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Background: Missed opportunities for key vaccinations continue to exacerbate
disease outbreaks. Accurately monitoring immunisation coverage is fundamental
to identifying gaps in vaccine delivery and informing timely action. This study
assesses the agreement between routine and survey-based coverage estimates
for the second dose of the measles vaccine (MCV2) in Western Kenya.

Methods: This study utilised model-based geostatistics estimates MCV2 coverage
from the 2022 Kenya Demographic and Health Survey (DHS), monthly
immunisation data from routine health information systems (2019-2022)
imputed for missingness and population data from WorldPop for 2019 across 62
Western Kenyan subnational areas (sub-counties). Routine MCV2 coverage was
computed using MCV2 doses as a numerator and two separate denominators:
(i) Pentavalent 1 doses to account for children already receiving prior vaccines at
health facilities (service-based coverage) and (ii) surviving infants to account for
all eligible children (population-based coverage). Concordance was assessed
using the 95% confidence intervals (Cls) of survey-modelled estimates, intra-
class correlation coefficient (ICC), and Bland-Altman (BA) plots.

Results: Survey-modelled estimates differed substantially in 55 (89%) and 39
(63%) sub-counties compared to population and service-based coverage
estimates respectively. The different approaches showed poor congruence in
survey-modelled vs. population-based coverage estimates (ICC: 0.10,
p =0.229) and survey-modelled vs. service-based coverage estimates (ICC:
0.42, p =<0.001); there was moderate congruence of population vs. service-
based coverage estimates (ICC: 0.65, p=<0.001). Survey-modelled vs.
population-based coverage estimates showed the highest bias in BA plots of
18.80 percent points (p.p) compared to 11.02 p.p. and 7.79 p.p. between
survey-modelled vs. service-based coverage and population vs. service-based
coverage estimates, respectively.

Conclusions: Substantial discrepancies among survey-modelled, routine
population, and service-based coverage estimates expose important variations in
each approaches’ results. While all approaches offer distinct insights, improving
survey models, routine data quality and refining estimates of population
catchment is imperative for reliable fine-scale vaccine delivery monitoring.
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1 Background

Despite improved access to life-saving vaccines, there remains
geographic areas of incomplete-vaccination and the perennial
problem of zero-dose children who remain under the radar of
vaccine programmes (1, 2). These children represent missed
vaccination opportunities, resulting in persistent pockets of
infection and disease within populations. Resurgences and
(VPD),
measles and polio, are on the rise, threatening gains already

outbreaks of vaccine-preventable diseases such as
made towards elimination (3-5).

Measles is a viral respiratory disease spread through contact
with the nasal and throat secretions of the infected person
through coughing and sneezing. Upon infection, measles can
cause serious complications, which can result in death. Vaccines
are the main preventive method available to populations, playing
a pivotal role in reducing the disease burden. In Kenya, the
measles-containing vaccine (MCV) is administered as a measles-
rubella combination and is delivered in two doses at 9 (MCV1)
and 18 months of age (MCV2). The second dose of the vaccine
was first introduced into the Kenya’s Expanded Programme of
Immunisation (EPI) schedule in 2013 following sustained high
coverage of the first dose and has been complemented by
periodic Supplemental Immunisation Activities (SIA) targeting
cohorts of children under 5 or under 15 (6-8).

Measles remains a significant public health challenge in
Kenya, with increasing outbreaks since 2015 (5). Over 1,700
measles cases were recorded in 2022 alone, the highest recorded
case burden since 2011 (9). Given the high coverage of other
vaccines and geographic access to health services in Kenya (10,
11), it is likely that current measles outbreaks are being driven
by fractions of the population that remain under-served or
marginalised from routine healthcare services. Since its rollout,
MCYV delivery has struggled to achieve the recommended target
of >95% coverage for both doses, which is necessary to achieve
elimination (3). In 2021, 22 counties (subnational areas) in
Kenya were identified as high-risk areas for measles and
targeted in catch-up vaccination campaigns to prevent further
outbreaks and fill vaccination gaps (12). Despite this, the 2022
Demographic and Health Survey (DHS) estimated the national
coverage of MCV2 at only 67%, with significant variation at the
county level (11).

