

OPEN ACCESS

EDITED AND REVIEWED BY Oladele Ogunseitan, University of California, Irvine, United States

*CORRESPONDENCE Zhi-Hua Li, ⊠ lizh@sdu.edu.cn

RECEIVED 03 November 2025 REVISED 10 November 2025 ACCEPTED 10 November 2025 PUBLISHED 18 November 2025

CITATION

Li Z-H, Zlabek V, Tan F and Li P (2025) Editorial: Emerging contaminants and aquatic ecosystem health. Front. Environ. Sci. 13:1738061. doi: 10.3389/fenvs.2025.1738061

COPYRIGHT

© 2025 Li, Zlabek, Tan and Li. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Emerging contaminants and aquatic ecosystem health

Zhi-Hua Li^{1*}, Vladimir Zlabek², Feng Tan³ and Ping Li¹

¹Marine College, Shandong University, Weihai, Shandong, China, ²Faculty of Fishery and Protection of Waters, University of South Bohemia, České Budějovice, Czechia, ³School of Environmental Science and Technology, Dalian University of Technology, Dalian, China

KEYWORDS

emerging contaminants, aquatic ecosystem health, aquatic toxicology, monitoring technology, risk assessment

Editorial on the Research Topic

Emerging contaminants and aquatic ecosystem health

Aquatic ecosystems are fundamental to sustaining life on Earth, possessing irreplaceable ecological, economic, and social value. However, these systems are highly sensitive to external disturbances and exhibit a vulnerability characterized by a "low threshold and difficult recovery." (Baskar et al., 2022; Agathokleous et al., 2023) Maintaining the health of aquatic ecosystems is not only essential for ecological security but also serves as a safeguard for human health and a cornerstone of global sustainable development. In recent years, emerging contaminants (ECs) frequently detected in aquatic environments have been recognized as a new threat to ecological health, with potential hazards that cannot be overlooked. These substances pose relatively concealed risks to both the environment and human health. Even at low concentrations, they may introduce dangers to public health, environmental quality, and ecosystem safety. For instance, herbicides classified as ECs can persist in both water and sediment, where sediments act as significant reservoirs, presenting long-term potential health risks (Peng et al.).

ECs exert multi-level effects on aquatic ecosystems, ranging from molecular to community-level impacts. Notably, endocrine-disrupting chemicals can induce abnormal gonadal development in aquatic organisms even at very low exposure concentrations. Shaalan et al. investigated the effects of four common pharmaceuticals—bromazepam, naproxen, metoprolol, and sotalol—on common carp (*Cyprinus carpio*), underscoring the adverse impacts of pharmaceutical contaminants on aquatic species (Shaalan et al.). Li et al. studied the toxic effects of triphenyltin (TPT) and microplastics (MPs) on carp, providing valuable insights into the individual and combined toxicities of TPT and MPs, and revealing their potential synergistic or antagonistic effects on aquatic organisms (Li et al.). Daniel Elías examined the impacts of microplastics, ibuprofen, and their combination on the growth, locomotion, and reproduction of Physella acuta, highlighting the need for further research to understand the chronic and long-term ecosystem effects of these pollutants (Elías et al.). A growing body of evidence points to the "cocktail effect" among pollutants, indicating that the ecological risk of compound pollution exhibits nonlinear amplification.

In response to the technical challenges of monitoring emerging pollutants, analytical tools have shown three major development trends in recent years. First, highly sensitive non-targeted screening techniques based on LC-QTOF-MS enable full-spectrum analysis of up to 5,000 compounds per run, with detection limits reaching the femtogram level. Second, in the field of in-situ monitoring, graphene-based field-effect transistor biosensors have

Li et al. 10.3389/fenvs.2025.1738061

improved the real-time detection sensitivity of bisphenol A (BPA) by two orders of magnitude compared to conventional ELISA. Third, intelligent early-warning systems that integrate passive sampling (POCIS), toxicity identification evaluation (TIE), and machine learning algorithms—such as the QSAR model—can predict ecological risks for up to 85% of new pollutants (Merlot, 2010; Slavov and Beger, 2020).

Current treatment technologies for ECs in water bodies primarily include advanced oxidation processes, adsorption, membrane separation, biodegradation, and ecological remediation. Future measures should focus on enhancing monitoring systems, strengthening source control, developing low-energy and highefficiency treatment processes, and establishing a multi-level barrier-based prevention and control framework. According to Ji et al., mechanically processed nano-activated carbon (NAC) has been identified as an effective strategy for capturing trace pollutants—such as pesticides, dyes, and pharmaceutical residues—in saline-alkaline waters, owing to its high adsorption capacity and environmental compatibility (Ji et al.). Zhou et al. evaluated the efficacy of various methods in removing ECs, with particular emphasis on sustainability and economic viability (Zhou et al.). Their findings reveal that integrating these technologies can significantly improve removal efficiency, offering promising directions for environmental policy and practical applications.

Research on the environmental fate of ECs is shifting from single-medium studies to multi-interface processes, ecological risk assessments are expanding from acute toxicity to transgenerational effects, and monitoring technologies are evolving toward intelligence and miniaturization. Establishing an ecological integrity-based risk management framework and developing a comprehensive technological system that encompasses source control, process intervention, and end-of-pipe treatment will be key to safeguarding aquatic ecosystem health. This requires interdisciplinary collaboration across environmental science, ecotoxicology, and information technology, as well as the joint development of global-scale monitoring standards and governance mechanisms.

Author contributions

Z-HL: Writing – original draft. VZ: Writing – review and editing. FT: Writing – review and editing. PL: Writing – review and editing.

References

Agathokleous, E., Barceló, D., and Calabrese, E. J. (2023). A critical scientific and policy opinion on reuse and reclamation of contaminated wastewater for agriculture and other purposes. *J. Environ. Chem. Eng.* 11, 109352. doi:10.1016/j.jece.2023.109352

Baskar, A. V., Bolan, N., Hoang, S. A., Sooriyakumar, P., Kumar, M., Singh, L., et al. (2022). Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: a review. *Sci. Total Environ.* 822, 153555. doi:10.1016/j. scitotenv.2022.153555

Funding

The authors declare that financial support was received for the research and/or publication of this article. Acknowledges support from the National Natural Science Foundation of China (42277269).

Acknowledgements

The editors would like to thank the authors, reviewers, and the Frontiers in Environmental Science development team, whose efforts have led to the success of this Research Topic.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.

Generative AI statement

The authors declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Merlot, C. (2010). Computational toxicology-a tool for early safety evaluation. *Drug Discov. Today* 15, 16–22. doi:10.1016/j.drudis.2009.09.010

Slavov, S., and Beger, R. D. (2020). Quantitative structure-toxicity relationships in translational toxicology. *Curr. Opin. Toxicol.* 23-24, 46-49. doi:10.1016/j.cotox.2020.