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Background: Missed opportunities for key vaccinations continue to exacerbate 

disease outbreaks. Accurately monitoring immunisation coverage is fundamental 

to identifying gaps in vaccine delivery and informing timely action. This study 

assesses the agreement between routine and survey-based coverage estimates 

for the second dose of the measles vaccine (MCV2) in Western Kenya.

Methods: This study utilised model-based geostatistics estimates MCV2 coverage 

from the 2022 Kenya Demographic and Health Survey (DHS), monthly 

immunisation data from routine health information systems (2019–2022) 

imputed for missingness and population data from WorldPop for 2019 across 62 

Western Kenyan subnational areas (sub-counties). Routine MCV2 coverage was 

computed using MCV2 doses as a numerator and two separate denominators: 

(i) Pentavalent 1 doses to account for children already receiving prior vaccines at 

health facilities (service-based coverage) and (ii) surviving infants to account for 

all eligible children (population-based coverage). Concordance was assessed 

using the 95% confidence intervals (CIs) of survey-modelled estimates, intra- 

class correlation coefficient (ICC), and Bland-Altman (BA) plots.

Results: Survey-modelled estimates differed substantially in 55 (89%) and 39 

(63%) sub-counties compared to population and service-based coverage 

estimates respectively. The different approaches showed poor congruence in 

survey-modelled vs. population-based coverage estimates (ICC: 0.10, 

p = 0.229) and survey-modelled vs. service-based coverage estimates (ICC: 

0.42, p = <0.001); there was moderate congruence of population vs. service- 

based coverage estimates (ICC: 0.65, p = <0.001). Survey-modelled vs. 

population-based coverage estimates showed the highest bias in BA plots of 

18.80 percent points (p.p) compared to 11.02 p.p. and 7.79 p.p. between 

survey-modelled vs. service-based coverage and population vs. service-based 

coverage estimates, respectively.

Conclusions: Substantial discrepancies among survey-modelled, routine 

population, and service-based coverage estimates expose important variations in 

each approaches’ results. While all approaches offer distinct insights, improving 

survey models, routine data quality and refining estimates of population 

catchment is imperative for reliable fine-scale vaccine delivery monitoring.
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1 Background

Despite improved access to life-saving vaccines, there remains 

geographic areas of incomplete-vaccination and the perennial 

problem of zero-dose children who remain under the radar of 

vaccine programmes (1, 2). These children represent missed 

vaccination opportunities, resulting in persistent pockets of 

infection and disease within populations. Resurgences and 

outbreaks of vaccine-preventable diseases (VPD), such as 

measles and polio, are on the rise, threatening gains already 

made towards elimination (3–5).

Measles is a viral respiratory disease spread through contact 

with the nasal and throat secretions of the infected person 

through coughing and sneezing. Upon infection, measles can 

cause serious complications, which can result in death. Vaccines 

are the main preventive method available to populations, playing 

a pivotal role in reducing the disease burden. In Kenya, the 

measles-containing vaccine (MCV) is administered as a measles- 

rubella combination and is delivered in two doses at 9 (MCV1) 

and 18 months of age (MCV2). The second dose of the vaccine 

was first introduced into the Kenya’s Expanded Programme of 

Immunisation (EPI) schedule in 2013 following sustained high 

coverage of the first dose and has been complemented by 

periodic Supplemental Immunisation Activities (SIA) targeting 

cohorts of children under 5 or under 15 (6–8).

Measles remains a significant public health challenge in 

Kenya, with increasing outbreaks since 2015 (5). Over 1,700 

measles cases were recorded in 2022 alone, the highest recorded 

case burden since 2011 (9). Given the high coverage of other 

vaccines and geographic access to health services in Kenya (10, 

11), it is likely that current measles outbreaks are being driven 

by fractions of the population that remain under-served or 

marginalised from routine healthcare services. Since its rollout, 

MCV delivery has struggled to achieve the recommended target 

of ≥95% coverage for both doses, which is necessary to achieve 

elimination (3). In 2021, 22 counties (subnational areas) in 

Kenya were identified as high-risk areas for measles and 

targeted in catch-up vaccination campaigns to prevent further 

outbreaks and fill vaccination gaps (12). Despite this, the 2022 

Demographic and Health Survey (DHS) estimated the national 

coverage of MCV2 at only 67%, with significant variation at the 

county level (11).

Monitoring immunisation coverage is fundamental to the 

progressive realisation of universal health coverage (13). There 

have been improvements to the various available approaches 

used to estimate health service coverage over time. To track 

progress over time, immunisation programmes typically rely on 

estimates of coverage aggregated at the national and regional 

levels obtained through routine health facility data and/or cross- 

sectional household surveys. However, surveys occur every 3–5 

years, which limits their application in interim years; they are 

typically powered to be representative at broad subnational level 

but may not have representative sample sizes of specific sub- 

groups of the population (14). Further, their use of both 

recollected vaccine administration and recorded vaccination may 

introduce recall bias, erroneously increasing estimates of actual 

coverage. Conversely, routine vaccination data suffers from poor 

data quality, incomplete reporting and inadequacies in defining 

denominators obscuring true coverage (15–17). Despite the 

uncertainties in monitoring, vaccine coverage at broad scales has 

improved over time. Thus, there is an increasing need for finer- 

scale estimates that highlight coverage heterogeneities to inform 

tailoring strategies to reach under-vaccinated children at the 

local level (4, 18).