Monitoring immunisation coverage is fundamental to the
progressive realisation of universal health coverage (13). There
have been improvements to the various available approaches
used to estimate health service coverage over time. To track
progress over time, immunisation programmes typically rely on
estimates of coverage aggregated at the national and regional
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levels obtained through routine health facility data and/or cross-
sectional household surveys. However, surveys occur every 3-5
years, which limits their application in interim years; they are
typically powered to be representative at broad subnational level
but may not have representative sample sizes of specific sub-
groups of the population (14). Further, their use of both
recollected vaccine administration and recorded vaccination may
introduce recall bias, erroneously increasing estimates of actual
coverage. Conversely, routine vaccination data suffers from poor
data quality, incomplete reporting and inadequacies in defining
denominators obscuring true coverage (15-17). Despite the
uncertainties in monitoring, vaccine coverage at broad scales has
improved over time. Thus, there is an increasing need for finer-
scale estimates that highlight coverage heterogeneities to inform
tailoring strategies to reach under-vaccinated children at the
local level (4, 18).
To improve fine-scale vaccine coverage predictions,
geostatistical techniques are increasingly being utilised to model
coverage using survey data (19-24). These interpolation models
account for two key components. First, the models incorporate
explanatory factors (covariates) such as distance to healthcare
facilities, population density, and socioeconomic factors, to
predict coverage at high spatial resolutions. Secondly, the
models leverage the principle that data at nearby locations are
more likely to have similar values compared to more distal
locations to explain the variation in coverage that is not
accounted for by the selected covariates (25). The resultant
gridded surfaces can be aggregated to various administrative
levels to inform programme implementation (22, 26).
Considering the various applications of survey-based models
and routine data in informing immunisation programme
strategy, it is important to assess the level of agreement between
these estimates at a subnational scale. This study aims to better
understand the consistency of available estimates in quantifying

measles second-dose vaccine coverage in Western Kenya.

2 Methods
2.1 Study context

The present study focused on Western Kenya due to a rising
burden of measles in the region and its recent inclusion in
MCV vaccination catch-up campaigns (12). Furthermore, it is
the only region in Kenya selected to deliver the malaria vaccine
(RTS,S/AS01) which includes a 3rd dose at 9 months and a 4th
dose at 24 months (27, 28).

Western Kenya comprises 8 administrative counties, namely
Bungoma, Busia, Homa Bay, Kakamega, Kisumu, Migori, Siaya,
and Vihiga, which are further subdivided into 62 sub-counties
(Supplementary Figure S1). Since the promulgation of the 2010
constitution, healthcare service management and delivery have
been devolved to county governments. County governments are
now responsible for the allocation of resources across sub-
counties within their jurisdiction and sub-counties are the
reporting units for county health management teams. Granular
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information at the sub-county level thus provides a more accurate
assessment of health trends and disparities and informs resource
allocation by county governments.

Vaccinations in Kenya are delivered free of charge at various
health facilities per the EPI schedule (29). Health facilities are
owned and managed by various providers, including the Ministry
of Health (MoH), non-governmental organisations (NGO), faith-
based organisations (FBOs), private-for-profit entities and semi-
independent institutions such as schools, parastatals, military and
prison entities that provide services to select populations. Facilities
are classified into 6 levels based on the increasing complexity of
service provision, ranging from community health units (Level 1),
primary care facilities (Level 2-3), secondary care facilities (Level
4-5) and national referral facilities (Level 6) (30).

2.2 Data sources and matching

Kenya’s survey-modelled MCV2 coverage estimates were
obtained from the publicly available DHS Spatial Data Repository
platform (31) and routine MCV2 coverage data was obtained from
the Kenyan Health Information System (32). The two data sources
provide different levels of granularity and required matching to
ensure that the coverage estimates obtained were directly
comparable, as described in more detail below.

2.2.1 Kenya demographic and health survey

The Kenya DHS was conducted nationally from February to
July 2022 and used a two-stage stratified sampling design to
select households nationally across all 47 counties first stratified
into urban and rural areas. Clusters were randomly selected
from the Kenya Master Household Sample Frame, after which
25 households were surveyed in each cluster. In Western Kenya,
289 clusters were sampled with each sub-county having at least
2 clusters with a maximum of 25 households in each cluster (11).

Data for selected vaccine antigens was recorded for surviving
children aged 0-35 months. MCV2 vaccination status was
recorded for a sub-group of children aged 24-35 months. This
age group is suitable for assessing MCV?2 vaccination as children
become eligible for the second dose at 18 months of age and are
expected to be vaccinated before their third birthday, taking into
consideration any possible vaccination delays. The vaccination
status of children was confirmed using either a written record,
such as the mother and child health handbook, or the mother’s
verbal report when a written record was unavailable.

For the two most recent household surveys in Kenya (2014 and
2022), the DHS has made publicly available interpolated mapped
surfaces (5%5 km resolution) developed from geostatistical models
(31). The surfaces are developed utilising data from sampled
clusters and Model-Based Geostatistical (MBG) approaches. MBG
utilises spatial interpolation techniques to estimate vaccine
coverage at unobserved locations based on data points from
surveyed children. The DHS approach included covariates such as
urbanicity, rainfall, population density, and travel time to cities in
the modeling process. Predicted MCV2 vaccination coverage
mapped surfaces for Kenya include the estimates of coverage and
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width of the 95% credible interval. It is essential to note that only
254 out of the 289 clusters sampled in Western Kenya in 2022 had
children in the 24-35-month age group
Figure S2A). Western Kenya data was extracted from the national
surface using the Zonal Statistics tool in ArcGIS 10.8.2 (ESRI Inc.,
Redlands, CA, USA) (Supplementary Figure S2B). This tool allows
the calculation of descriptive statistics such as mean, median, and

(Supplementary

range values. Specifically, the population weighted mean zonal
statistic was used to aggregate the survey-modelled MCV2
vaccination coverage surface at the sub-county level to obtain the
average estimate of MCV2 coverage per sub-county. The 2022
population estimates for children aged 24-35 months from
WorldPop were used to weight the MCV 2 coverage estimates.

