

OPEN ACCESS

EDITED AND REVIEWED BY
Hayley Jane Fowler,
Newcastle University, United Kingdom

*CORRESPONDENCE
Prakash Kumar Jha,

☑ jhaprak@gmail.com

RECEIVED 10 October 2025 ACCEPTED 20 October 2025 PUBLISHED 29 October 2025

CITATION

Jha PK, Jha PK, Mehan S and Nandi S (2025) Editorial: Addressing climate change in agriculture and natural resources with a focus on adaptation and extreme events. *Front. Environ. Sci.* 13:1722615. doi: 10.3389/fenvs.2025.1722615

COPYRIGHT

© 2025 Jha, Jha, Mehan and Nandi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Addressing climate change in agriculture and natural resources with a focus on adaptation and extreme events

Prakash Kumar Jha^{1*}, Prakash Kumar Jha^{2*}, Sushant Mehan³ and Saswata Nandi⁴

¹Division of Agriculture and Natural Resources, University of California, Davis, Davis, CA, United States, ²Department of Plant and Soil Sciences, Mississippi State University, Starkville, MS, United States, ³South Dakota State University, Brookings, SD, United States, ⁴Sierra Nevada Research Institute, University of California, Merced, CA, United States

KEYWORDS

climate change, adaptation, agriculture, extreme events, decision support, social dimension

Editorial on the Research Topic

Addressing climate change in agriculture and natural resources with a focus on adaptation and extreme events

Introduction

As climate change accelerates, agriculture and natural resources face growing threats, not merely from gradual shifts in temperature and precipitation, but also from more frequent and intense extreme events, variability, and compounded stresses. Addressing these challenges requires more than technical fixes; it requires region- and crop-specific strategies, innovative management practices, and attention to social and institutional dimensions of resilience.

The Frontiers Research Topic "Addressing Climate Change in Agriculture and Natural Resources with a Focus on Adaptation and Extreme Events" brought together insights from climate projection, field-based assessments, farmer perceptions, and institutional decision-making. The five accepted articles highlight the diverse ways climate risks manifest and the adaptive response being developed across different contexts.

The first article, Simulating Future Climate Changes in Ghana's Black Volta Basin (Kabo-Bah et al.), demonstrated the effectiveness of bias-corrected CMIP6 projections under four SSP scenarios. It revealed significant warming and seasonal rainfall decline by mid-century, with severe implications for agriculture, water resources, and hydropower. The study recommends drought-resistant crops, improved water management, and climate-resilient infrastructure to buffer these risks.

In China, Assessment of Extreme Climate Stress across Maize Harvest Regions (Chen et al.) showed that bias-corrected CMIP6 ensembles effectively capture the intensity and frequency of extreme heat and precipitation. Heat stress is projected to increase

Jha et al. 10.3389/fenvs.2025.1722615

consistently, particularly under high-emission scenarios, highlighting the need for localized adaptive management strategies. Complementing this, *Effects of Sand-Dust Weather on Cotton Fields* (Gao et al.) quantified microclimatic impacts of dust storms, revealing significant wind fluctuations that affect crop stress and soil loss, offering guidance for hazard mitigation.

The social and institutional dimensions are addressed by two articles. Factors Influencing Urban Farmers' Intention to Adapt in Addis Ababa (Getu et al.) applied Protection Motivation Theory, showing that perceptions of climate risks, incentives, self-efficacy, and social norms strongly drive adaptation behaviors. The study recommends strengthening institutions, farmer training, early warning systems, extension services, and financial access. Meanwhile, Advancing Decision Support for Climate Adaptation in California (Ikendi et al.) surveyed technical service providers, identifying gaps in data translation, visualization, community engagement, and equitable deployment of decision tools, emphasizing the need for context-sensitive support systems.

Together, these contributions reflect a balanced mix of climate modeling, field observation, behavioral analysis, and institutional analysis, spanning geographies (Ghana, Ethiopia, California, China), scales (from local field to basin to institutional), and methods (quantitative modeling, survey, field observation, qualitative discussions).

Gaps and under-addressed areas

Despite these advances, several gaps constrain actionable adaptation. First, the capacity to predict seasonal and interannual variability remains limited: many systems lose skill beyond one to 2 weeks, leaving little actionable guidance for managing droughts, heatwaves, or wildfires beyond those 2 weeks. Operational skill in the 2-week to monthly (seasonal) period remains weak in many regions, particularly for precipitation forecasts (Robertson et al., 2020; Yin et al., 2023). Moreover, most climate modeling works remain narrowly sectoral and rarely incorporate cross-sectoral dynamics. Consequently, advances in climate modeling seldom translate into actionable farm-level decision support, limiting adoption. This gap is further reinforced by institutional tendencies to prioritize technical specialists over boundary spanners, professionals who can bridge research, facilitation, and decision-making (Bednarek et al., 2018; Cross et al., 2022; England et al., 2018).

Second, compound and cascading events, such as drought followed by heat and wildfire, or flood combined with pest outbreaks, are still underexplored, even though they pose growing real-world risks (Ebi, 2025; Haqiqi et al., 2021; Schillerberg and Tian, 2024; Tripathy et al., 2023; Walden et al., 2023).