To improve fine-scale vaccine coverage predictions, 

geostatistical techniques are increasingly being utilised to model 

coverage using survey data (19–24). These interpolation models 

account for two key components. First, the models incorporate 

explanatory factors (covariates) such as distance to healthcare 

facilities, population density, and socioeconomic factors, to 

predict coverage at high spatial resolutions. Secondly, the 

models leverage the principle that data at nearby locations are 

more likely to have similar values compared to more distal 

locations to explain the variation in coverage that is not 

accounted for by the selected covariates (25). The resultant 

gridded surfaces can be aggregated to various administrative 

levels to inform programme implementation (22, 26).

Considering the various applications of survey-based models 

and routine data in informing immunisation programme 

strategy, it is important to assess the level of agreement between 

these estimates at a subnational scale. This study aims to better 

understand the consistency of available estimates in quantifying 

measles second-dose vaccine coverage in Western Kenya.

2 Methods

2.1 Study context

The present study focused on Western Kenya due to a rising 

burden of measles in the region and its recent inclusion in 

MCV vaccination catch-up campaigns (12). Furthermore, it is 

the only region in Kenya selected to deliver the malaria vaccine 

(RTS,S/AS01) which includes a 3rd dose at 9 months and a 4th 

dose at 24 months (27, 28).

Western Kenya comprises 8 administrative counties, namely 

Bungoma, Busia, Homa Bay, Kakamega, Kisumu, Migori, Siaya, 

and Vihiga, which are further subdivided into 62 sub-counties 

(Supplementary Figure S1). Since the promulgation of the 2010 

constitution, healthcare service management and delivery have 

been devolved to county governments. County governments are 

now responsible for the allocation of resources across sub- 

counties within their jurisdiction and sub-counties are the 

reporting units for county health management teams. Granular 
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BA, Bland Altman; DHIS2, District Health Information Software version 2; 

DHS, Demographic and Health Survey; EPI, Expanded Programme of 

Immunisation; FBO, Faith Based Organisation; MBG, model based 
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NGO, Non-Governmental Organisation; SIA, Supplementary Immunisation 

Activity; VPD, vaccine preventable disease.
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information at the sub-county level thus provides a more accurate 

assessment of health trends and disparities and informs resource 

allocation by county governments.

Vaccinations in Kenya are delivered free of charge at various 

health facilities per the EPI schedule (29). Health facilities are 

owned and managed by various providers, including the Ministry 

of Health (MoH), non-governmental organisations (NGO), faith- 

based organisations (FBOs), private-for-profit entities and semi- 

independent institutions such as schools, parastatals, military and 

prison entities that provide services to select populations. Facilities 

are classified into 6 levels based on the increasing complexity of 

service provision, ranging from community health units (Level 1), 

primary care facilities (Level 2–3), secondary care facilities (Level 

4–5) and national referral facilities (Level 6) (30).

2.2 Data sources and matching

Kenya’s survey-modelled MCV2 coverage estimates were 

obtained from the publicly available DHS Spatial Data Repository 

platform (31) and routine MCV2 coverage data was obtained from 

the Kenyan Health Information System (32). The two data sources 

provide different levels of granularity and required matching to 

ensure that the coverage estimates obtained were directly 

comparable, as described in more detail below.

2.2.1 Kenya demographic and health survey

The Kenya DHS was conducted nationally from February to 

July 2022 and used a two-stage stratified sampling design to 

select households nationally across all 47 counties first stratified 

into urban and rural areas. Clusters were randomly selected 

from the Kenya Master Household Sample Frame, after which 

25 households were surveyed in each cluster. In Western Kenya, 

289 clusters were sampled with each sub-county having at least 

2 clusters with a maximum of 25 households in each cluster (11).

Data for selected vaccine antigens was recorded for surviving 

children aged 0–35 months. MCV2 vaccination status was 

recorded for a sub-group of children aged 24–35 months. This 

age group is suitable for assessing MCV2 vaccination as children 

become eligible for the second dose at 18 months of age and are 

expected to be vaccinated before their third birthday, taking into 

consideration any possible vaccination delays. The vaccination 

status of children was confirmed using either a written record, 

such as the mother and child health handbook, or the mother’s 

verbal report when a written record was unavailable.