2.2.2 Routine data

The selection of a suitable denominator to evaluate service-
based coverage was guided by vaccine coverage estimates from
the 2022 DHS survey. Vaccines administered early in the EPI
schedule such as BCG and Penta 1 both had near-universal
coverage (99%-100%) across Western Kenya (Supplementary
Table S1). However, the timing of BCG vaccine administration,
immediately after birth, biases its delivery to hospitals with
available maternity services whose distribution varies widely
across sub-counties. Thus, Penta 1 vaccine data provides a more
comprehensive baseline for children active in the vaccination
schedule (hereafter referred to as EPI users). As Penta 1 is
administered at 6 weeks after birth, it indicates active care-
seeking for immunisation services usually at facilities closer to
homesteads (28, 33, 34).

Routine immunisation data was extracted from the District
Health Information Software (DHIS2), an open-source, web-
based platform for reporting all health data in Kenya (35).
Facilities report monthly aggregated data of vaccinations
administered through routine delivery and campaigns such as
SIAs but do not include finer details of the ages of children
thus
extracted accounting for when the oldest child (35 months at
the start of the survey period-Feb 2022) and youngest child (24
months at the end of the survey period-July 2022) would have

vaccinated in each month. Immunisation data was

likely received their Penta 1 and MCV2 vaccination dose,
assuming timely delivery. This approach ensured that the
routine data obtained closely matched the surveyed cohort in
the KDHS. Facility-level monthly reports of total Penta 1 and
MCV2 vaccines administered in Western Kenya were thus
obtained across 34 months between April 2019 and January
2022. Each vaccine has 17 months of data corresponding to the
expected delivery timeline (Supplementary Figure S3).

This study identified EPI service providers based on submitted
reports on DHIS2 of administering any vaccine of interest over the
study period. Each facility was further matched to an updated
national health facility database (10) to obtain information on
ownership, facility level, type and geographic coordinates
unavailable from DHIS2. Exclusions were made for facilities
such as specialists, facilities newly opened (after January 2022)
and those that did not report a single vaccination over the study
period (Supplementary Figure S4).
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Handling of missing data

Routine health information systems in Kenya are susceptible to
poor completeness and outliers (33, 36, 37), which may impact
estimates obtained from this source. To address this, outliers,
defined as values exceeding the median+3 times the median
absolute deviation (MAD) (38), were identified and replaced with
the median value of the health facility. Thereafter, multiple
imputation (MI) techniques were used to fill in missing data (39).
Specifically, this study employed a multivariate imputation using
chained equations (MICE) approach, which leverages existing
health facility data and covariates of ownership, type and level of
health facility. The model utilised predictive mean matching using
the facility’s 4 closest non-missing months to determine the closest
estimate to fill in missing values.

To limit uncertainty and bias in the multiple imputation (MI)
model, only health facilities with complete data for at least 12 out
of 17 months (70%) for each vaccine were included in the
imputation process based on facility reporting frequency patterns
(Supplementary Table S2). This threshold allowed for the
imputation of missing data for a majority of vaccinating facilities,
thereby maximizing data utilization and ensuring the robustness of
the estimates. Facilities falling below this threshold generally
reported fewer than 10 doses of either Penta 1 or MCV2 vaccines
throughout the study period. Thus, their exclusion from the
imputation was deemed unlikely to significantly impact the overall
coverage estimates. Given that non-reporting in the DHIS2
platform is indistinguishable from zero reported vaccinations, this
pragmatic approach would reduce potential overestimation of
vaccines administered. Data imputation was not performed for the
months of December 2020 and January 2021. This period
coincided with a national health worker strike which, based on data
exploration (Supplementary Figure S5), had a greater impact on
delivery compared to COVID-19 restrictions, consistent with
previous studies (37). The uptick in monthly vaccinations observed
in the months following the strike suggest catch-up of children
who missed vaccinations during the strike. As such imputation of
these months was not carried out as these were true missing values.
The imputation model was implemented using the “ICE” package
(40) in Stata 17 (41).

2.3 Coverage computation

Vaccine coverage is defined as the number of children who
receive the MCV2 vaccine relative to eligible populations. This
study computed coverage at the second administrative level
(sub-counties) using DHIS2 data and two distinct denominators
to yield estimates evaluating: (i) the current performance of the
health system in retaining children throughout the vaccination
schedule (service-based coverage), and (ii) the extent of the
outreach  within the broader

immunisation  program’s

community (population-based coverage).
2.3.1 Service-based Coverage

The denominator comprised the total number of children who
received Penta 1 (EPI users) expected to receive MCV2 later in the
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schedule. Coverage was computed as a fraction with MCV2
recipients as the numerator and EPI users as the denominator
and expressed as a percentage.

