultimately, careful conclusions should be made 

from the presented research and when considering the 

application of these findings to interventions. For example, the 

noted biomarkers of in
ammation present plausible mechanisms 

for the resultant harms to population health, however the 

solutions will require political and societal interventions rather 

than pharmacologic blockade of in
ammatory pathways.

The abundant exposures that contribute to a proin
ammatory 

state thought to underpin the development of several chronic 

diseases are largely connected to disparities in health outcomes. 

Several of the discussed mechanisms by which social contexts 

contribute to in
ammation, from ultra-processed food to 

deteriorating housing conditions to discrimination predominantly 

affect low-income and historically marginalized communities. 

Through discriminatory practices such as historical redlining, Black 

and non-white communities were sequestered to neighborhoods 

which continue to be those with the highest in
ammatory 

exposures (219). Persistent barriers across the five domains of 

SDoH for low-income and marginalized communities have been 

consistently shown to shape disparities in health outcomes (220), 

and the presented framework highlights in
ammation as a key 

mechanism of this association.
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FIGURE 2 

Comprehensive framework connecting social and biological drivers of chronic inflammation. Adapted from Bronfenbrenner’s Social Ecological 

Model, this framework illustrates how social, environmental, and structural factors interact across nested levels—from individual biology to 

broader societal systems—to drive chronic inflammation through pathways including HPA axis activation, inflammasome signaling, altered 

microbiome composition, and innate immune receptor activation over time.
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