For the two most recent household surveys in Kenya (2014 and 

2022), the DHS has made publicly available interpolated mapped 

surfaces (5*5 km resolution) developed from geostatistical models 

(31). The surfaces are developed utilising data from sampled 

clusters and Model-Based Geostatistical (MBG) approaches. MBG 

utilises spatial interpolation techniques to estimate vaccine 

coverage at unobserved locations based on data points from 

surveyed children. The DHS approach included covariates such as 

urbanicity, rainfall, population density, and travel time to cities in 

the modeling process. Predicted MCV2 vaccination coverage 

mapped surfaces for Kenya include the estimates of coverage and 

width of the 95% credible interval. It is essential to note that only 

254 out of the 289 clusters sampled in Western Kenya in 2022 had 

children in the 24–35-month age group (Supplementary 

Figure S2A). Western Kenya data was extracted from the national 

surface using the Zonal Statistics tool in ArcGIS 10.8.2 (ESRI Inc., 

Redlands, CA, USA) (Supplementary Figure S2B). This tool allows 

the calculation of descriptive statistics such as mean, median, and 

range values. Specifically, the population weighted mean zonal 

statistic was used to aggregate the survey-modelled MCV2 

vaccination coverage surface at the sub-county level to obtain the 

average estimate of MCV2 coverage per sub-county. The 2022 

population estimates for children aged 24–35 months from 

WorldPop were used to weight the MCV 2 coverage estimates.

2.2.2 Routine data
The selection of a suitable denominator to evaluate service- 

based coverage was guided by vaccine coverage estimates from 

the 2022 DHS survey. Vaccines administered early in the EPI 

schedule such as BCG and Penta 1 both had near-universal 

coverage (99%–100%) across Western Kenya (Supplementary 

Table S1). However, the timing of BCG vaccine administration, 

immediately after birth, biases its delivery to hospitals with 

available maternity services whose distribution varies widely 

across sub-counties. Thus, Penta 1 vaccine data provides a more 

comprehensive baseline for children active in the vaccination 

schedule (hereafter referred to as EPI users). As Penta 1 is 

administered at 6 weeks after birth, it indicates active care- 

seeking for immunisation services usually at facilities closer to 

homesteads (28, 33, 34).

Routine immunisation data was extracted from the District 

Health Information Software (DHIS2), an open-source, web- 

based platform for reporting all health data in Kenya (35). 

Facilities report monthly aggregated data of vaccinations 

administered through routine delivery and campaigns such as 

SIAs but do not include finer details of the ages of children 

vaccinated in each month. Immunisation data was thus 

extracted accounting for when the oldest child (35 months at 

the start of the survey period-Feb 2022) and youngest child (24 

months at the end of the survey period-July 2022) would have 

likely received their Penta 1 and MCV2 vaccination dose, 

assuming timely delivery. This approach ensured that the 

routine data obtained closely matched the surveyed cohort in 

the KDHS. Facility-level monthly reports of total Penta 1 and 

MCV2 vaccines administered in Western Kenya were thus 

obtained across 34 months between April 2019 and January 

2022. Each vaccine has 17 months of data corresponding to the 

expected delivery timeline (Supplementary Figure S3).

This study identified EPI service providers based on submitted 

reports on DHIS2 of administering any vaccine of interest over the 

study period. Each facility was further matched to an updated 

national health facility database (10) to obtain information on 

ownership, facility level, type and geographic coordinates 

unavailable from DHIS2. Exclusions were made for facilities 

such as specialists, facilities newly opened (after January 2022) 

and those that did not report a single vaccination over the study 

period (Supplementary Figure S4).
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Handling of missing data

Routine health information systems in Kenya are susceptible to 

poor completeness and outliers (33, 36, 37), which may impact 

estimates obtained from this source. To address this, outliers, 

defined as values exceeding the median ± 3 times the median 

absolute deviation (MAD) (38), were identified and replaced with 

the median value of the health facility. Thereafter, multiple 

imputation (MI) techniques were used to fill in missing data (39). 

Specifically, this study employed a multivariate imputation using 

chained equations (MICE) approach, which leverages existing 

health facility data and covariates of ownership, type and level of 

health facility. The model utilised predictive mean matching using 

the facility’s 4 closest non-missing months to determine the closest 

estimate to fill in missing values.

To limit uncertainty and bias in the multiple imputation (MI) 

model, only health facilities with complete data for at least 12 out 

of 17 months (70%) for each vaccine were included in the 

imputation process based on facility reporting frequency patterns 

(Supplementary Table S2). This threshold allowed for the 

imputation of missing data for a majority of vaccinating facilities, 

thereby maximizing data utilization and ensuring the robustness of 

the estimates. Facilities falling below this threshold generally 

reported fewer than 10 doses of either Penta 1 or MCV2 vaccines 

throughout the study period. Thus, their exclusion from the 

imputation was deemed unlikely to significantly impact the overall 

coverage estimates. Given that non-reporting in the DHIS2 

platform is indistinguishable from zero reported vaccinations, this 

pragmatic approach would reduce potential overestimation of 

vaccines administered. Data imputation was not performed for the 

months of December 2020 and January 2021. This period 

coincided with a national health worker strike which, based on data 

exploration (Supplementary Figure S5), had a greater impact on 

delivery compared to COVID-19 restrictions, consistent with 

previous studies (37). The uptick in monthly vaccinations observed 

in the months following the strike suggest catch-up of children 

who missed vaccinations during the strike. As such imputation of 

these months was not carried out as these were true missing values. 

The imputation model was implemented using the “ICE” package 

(40) in Stata 17 (41).