2.3.2 Population-based Coverage

Annual population estimates of children below 1 year of age
are available on the publicly available platform, WorldPop (42).
WorldPop combines official census data, satellite imagery such
as land cover and dasymetric modeling techniques to produce
population datasets that are disaggregated by age at a spatial
scale of up to 100 m. Data on children aged <1 year in the year
2019 were downloaded, and population counts were extracted
for each of the 62 sub-counties using the Zonal Statistics tool in
ArcGIS 10.8.2 (ESRI Inc., Redlands, CA, USA).

Population adjustments

Due to the lack of monthly population data for this specific
age group, this study assumed a consistent growth rate across
the study period and applied an average factor of 1.4 (17/12
months) to the 2019 annual population counts to project the
population across the 17 months of administration of MCV2
consistent with the surveyed cohort (Supplementary Figure S3).
Further, an infant mortality rate was applied at the county level
(11) to obtain an adjusted total of children who survived past
the age of 1 and would have received MCV2, as shown below:

Surviving Children = [Population <1 yr (2019) * 1.4]
% (1 — IMR)

Coverage was computed as a fraction of MCV2 recipients
relative to surviving children and expressed as a percentage.

2.4 Estimate comparison

To assess the agreement between routine and survey-modelled
coverage estimates, a combined approach was used. First, survey
estimate confidence intervals computed at the 95% level were used
as a benchmark to determine if routine estimates were consistent
i.e., when their values were in-between the 95% confidence interval
from the modelled survey data. Secondly, congruence between
routine and modelled survey-based coverage estimates across sub-
counties was explored using the intra-class correlation coefficient
(ICC) (43). ICC is a statistic that quantifies the level of agreement
between different approaches and takes on values between 0 and 1,
where higher agreement is indicated by numbers closer to 1. The
ICC was calculated using the single-rater two-way mixed effects
model for absolute agreement, with the null hypothesis being
ICC =0 and the alternative hypothesis being ICC > 0. In addition,
we adopted the interpretation by Koo & Li (43): if ICC<0.5, it is
indicative of poor agreement; if 0.5<ICC<0.75 moderate
agreement; if 0.75 <ICC <£0.9, good agreement; and if ICC > 0.9,
excellent agreement. Lastly, Bland-Altman (BA) plots with 95%
limits of agreement were utilised (44, 45) to examine the
concordance of the survey-modelled and routine estimates at the
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sub-county level. In BA plots, the x-axis represents the mean of the
estimates across the approaches, and the y-axis represents the
difference in the estimates, bias (mean of the differences) and limits
of agreement (and the corresponding 95% CI calculated as
bias +1.96 SD, standard deviation). ICC and BA plots were
calculated in R software version 4.4.1 (2024-06-14 ucrt) using the
packages psych and blandr, respectively.

3 Results

A total of 2,369 health facilities were registered on the DHIS2
platform across all 8 counties of the Western Kenya region.
Facilities categorised as specialist (113, 5%), those opened after
January 2022 (132, 6%) and those that did not report administering
any vaccines over the study period (2019-2022) (626, 26%) were
excluded from further analysis as they do not routinely provide
immunisation services (Supplementary Figure S4). The remaining
1,498 facilities were confirmed to provide immunisation services
and majorly comprised of Ministry of Health facilities (74%) and
primary level facilities such as dispensaries and clinics (62%) as
Overall,
demonstrate high consistency in reporting, with 1,258 (84%) and
1,142 (76%) reporting Penta 1 and MCV2 administration for
12 months,
reporting across antigens are evident as 62% of facilities submitted

summarised in Supplementary Table S3. facilities

at least respectively. However, differences in

Penta 1 reports across all 17 months of interest, while only
15% reported MCV2 administration at the same frequency
(Supplementary Table S2).

10.3389/fepid.2025.1663372

A total of 404,288 doses of Penta 1 and 212,715 doses of MCV2
vaccines were administered during the study period relative to an
estimated eligible population of 463,526 children. An average of
22,000 Penta 1 vaccines were administered monthly between April
2019 and August 2020. MCV2 vaccines had a notably lower
monthly average of 15,000 between September 2020 and January
2021. Sharp declines in MCV2 delivery were experienced from
December 2020 to January 2021, coinciding with the national
health worker strike (Supplementary Figure S5). This period was
followed by an increase in vaccinations administered, signalling
catch-up. MCV2 delivery peaks in June 2021, coinciding with SIA
activities across Western Kenya.

Overall, all approaches exhibit varying ranges of coverage.
Survey-modelled coverage estimates range between 50% and
73% (Figure 1A), population-based coverage is between 18% and
80% (Figure 1B), and service-based coverage varies between 19%
and 81% (Figure 1C). Survey-modelled estimates exhibit little
variation in coverage across sub-counties, with 47 of 62 sub-
counties having coverage of over 60% compared to 22 counties
for service-based coverage and only six for population-based
coverage. There are similarities across all approaches in the sub-
counties ranked with the lowest coverage such as in the
southern region of Western Kenya, which broadly covers Homa
Bay county (Figure 1). Conversely, the sub-counties with the
highest coverage vary across all methods. This is particularly
evident in the northern region, whereby the distribution of
coverage differs between approaches (Figure 1).

Across sub-counties, survey-modelled estimates typically rank
the highest, followed by service-based coverage, with population-

FIGURE 1

Western Kenya.

Maps showing sub-county level MCV 2 coverage estimates from survey-modelled (A), population-based (B) and service-based approaches (C) across
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FIGURE 2
Boxplot showing the range of sub-county MCV 2 coverage estimates (%) across Western Kenya for survey-modelled, service and population-
based approaches.

based coverage ranking the lowest (Figure 2). Service-based
coverage is highest in sub-counties within Busia County, ranging
between 66% and 69%, while survey-modelled estimates are
highest in Kakamega County at 67%-73%. All approaches
indicate that sub-counties in Homa Bay County have the lowest
MCV2 coverage. Population-based coverage estimates had the
highest number of outliers with five sub-counties identified,
namely Webuye West, Kimilili, Kabuchai, Kisumu Central and
Matayos (Figure 2).

The differences between the estimates were assessed against the
95% credible intervals of the survey model. The credible intervals,
varying from #*11 to +23 percentage points, reflect the considerable
disparity in model performance across the region. Substantial
differences were observed between population-based coverage and
survey-modelled estimates in 55 sub-counties (89%) and between
service-based coverage estimates and survey-modelled estimates in
39 sub-counties (63%) (Table 1). Similar findings are observed in
bivariate plots as shown in (Supplementary Figure S6).

Congruence between survey-modelled and routine population-
based estimates for MCV2 vaccine coverage across sub-counties
based on ICC was 0.10 (95% CI: 0.00-0.34, p=0.229) (Table 2),
indicating poor agreement between the two approaches. However,
based on the p-value and 95% CI, we fail to reject the null
hypothesis, ICC=0; there is no agreement between the two
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approaches. The ICC estimate for congruence between survey-
modelled and routine service-based estimates for MCV2 vaccine
coverage across sub-counties is 0.42 (p=<0.001) (Table 2),
indicating poor agreement between the two approaches; the
agreement ranges from poor to moderate (95% CI: 0.20-0.61). For
congruence between routine service and routine population-based
estimates for MCV2 vaccine coverage across sub-counties, the ICC
is 0.65 (p=<0.001) (Table 2), indicating moderate agreement
between the two approaches; the agreement ranges from
(marginally) poor to moderate (95% CI: 0.49-0.78).

Similar results were reflected in the BA plot (Figure 3). The
estimated bias in MCV2 vaccine coverage estimates across sub-
counties between survey-modelled and routine population-based
18.80 (95% CI: 15.52-22.08)
percentage points (p.p) (Figure 3A). This positive bias indicates

approaches was highest at

overestimation in MCV2 vaccine coverage estimates by the
survey-modelled approach in comparison to routine population-
based approach. In addition, these two approaches had the
widest BA limits of agreement ranging from —6.51 to 44.12 p.p.
The 95% CI for the lower limit of agreement and upper limit of
agreement were —12.14 to —0.87 and 38.48 to 49.75 respectively
(light blue area in Figure 3A). Notably, estimates for four sub
counties: Uriri, Kisumu Central (K. C), Rongo and Suna West
fall outside the lower bounds of BA limits of agreements.
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TABLE 1 MCV2 coverage estimates for 62 sub-counties in Western Kenya computed using survey-model and routine (population and service
denominators) approaches.