2.3 Coverage computation

Vaccine coverage is defined as the number of children who 

receive the MCV2 vaccine relative to eligible populations. This 

study computed coverage at the second administrative level 

(sub-counties) using DHIS2 data and two distinct denominators 

to yield estimates evaluating: (i) the current performance of the 

health system in retaining children throughout the vaccination 

schedule (service-based coverage), and (ii) the extent of the 

immunisation program’s outreach within the broader 

community (population-based coverage).

2.3.1 Service-based Coverage
The denominator comprised the total number of children who 

received Penta 1 (EPI users) expected to receive MCV2 later in the 

schedule. Coverage was computed as a fraction with MCV2 

recipients as the numerator and EPI users as the denominator 

and expressed as a percentage.

2.3.2 Population-based Coverage

Annual population estimates of children below 1 year of age 

are available on the publicly available platform, WorldPop (42). 

WorldPop combines official census data, satellite imagery such 

as land cover and dasymetric modeling techniques to produce 

population datasets that are disaggregated by age at a spatial 

scale of up to 100 m. Data on children aged <1 year in the year 

2019 were downloaded, and population counts were extracted 

for each of the 62 sub-counties using the Zonal Statistics tool in 

ArcGIS 10.8.2 (ESRI Inc., Redlands, CA, USA).

Population adjustments

Due to the lack of monthly population data for this specific 

age group, this study assumed a consistent growth rate across 

the study period and applied an average factor of 1.4 (17/12 

months) to the 2019 annual population counts to project the 

population across the 17 months of administration of MCV2 

consistent with the surveyed cohort (Supplementary Figure S3). 

Further, an infant mortality rate was applied at the county level 

(11) to obtain an adjusted total of children who survived past 

the age of 1 and would have received MCV2, as shown below:

Surviving Children ¼ [Population , 1 yr (2019) � 1:4]

� (1 � IMR) 

Coverage was computed as a fraction of MCV2 recipients 

relative to surviving children and expressed as a percentage.

2.4 Estimate comparison

To assess the agreement between routine and survey-modelled 

coverage estimates, a combined approach was used. First, survey 

estimate confidence intervals computed at the 95% level were used 

as a benchmark to determine if routine estimates were consistent 

i.e., when their values were in-between the 95% confidence interval 

from the modelled survey data. Secondly, congruence between 

routine and modelled survey-based coverage estimates across sub- 

counties was explored using the intra-class correlation coefficient 

(ICC) (43). ICC is a statistic that quantifies the level of agreement 

between different approaches and takes on values between 0 and 1, 

where higher agreement is indicated by numbers closer to 1. The 

ICC was calculated using the single-rater two-way mixed effects 

model for absolute agreement, with the null hypothesis being 

ICC = 0 and the alternative hypothesis being ICC > 0. In addition, 

we adopted the interpretation by Koo & Li (43): if ICC < 0.5, it is 

indicative of poor agreement; if 0.5 ≤ ICC < 0.75, moderate 

agreement; if 0.75 ≤ ICC ≤ 0.9, good agreement; and if ICC > 0.9, 

excellent agreement. Lastly, Bland-Altman (BA) plots with 95% 

limits of agreement were utilised (44, 45) to examine the 

concordance of the survey-modelled and routine estimates at the 
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sub-county level. In BA plots, the x-axis represents the mean of the 

estimates across the approaches, and the y-axis represents the 

difference in the estimates, bias (mean of the differences) and limits 

of agreement (and the corresponding 95% CI calculated as 

bias ± 1.96 SD, standard deviation). ICC and BA plots were 

calculated in R software version 4.4.1 (2024-06-14 ucrt) using the 

packages psych and blandr, respectively.

3 Results

A total of 2,369 health facilities were registered on the DHIS2 

platform across all 8 counties of the Western Kenya region. 

Facilities categorised as specialist (113, 5%), those opened after 

January 2022 (132, 6%) and those that did not report administering 

any vaccines over the study period (2019–2022) (626, 26%) were 

excluded from further analysis as they do not routinely provide 

immunisation services (Supplementary Figure S4). The remaining 

1,498 facilities were confirmed to provide immunisation services 

and majorly comprised of Ministry of Health facilities (74%) and 

primary level facilities such as dispensaries and clinics (62%) as 

summarised in Supplementary Table S3. Overall, facilities 

demonstrate high consistency in reporting, with 1,258 (84%) and 

1,142 (76%) reporting Penta 1 and MCV2 administration for 

at least 12 months, respectively. However, differences in 

reporting across antigens are evident as 62% of facilities submitted 

Penta 1 reports across all 17 months of interest, while only 

15% reported MCV2 administration at the same frequency 

(Supplementary Table S2).

A total of 404,288 doses of Penta 1 and 212,715 doses of MCV2 

vaccines were administered during the study period relative to an 

estimated eligible population of 463,526 children. An average of 

22,000 Penta 1 vaccines were administered monthly between April 

2019 and August 2020. MCV2 vaccines had a notably lower 

monthly average of 15,000 between September 2020 and January 

2021. Sharp declines in MCV2 delivery were experienced from 

December 2020 to January 2021, coinciding with the national 

health worker strike (Supplementary Figure S5). This period was 

followed by an increase in vaccinations administered, signalling 

catch-up. MCV2 delivery peaks in June 2021, coinciding with SIA 

activities across Western Kenya.