Subcounty MCV2 Coverage (%)
Survey-model (95% Cl) Population-based (World Pop) Service-based (Penta 1)
Bungoma Bumula 71 (64-78) 47%* 61%*
Kabuchai 69 (62-76) 30%* 38**
Kanduyi 71 (65-77) 44** 48**
Kimilili 69 (62-76) 53%* 56**
Mt. Elgon 62 (51-73) 474 474
Sirisia 67 (58-76) 47** 53%*
Tongaren 67 (59-75) 47%* 55%*
Webuye East 69 (63-75) 414 60**
Webuye West 71 (65-77) 53%* 48%*
Busia Bunyala 64 (56-72) 57 69
Butula 71 (65-77) 48 66
Matayos 71 (64-78) 72 68
Nambale 73 (66-80) 52%* 67
Samia 66 (58-74) 514 69
Teso North 69 (62-76) 51+ 67
Teso South 69 (63-75) 474 66
Homa Bay Homa Bay 59 (50-68) 37%% 30**
Ndhiwa 56 (46-66) 26** 27**
Rachuonyo East 62 (55-69) 374 48%*
Rachuonyo North 54 (45-63) 21%* 25%%
Rachuonyo South 61 (53-69) 34%* 40**
Rangwe 57 (48-66) 31%¢ 33%%
Suba North 53 (41-65) 26%* 354
Suba South 53 (42-64) 19%% 20%*
Kakamega Butere 72 (66-78) 51%¢ 81%*
Tkolomani 70 (64-76) 49** 73
Khwisero 70 (63-77) 44** 66
Likuyani 68 (61-75) 48** 59**
Lugari 69 (62-76) 46** 60**
Lurambi 72 (65-79) 51%* 54x*
Malava 69 (61-77) 51+ 62
Matungu 73 (67-79) 3%+ 48+
Mumias East 73 (67-79) 374 58%*
Mumias West 73 (67-79) 36%* 49**
Navakholo 71 (64-78) 364+ 434
Shinyalu 69 (63-75) 43+ 59%*
Kisumu Kisumu Central 60 (53-67) 744 52%%
Kisumu East 62 (55-69) 50** 62
Kisumu West 62 (54-70) 49%% 53%%
Muhoroni 68 (61-75) 40%* 58**
Nyakach 59 (52-66) 44%% 52
Nyando 61 (53-69) 39%* 41%*
Seme 57 (49-65) 39%* 51
Migori Awendo 63 (56-70) 544* 50%*
Kuria East 59 (50-68) 59 61
Kuria West 60 (52-68) 55 61
Nyatike 49 (37-61) 50 47
Rongo 63 (56-70) 76%* 69
Suna East 60 (52-68) 52 50%*
Suna West 57 (48-66) 80%* 60
Uriri 57 (49-65) 70%* 60
Siaya Alego-usonga 63 (55-71) 41** 43¢
Bondo 59 (48-70) 36%* 40**
Gem 65 (59-71) 45** 54**
Rarieda 56 (47-65) 454 53
Ugenya 70 (64-76) 43 53%%
Ugunja 69 (63-75) 454 554+

(Continued)
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TABLE 1 Continued
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County Subcounty MCV2 Coverage (%)
Survey-model (95% ClI) Population-based (World Pop) Service-based (Penta 1)
Vihiga Emuhaya 68 (61-75) 42%* 72
Hamisi 67 (60-74) 39+ 454
Luanda 68 (61-75) 354 50%*%
Sabatia 70 (63-77) 510 78+
Vihiga 67 (60-74) 61 65
**p <0.05.

TABLE 2 Agreement
denominators and

between routine population and service
survey-modelled estimates of MCV2 vaccine

coverage across sub-counties.

Comparison ICC (95% | p-value
Cl)

Survey-modelled vs. routine population-based 0.1 (0.00-0.34) 0.229

coverage

Survey-modelled vs. routine service-based 0.42 (0.20-0.61) <0.001

coverage

Routine service-based vs. routine population- 0.65 (0.49-0.78) <0.001

based coverage

The bold p-values show statistically significant congruence.

Agreement in MCV2 vaccine coverage estimates across sub-
counties between survey-modelled and routine service-based
coverage approaches had a bias of 11.02 p.p. (95% CI: 8.30-
13.73). Like the comparison with routine population-based
coverage, the observed positive bias indicates overestimation in
survey-modelled estimates in comparison to routine service-
based coverage estimates across the sub counties. The BA limits
of agreement for survey-modelled vs. routine service-based
coverage ranged from —9.94 to 31.97 p.p. The 95% CI for the
lower limit of agreement and upper limit of agreement were
—14.60 to —5.27 and 27.30 to 36.63 respectively (light blue
area in Figure 3B).

For agreement between routine service and routine
population-based estimates for MCV2 vaccine coverage across
sub counties, the bias was 7.79 p.p. (95% CI: 5.16-10.41)
indicating overestimation in service-based coverage estimates in
comparison to population-based coverage estimates across the
sub counties. The BA limits of agreement ranged from —12.47
to 28.04 p.p. The 95% CI for the lower limit of agreement and
upper limit of agreement were —16.98 to —7.96 and 23.53 to
32.55 respectively (light blue area in Figure 3C). Notably,
estimates for Kisumu Central and Suna West sub counties fall
outside the bounds of BA limits of agreements.

Further evaluation of the patterns of coverage at the county level
reveal persistent disparities in the approaches even at broader scales.
The regional average for Western Kenya in the survey-based model
estimates is 65%, 54% for service-based coverage and 46% for
population-based coverage (Supplementary Figure S7). Also, when
compared with the county-level direct survey-weighted estimates
from the survey, 7 out of 8 survey-modelled estimates fell within
the 95% confidence interval, whereas only 2 out of 8 and 4 out of 8
estimates from the population-based and service-based approaches,

respectively, did so (Supplementary Table S4).
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4 Discussion

Multiple approaches can be used to estimate vaccine coverage
using either survey data or routine data, this study has analysed
how different estimations of MCV2 coverage compare across 62
sub-counties in Western Kenya. The analysis revealed notable
discrepancies between service, population, and survey-based
modelled coverage estimates, highlighting the importance of
critically evaluating the strengths and limitations inherent to
each approach when shaping immunization program strategies
and quantifying missed vaccination opportunities. Further, the
MCV2 vaccination rates were consistently below 80% among
eligible children, including those already engaged in routine EPI
services, highlighting significant systemic challenges in routine
immunization delivery. Such obstacles impede the attainment of
the >95%
envisioned in the Immunization Agenda 2030 targets (46).

coverage required for measles elimination, as
Population-based estimates consistently yielded the lowest
coverage, indicating a higher number of unvaccinated children
within the community (Figures 1, 2). However, healthcare-
seeking behaviors often extend beyond sub-county boundaries,
resulting in increased community coverage through cross-border
vaccinations. Previous studies have noted that while some
subnational regions may exhibit very low coverage, areas with
larger health facilities often display the opposite extreme, with
values exceeding 100% due to patient selection and mobility (28,
33, 34). These outliers are typically reconciled when coverage is
computed at broader scales, such as the county level.
Nonetheless, population-based coverage estimates remain a
valuable indicator of sub-counties with persistent low coverage,
as shown here for Homa Bay County (Table 1), which would
benefit most from intensified routine immunization delivery and
targeted campaigns. The increasing availability of gridded
population estimates at finer resolutions, such as 1 x 1 km grids
reflecting actual population settlement patterns (42), further
facilitates the identification of absolute numbers of missed
opportunities and the effective targeting of outreach activities.
The incorporation of precise residential addresses into routine
vaccination records, would be an additional benefit to a more
rigorous definition of catchment areas extending beyond
administrative boundaries (47, 48), and would substantially
refine our understanding of care-seeking behaviors to inform
use of appropriate population denominators at finer scales.
Survey-modelled estimates consistently yielded the highest

coverage, likely due to their broader inclusion of vaccinations
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FIGURE 3
Bland-Altman for agreement analysis; (A) survey-modelled vs. population, (B) survey-modelled vs. service and (C) service vs population.

administered outside routine immunization systems, such as through ~ sample sizes for sub-groups such as 24-35-month-old children will
SIAs. Although model-based geostatistical methods aim to address ~ impact on model performance (18, 49), models may not account
key data gaps by leveraging sparse survey data, the current models  for survey design weights (50); and the focus on environmental
for MCV2 coverage estimation exhibit several limitations. Small  covariates excludes other key parameters able to predict MCV2
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coverage including education and poverty (51). Additionally, these
prediction estimates are static, applying only to the survey year,
thus limiting their ability to inform prompt filling in of vaccination
gaps in the manner that routine data would. The construction of
these modelled predictions of vaccine coverage must be better
understood to interpret their inherent weaknesses and ultimate use
in decision-making.

Service-based coverage estimates occupied an intermediate
between
estimates and provided a more specific evaluation of EPI

position population-based and survey-modelled
program retention across the immunization schedule which
other methods do not account for. As these estimates rely on
routine data, they offer a cost-effective approach for health
monitoring over time and facilitate timely identification of
missed opportunities. A focused effort to target children already
engaged in the healthcare system but subsequently dropping out
represents a promising strategy for increasing community
coverage. Service-based estimates are indispensable for
monitoring immunization performance at the facility level,
enabling accurate forecasting of vaccine supply requirements
and identification of service delivery gaps. However, this
approach does not account for hard-to-reach populations not
engaged in routine care or those reached via community-based
vaccinations and, therefore, should not be viewed as a substitute
for community-wide coverage assessments.

Service- and population-based estimates exhibited the highest
level of agreement, underscoring their potential for capturing
similar target populations (Figure 3; Table 2). This underscores
their combined utility in identifying missed opportunities for
MCV?2 vaccinations at greater frequency. By complementing each
other, these approaches mitigate the limitations present in each
method. Notably, survey-modelled estimates displayed the least
agreement with both service- and population-based methods,
consistently yielding higher and more homogenous estimates
across the Western Kenya region (Figure 1). This finding aligns
with prior studies that have documented discrepancies between
routine coverage data and broader community surveys (34, 52),
attributable to survey limitations such as the under-sampling of
populations in urban slums and remote settlements, who are
more likely to be under-immunized (14, 53, 54).