Overall, all approaches exhibit varying ranges of coverage. 

Survey-modelled coverage estimates range between 50% and 

73% (Figure 1A), population-based coverage is between 18% and 

80% (Figure 1B), and service-based coverage varies between 19% 

and 81% (Figure 1C). Survey-modelled estimates exhibit little 

variation in coverage across sub-counties, with 47 of 62 sub- 

counties having coverage of over 60% compared to 22 counties 

for service-based coverage and only six for population-based 

coverage. There are similarities across all approaches in the sub- 

counties ranked with the lowest coverage such as in the 

southern region of Western Kenya, which broadly covers Homa 

Bay county (Figure 1). Conversely, the sub-counties with the 

highest coverage vary across all methods. This is particularly 

evident in the northern region, whereby the distribution of 

coverage differs between approaches (Figure 1).

Across sub-counties, survey-modelled estimates typically rank 

the highest, followed by service-based coverage, with population- 

FIGURE 1 

Maps showing sub-county level MCV 2 coverage estimates from survey-modelled (A), population-based (B) and service-based approaches (C) across 

Western Kenya.
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based coverage ranking the lowest (Figure 2). Service-based 

coverage is highest in sub-counties within Busia County, ranging 

between 66% and 69%, while survey-modelled estimates are 

highest in Kakamega County at 67%–73%. All approaches 

indicate that sub-counties in Homa Bay County have the lowest 

MCV2 coverage. Population-based coverage estimates had the 

highest number of outliers with five sub-counties identified, 

namely Webuye West, Kimilili, Kabuchai, Kisumu Central and 

Matayos (Figure 2).

The differences between the estimates were assessed against the 

95% credible intervals of the survey model. The credible intervals, 

varying from ±11 to ±23 percentage points, reSect the considerable 

disparity in model performance across the region. Substantial 

differences were observed between population-based coverage and 

survey-modelled estimates in 55 sub-counties (89%) and between 

service-based coverage estimates and survey-modelled estimates in 

39 sub-counties (63%) (Table 1). Similar findings are observed in 

bivariate plots as shown in (Supplementary Figure S6).

Congruence between survey-modelled and routine population- 

based estimates for MCV2 vaccine coverage across sub-counties 

based on ICC was 0.10 (95% CI: 0.00–0.34, p = 0.229) (Table 2), 

indicating poor agreement between the two approaches. However, 

based on the p-value and 95% CI, we fail to reject the null 

hypothesis, ICC = 0; there is no agreement between the two 

approaches. The ICC estimate for congruence between survey- 

modelled and routine service-based estimates for MCV2 vaccine 

coverage across sub-counties is 0.42 (p = <0.001) (Table 2), 

indicating poor agreement between the two approaches; the 

agreement ranges from poor to moderate (95% CI: 0.20–0.61). For 

congruence between routine service and routine population-based 

estimates for MCV2 vaccine coverage across sub-counties, the ICC 

is 0.65 (p = <0.001) (Table 2), indicating moderate agreement 

between the two approaches; the agreement ranges from 

(marginally) poor to moderate (95% CI: 0.49–0.78).

Similar results were reSected in the BA plot (Figure 3). The 

estimated bias in MCV2 vaccine coverage estimates across sub- 

counties between survey-modelled and routine population-based 

approaches was highest at 18.80 (95% CI: 15.52–22.08) 

percentage points (p.p) (Figure 3A). This positive bias indicates 

overestimation in MCV2 vaccine coverage estimates by the 

survey-modelled approach in comparison to routine population- 

based approach. In addition, these two approaches had the 

widest BA limits of agreement ranging from −6.51 to 44.12 p.p. 

The 95% CI for the lower limit of agreement and upper limit of 

agreement were −12.14 to −0.87 and 38.48 to 49.75 respectively 

(light blue area in Figure 3A). Notably, estimates for four sub 

counties: Uriri, Kisumu Central (K. C), Rongo and Suna West 

fall outside the lower bounds of BA limits of agreements.

FIGURE 2 

Boxplot showing the range of sub-county MCV 2 coverage estimates (%) across Western Kenya for survey-modelled, service and population- 

based approaches.
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TABLE 1 MCV2 coverage estimates for 62 sub-counties in Western Kenya computed using survey-model and routine (population and service 
denominators) approaches.

County Subcounty MCV2 Coverage (%)

Survey-model (95% CI) Population-based (World Pop) Service-based (Penta 1)

Bungoma Bumula 71 (64–78) 47** 61**

Kabuchai 69 (62–76) 30** 38**

Kanduyi 71 (65–77) 44** 48**

Kimilili 69 (62–76) 53** 56**

Mt. Elgon 62 (51–73) 47** 47**

Sirisia 67 (58–76) 47** 53**

Tongaren 67 (59–75) 47** 55**

Webuye East 69 (63–75) 41** 60**

Webuye West 71 (65–77) 53** 48**

Busia Bunyala 64 (56–72) 57 69

Butula 71 (65–77) 48** 66

Matayos 71 (64–78) 72 68

Nambale 73 (66–80) 52** 67

Samia 66 (58–74) 51** 69

Teso North 69 (62–76) 51** 67

Teso South 69 (63–75) 47** 66

Homa Bay Homa Bay 59 (50–68) 37** 30**

Ndhiwa 56 (46–66) 26** 27**

Rachuonyo East 62 (55–69) 37** 48**

Rachuonyo North 54 (45–63) 21** 25**

Rachuonyo South 61 (53–69) 34** 40**

Rangwe 57 (48–66) 31** 33**

Suba North 53 (41–65) 26** 35**

Suba South 53 (42–64) 19** 20**

Kakamega Butere 72 (66–78) 51** 81**

Ikolomani 70 (64–76) 49** 73

Khwisero 70 (63–77) 44** 66

Likuyani 68 (61–75) 48** 59**

Lugari 69 (62–76) 46** 60**

Lurambi 72 (65–79) 51** 54**

Malava 69 (61–77) 51** 62

Matungu 73 (67–79) 38** 48**

Mumias East 73 (67–79) 37** 58**

Mumias West 73 (67–79) 36** 49**

Navakholo 71 (64–78) 36** 43**

Shinyalu 69 (63–75) 43** 59**

Kisumu Kisumu Central 60 (53–67) 74** 52**

Kisumu East 62 (55–69) 50** 62

Kisumu West 62 (54–70) 49** 53**

Muhoroni 68 (61–75) 40** 58**

Nyakach 59 (52–66) 44** 52

Nyando 61 (53–69) 39** 41**

Seme 57 (49–65) 39** 51

Migori Awendo 63 (56–70) 54** 50**

Kuria East 59 (50–68) 59 61

Kuria West 60 (52–68) 55 61

Nyatike 49 (37–61) 50 47

Rongo 63 (56–70) 76** 69

Suna East 60 (52–68) 52 50**

Suna West 57 (48–66) 80** 60

Uriri 57 (49–65) 70** 60

Siaya Alego-usonga 63 (55–71) 41** 43**

Bondo 59 (48–70) 36** 40**

Gem 65 (59–71) 45** 54**

Rarieda 56 (47–65) 45** 53

Ugenya 70 (64–76) 43** 53**

Ugunja 69 (63–75) 45** 55**

(Continued) 
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Agreement in MCV2 vaccine coverage estimates across sub- 

counties between survey-modelled and routine service-based 

coverage approaches had a bias of 11.02 p.p. (95% CI: 8.30– 

13.73). Like the comparison with routine population-based 

coverage, the observed positive bias indicates overestimation in 

survey-modelled estimates in comparison to routine service- 

based coverage estimates across the sub counties. The BA limits 

of agreement for survey-modelled vs. routine service-based 

coverage ranged from −9.94 to 31.97 p.p. The 95% CI for the 

lower limit of agreement and upper limit of agreement were 

−14.60 to −5.27 and 27.30 to 36.63 respectively (light blue 

area in Figure 3B).

For agreement between routine service and routine 

population-based estimates for MCV2 vaccine coverage across 

sub counties, the bias was 7.79 p.p. (95% CI: 5.16–10.41) 

indicating overestimation in service-based coverage estimates in 

comparison to population-based coverage estimates across the 

sub counties. The BA limits of agreement ranged from −12.47 

to 28.04 p.p. The 95% CI for the lower limit of agreement and 

upper limit of agreement were −16.98 to −7.96 and 23.53 to 

32.55 respectively (light blue area in Figure 3C). Notably, 

estimates for Kisumu Central and Suna West sub counties fall 

outside the bounds of BA limits of agreements.

Further evaluation of the patterns of coverage at the county level 

reveal persistent disparities in the approaches even at broader scales. 

The regional average for Western Kenya in the survey-based model 

estimates is 65%, 54% for service-based coverage and 46% for 

population-based coverage (Supplementary Figure S7). Also, when 

compared with the county-level direct survey-weighted estimates 

from the survey, 7 out of 8 survey-modelled estimates fell within 

the 95% confidence interval, whereas only 2 out of 8 and 4 out of 8 

estimates from the population-based and service-based approaches, 

respectively, did so (Supplementary Table S4).

4 Discussion

Multiple approaches can be used to estimate vaccine coverage 

using either survey data or routine data, this study has analysed 

how different estimations of MCV2 coverage compare across 62 

sub-counties in Western Kenya. The analysis revealed notable 

discrepancies between service, population, and survey-based 

modelled coverage estimates, highlighting the importance of 

critically evaluating the strengths and limitations inherent to 

each approach when shaping immunization program strategies 

and quantifying missed vaccination opportunities. Further, the 

MCV2 vaccination rates were consistently below 80% among 

eligible children, including those already engaged in routine EPI 

services, highlighting significant systemic challenges in routine 

immunization delivery. Such obstacles impede the attainment of 

the >95% coverage required for measles elimination, as 

envisioned in the Immunization Agenda 2030 targets (46).