The presence of sub-county outliers across population- and
survey-model methods underscores the critical need for cross-
identify
investigation. For instance, in Kisumu Central sub-county

validation  to inconsistencies  requiring  further
(Table 1), contrary to the overall pattern, service-based coverage
was lower than both population-based and survey-modelled
coverage. This observed discrepancy may result from health
within the

neighboring areas for immunization services, thereby increasing

facilities sub-county attracting children from

population-based coverage figures relative to the local

population initially engaged in EPI services. Unlike service-
based
administered specifically to the population accessing routine

coverage, whose denominator reflects vaccinations
services within the sub-county, population-based estimates may
include the total of vaccinated children residing in or visiting

the sub-county.
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The reliance on a single approach for estimating vaccine
coverage and identifying missed opportunities has profound
implications for decision-making, particularly at the sub-county
level. While household surveys are widely regarded as the “gold
standard” for coverage estimation, the survey-modeled estimates
analyzed in this study demonstrated the least agreement with
routine data-based approaches and consistently yielded higher
coverage estimates (Table 2; Figure 1) which is consistent with
previous work comparing survey and routine approaches (34).
Notably, substantial discrepancies in estimates were observed in
over 60% of sub-counties, further underscoring the variations in
each method. For example, in Suba South sub-county, modeled
coverage was estimated at 58%, whereas both service-based and
routine-based estimates fell below 21%, representing a striking
(Table 1).
Furthermore, in comparison with the county level direct survey-

difference of nearly 40 percentage points
weighted estimates obtained from the survey, only one out of
eight county estimates from the survey-modelled approach did
not fall within the 95% CI compared to six and four for
population-based and service-based approaches respectively.
While this comparison strengthens the case for the reliability of
the survey-modelled approach relative to routine data, as would
be expected, it also highlights that routine data estimates can
vary widely from survey estimates. This discrepancy should be
acknowledged and taken into account when interpreting
coverage data estimates from the individual approaches when
making policy decisions as, depending on the approach used,
critical immunization gaps within communities may remain
obscured and grossly underestimated, perpetuating conditions
that allow outbreaks to persist.

Although the methodologies employed in this study differ
substantially, they may each capture unique aspects of vaccine
coverage. As a result, their combined use provides a more
comprehensive understanding of immunization gaps and
challenges. Combining these methods can help bridge disparities
and inform targeted interventions for improved coverage. For
example, using datasets from the different approaches to triangulate
vaccine coverage estimates can be done as shown in the case of
malaria burden modelling (55). Additionally, evidence from other
studies in Kenya offers critical insights into the social and
demographic determinants influencing measles vaccine uptake,
such as a child’s immunization history, household income, and
caregiver education level (56, 57). These factors must be carefully
considered when devising strategies for delivering vaccines to
children beyond one year. Further, systemic and emerging
challenges such as healthcare worker shortages, strikes (58), vaccine
stock-outs (59), delays in outreach activities (SIAs) due to limited
funding and COVID-19 (8) as well as infrastructural limitations,
such as inadequate road networks restricting community access to
health services, must also be addressed to prevent further missed
opportunities. The findings of this study provide decision-makers
with evidence to evaluate various estimation methods, enabling the
development of improved strategies, informed budgetary
allocations, and strengthened routine immunization programs.

Robust data

essential for identifying and addressing gaps in MCV2

reporting and surveillance systems are
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immunization coverage. Enhancing the quality of routine data
and incorporating granular data on dynamic population
changes, such as migration and varying growth rates, would
improve the accuracy of both numerators and denominators
used in routine coverage monitoring (23, 60). The observed
in vaccination

variability reporting

metrics in this study stresses the pressing need for ongoing

completeness across
efforts to enhance the comprehensiveness and reliability of
health facility and census data. These improvements are
fundamental to fostering an environment where data-driven
decision-making informs local administrative and national
policy for routine and outreach vaccination programs.

This study has some limitations that must be considered
when interpreting the findings. It used data from DHIS2,
which has issues with missing information. To address this,
multiple imputation was performed to create a complete
dataset among facilities that consistently reported their data.
Although this does not replace complete data, it does help
ensure that the estimates of vaccine coverage more accurately
reflect reality, with minimal bias in the imputed values.
Additionally, the study relied on gridded population data
derived from national census figures. While this source
enhances the population measures at smaller scales, its
reliability hinges on the accuracy of the original census data.
Improving systems like civil registration could help address
this data gap. Lastly, the accuracy of the 95% CI from the
survey-modelled estimates remains undetermined as the DHS

does not report the CIs from cross-validation exercise.

5 Conclusion

This study underscores the importance of using various
datasets to gain a comprehensive understanding of MCV2
While
survey-modelled

immunisation coverage from multiple perspectives.

discrepancies exist between routine and
methods, both approaches yield valuable insights and unique
strengths for different aspects of vaccine delivery monitoring,
catering to the diverse needs of stakeholders. To enhance the
accuracy of vaccine coverage estimations at more granular levels,
it is essential to improve the quality of routine data to refine our
understanding of service utilization and population dynamics.
This would enable accurate identification of underserved
populations, thus informing targeted interventions to bridge
gaps in vaccine coverage. By addressing the noted shortcomings
and geographical inequalities, immunisation programs can
achieve broader coverage and better health outcomes for

children in the region.
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