Population-based estimates consistently yielded the lowest 

coverage, indicating a higher number of unvaccinated children 

within the community (Figures 1, 2). However, healthcare- 

seeking behaviors often extend beyond sub-county boundaries, 

resulting in increased community coverage through cross-border 

vaccinations. Previous studies have noted that while some 

subnational regions may exhibit very low coverage, areas with 

larger health facilities often display the opposite extreme, with 

values exceeding 100% due to patient selection and mobility (28, 

33, 34). These outliers are typically reconciled when coverage is 

computed at broader scales, such as the county level. 

Nonetheless, population-based coverage estimates remain a 

valuable indicator of sub-counties with persistent low coverage, 

as shown here for Homa Bay County (Table 1), which would 

benefit most from intensified routine immunization delivery and 

targeted campaigns. The increasing availability of gridded 

population estimates at finer resolutions, such as 1 × 1 km grids 

reSecting actual population settlement patterns (42), further 

facilitates the identification of absolute numbers of missed 

opportunities and the effective targeting of outreach activities. 

The incorporation of precise residential addresses into routine 

vaccination records, would be an additional benefit to a more 

rigorous definition of catchment areas extending beyond 

administrative boundaries (47, 48), and would substantially 

refine our understanding of care-seeking behaviors to inform 

use of appropriate population denominators at finer scales.

Survey-modelled estimates consistently yielded the highest 

coverage, likely due to their broader inclusion of vaccinations 

TABLE 1 Continued  

County Subcounty MCV2 Coverage (%)

Survey-model (95% CI) Population-based (World Pop) Service-based (Penta 1)

Vihiga Emuhaya 68 (61–75) 42** 72

Hamisi 67 (60–74) 39** 45**

Luanda 68 (61–75) 35** 50**

Sabatia 70 (63–77) 51** 78**

Vihiga 67 (60–74) 61 65

**p < 0.05.

TABLE 2 Agreement between routine population and service 
denominators and survey-modelled estimates of MCV2 vaccine 
coverage across sub-counties.

Comparison ICC (95% 
CI)

p-value

Survey-modelled vs. routine population-based 

coverage

0.1 (0.00–0.34) 0.229

Survey-modelled vs. routine service-based 

coverage

0.42 (0.20–0.61) <0.001

Routine service-based vs. routine population- 

based coverage

0.65 (0.49–0.78) <0.001

The bold p-values show statistically significant congruence.
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administered outside routine immunization systems, such as through 

SIAs. Although model-based geostatistical methods aim to address 

key data gaps by leveraging sparse survey data, the current models 

for MCV2 coverage estimation exhibit several limitations. Small 

sample sizes for sub-groups such as 24–35-month-old children will 

impact on model performance (18, 49), models may not account 

for survey design weights (50); and the focus on environmental 

covariates excludes other key parameters able to predict MCV2 

FIGURE 3 

Bland-Altman for agreement analysis; (A) survey-modelled vs. population, (B) survey-modelled vs. service and (C) service vs population.
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coverage including education and poverty (51). Additionally, these 

prediction estimates are static, applying only to the survey year, 

thus limiting their ability to inform prompt filling in of vaccination 

gaps in the manner that routine data would. The construction of 

these modelled predictions of vaccine coverage must be better 

understood to interpret their inherent weaknesses and ultimate use 

in decision-making.

Service-based coverage estimates occupied an intermediate 

position between population-based and survey-modelled 

estimates and provided a more specific evaluation of EPI 

program retention across the immunization schedule which 

other methods do not account for. As these estimates rely on 

routine data, they offer a cost-effective approach for health 

monitoring over time and facilitate timely identification of 

missed opportunities. A focused effort to target children already 

engaged in the healthcare system but subsequently dropping out 

represents a promising strategy for increasing community 

coverage. Service-based estimates are indispensable for 

monitoring immunization performance at the facility level, 

enabling accurate forecasting of vaccine supply requirements 

and identification of service delivery gaps. However, this 

approach does not account for hard-to-reach populations not 

engaged in routine care or those reached via community-based 

vaccinations and, therefore, should not be viewed as a substitute 

for community-wide coverage assessments.

Service- and population-based estimates exhibited the highest 

level of agreement, underscoring their potential for capturing 

similar target populations (Figure 3; Table 2). This underscores 

their combined utility in identifying missed opportunities for 

MCV2 vaccinations at greater frequency. By complementing each 

other, these approaches mitigate the limitations present in each 

method. Notably, survey-modelled estimates displayed the least 

agreement with both service- and population-based methods, 

consistently yielding higher and more homogenous estimates 

across the Western Kenya region (Figure 1). This finding aligns 

with prior studies that have documented discrepancies between 

routine coverage data and broader community surveys (34, 52), 

attributable to survey limitations such as the under-sampling of 

populations in urban slums and remote settlements, who are 

more likely to be under-immunized (14, 53, 54).

The presence of sub-county outliers across population- and 

survey-model methods underscores the critical need for cross- 

validation to identify inconsistencies requiring further 

investigation. For instance, in Kisumu Central sub-county 

(Table 1), contrary to the overall pattern, service-based coverage 

was lower than both population-based and survey-modelled 

coverage. This observed discrepancy may result from health 

facilities within the sub-county attracting children from 

neighboring areas for immunization services, thereby increasing 

population-based coverage figures relative to the local 

population initially engaged in EPI services. Unlike service- 

based coverage, whose denominator reSects vaccinations 

administered specifically to the population accessing routine 

services within the sub-county, population-based estimates may 

include the total of vaccinated children residing in or visiting 

the sub-county.

The reliance on a single approach for estimating vaccine 

coverage and identifying missed opportunities has profound 

implications for decision-making, particularly at the sub-county 

level. While household surveys are widely regarded as the “gold 

standard” for coverage estimation, the survey-modeled estimates 

analyzed in this study demonstrated the least agreement with 

routine data-based approaches and consistently yielded higher 

coverage estimates (Table 2; Figure 1) which is consistent with 

previous work comparing survey and routine approaches (34). 

Notably, substantial discrepancies in estimates were observed in 

over 60% of sub-counties, further underscoring the variations in 

each method. For example, in Suba South sub-county, modeled 

coverage was estimated at 58%, whereas both service-based and 

routine-based estimates fell below 21%, representing a striking 

difference of nearly 40 percentage points (Table 1). 

Furthermore, in comparison with the county level direct survey- 

weighted estimates obtained from the survey, only one out of 

eight county estimates from the survey-modelled approach did 

not fall within the 95% CI compared to six and four for 

population-based and service-based approaches respectively. 

While this comparison strengthens the case for the reliability of 

the survey-modelled approach relative to routine data, as would 

be expected, it also highlights that routine data estimates can 

vary widely from survey estimates. This discrepancy should be 

acknowledged and taken into account when interpreting 

coverage data estimates from the individual approaches when 

making policy decisions as, depending on the approach used, 

critical immunization gaps within communities may remain 

obscured and grossly underestimated, perpetuating conditions 

that allow outbreaks to persist.

Although the methodologies employed in this study differ 

substantially, they may each capture unique aspects of vaccine 

coverage. As a result, their combined use provides a more 

comprehensive understanding of immunization gaps and 

challenges. Combining these methods can help bridge disparities 

and inform targeted interventions for improved coverage. For 

example, using datasets from the different approaches to triangulate 

vaccine coverage estimates can be done as shown in the case of 

malaria burden modelling (55). Additionally, evidence from other 

studies in Kenya offers critical insights into the social and 

demographic determinants inSuencing measles vaccine uptake, 

such as a child’s immunization history, household income, and 

caregiver education level (56, 57). These factors must be carefully 

considered when devising strategies for delivering vaccines to 

children beyond one year. Further, systemic and emerging 

challenges such as healthcare worker shortages, strikes (58), vaccine 

stock-outs (59), delays in outreach activities (SIAs) due to limited 

funding and COVID-19 (8) as well as infrastructural limitations, 

such as inadequate road networks restricting community access to 

health services, must also be addressed to prevent further missed 

opportunities. The findings of this study provide decision-makers 

with evidence to evaluate various estimation methods, enabling the 

development of improved strategies, informed budgetary 

allocations, and strengthened routine immunization programs.

Robust data reporting and surveillance systems are 

essential for identifying and addressing gaps in MCV2 
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immunization coverage. Enhancing the quality of routine data 

and incorporating granular data on dynamic population 

changes, such as migration and varying growth rates, would 

improve the accuracy of both numerators and denominators 

used in routine coverage monitoring (23, 60). The observed 

variability in reporting completeness across vaccination 

metrics in this study stresses the pressing need for ongoing 

efforts to enhance the comprehensiveness and reliability of 

health facility and census data. These improvements are 

fundamental to fostering an environment where data-driven 

decision-making informs local administrative and national 

policy for routine and outreach vaccination programs.

This study has some limitations that must be considered 

when interpreting the findings. It used data from DHIS2, 

which has issues with missing information. To address this, 

multiple imputation was performed to create a complete 

dataset among facilities that consistently reported their data. 

Although this does not replace complete data, it does help 

ensure that the estimates of vaccine coverage more accurately 

reSect reality, with minimal bias in the imputed values. 

Additionally, the study relied on gridded population data 

derived from national census figures. While this source 

enhances the population measures at smaller scales, its 

reliability hinges on the accuracy of the original census data. 

Improving systems like civil registration could help address 

this data gap. Lastly, the accuracy of the 95% CI from the 

survey-modelled estimates remains undetermined as the DHS 

does not report the CIs from cross-validation exercise.

5 Conclusion

This study underscores the importance of using various 

datasets to gain a comprehensive understanding of MCV2 

immunisation coverage from multiple perspectives. While 

discrepancies exist between routine and survey-modelled 

methods, both approaches yield valuable insights and unique 

strengths for different aspects of vaccine delivery monitoring, 

catering to the diverse needs of stakeholders. To enhance the 

accuracy of vaccine coverage estimations at more granular levels, 

it is essential to improve the quality of routine data to refine our 

understanding of service utilization and population dynamics. 

This would enable accurate identification of underserved 

populations, thus informing targeted interventions to bridge 

gaps in vaccine coverage. By addressing the noted shortcomings 

and geographical inequalities, immunisation programs can 

achieve broader coverage and better health outcomes for 

children in the region.
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