Third, scale and heterogeneity constrain adaptation, as local lessons are difficult to generalize, and cross-scale dynamics are often missing (Berger et al., 2019; Fossa et al., 2021; Holman et al., 2019; Maciejewski et al., 2015).

Fourth, while governance framework and equity are frequently discussed but less often operationalized, with insufficient emphasis on implementation that addresses the needs of marginalized groups, women, and small-holder farmers (Araos et al., 2021; Cannon et al., 2024; Chu and Cannon, 2021).

Fifth, monitoring, evaluation, and adaptive learning need to be improved across scales, to learn from failures, and build cumulative knowledge (Dupuits et al., 2024; Goodwin and Olazabal, 2025; Sparkes and Werners, 2023; UCFCCC, 2023).

Implications and way forward

To enhance impact, research and practice should prioritize developing integrated climate-extreme forecasting tools spanning sub-seasonal to decadal time scales, directly linking to practical agricultural decisions such as planting schedules, irrigation planning, and insect-pest control. Analyses of compound and cascading events are necessary to develop multi-risk adaptation strategies that mirror real-world conditions. To bridge research and practice, professionals are needed who combine data and scientific expertise with facilitation skills to work with farmers, translating research into actions. Equity and vulnerability assessment must explicitly identify and document who benefits and who is left behind. Monitoring and feedback systems should be strengthened to support continuous learning and cross-site knowledge exchange. Finally, effective policies, innovative institutions, and accessible technologies are critical to convert research into practical, scalable, and socially inclusive adaptation.

Conclusion

The five articles collectively demonstrate the breadth and depth of climate change adaptation research, from projections in Ghana and China to social and institutional studies in Ethiopia and California. They reveal progress in modeling, field measurements, behavioral understanding, and decision support, while also highlighting persistent gaps in extremes prediction, compound stress integration, scalability, and equity. Addressing these gaps requires bridging robust climate science with participatory, inclusive, cross-sectoral, and adaptive approaches. Agricultural and natural resource systems can achieve long-term resilience to climate change only by connecting predictive models, local knowledge, governance, and practical decision support.

Author contributions

PJ (First author): Formal Analysis, Project administration, Funding acquisition, Supervision, Validation, Writing – review and editing, Methodology, Visualization, Data curation, Software, Investigation, Writing – original draft, Conceptualization, Resources. PJ (Second author): Writing – review and editing. SM: Writing – review and editing. SN: Writing – review and editing.

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article. Jha et al. 10.3389/fenvs.2025.1722615

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References

Araos, M., Jagannathan, K., Shukla, R., Ajibade, I., Coughlan de Perez, E., Davis, K., et al. (2021). Equity in human adaptation-related responses: a systematic global review. One Earth 4 (10), 1454–1467. doi:10.1016/j.oneear.2021.09.001

Bednarek, A. T., Wyborn, C., Cvitanovic, C., Meyer, R., Colvin, R. M., Addison, P. F. E., et al. (2018). Boundary spanning at the science–policy interface: the practitioners' perspectives. *Sustain. Sci.* 13 (4), 1175–1183. doi:10.1007/s11625-018-0550-9

Berger, C., Bieri, M., Bradshaw, K., Brümmer, C., Clemen, T., Hickler, T., et al. (2019). Linking scales and disciplines: an interdisciplinary cross-scale approach to supporting climate-relevant ecosystem management. *Clim. Change* 156 (1), 139–150. doi:10.1007/s10584-019-02544-0

Cannon, C. E. B., Chu, E. K., Natekal, A., and Waaland, G. (2024). Institutional designs for procedural justice and inclusion in urban climate change adaptation. *J. Plan. Educ. Res.*, 0739456X241274579. doi:10.1177/0739456X241274579

Chu, E. K., and Cannon, C. E. B. (2021). Equity, inclusion, and justice as criteria for decision-making on climate adaptation in cities. *Curr. Opin. Environ. Sustain.* 51, 85–94. doi:10.1016/j.cosust.2021.02.009

Cross, M. S., Oakes, L. E., Kretser, H. E., Bredehoft, R., Dey, P., Mahoney, A., et al. (2022). Tackling the science usability gap in a warming world: co-producing useable climate information for natural resource management. *Environ. Manag.* 70 (6), 881–895. doi:10.1007/s00267-022-01718-4

Dupuits, E., Garcés, A., Llambí, L. D., and Bustamante, M. (2024). Strategies for monitoring and evaluation of climate change adaptation: localizing global approaches into Andean realities. *npj Clim. Action* 3 (1), 19. doi:10.1038/s44168-023-00097-8

Ebi, K. L. (2025). Understanding the risks of compound climate events and cascading risks. *Dialogues Clim. Change* 2 (1), 33–37. doi:10.1177/29768659241304857

England, M. I., Dougill, A. J., Stringer, L. C., Vincent, K. E., Pardoe, J., Kalaba, F. K., et al. (2018). Climate change adaptation and cross-sectoral policy coherence in Southern Africa. *Reg. Environ. Change* 18 (7), 2059–2071. doi:10.1007/s10113-018-1283-0

Fossa, M., Dieppois, B., Massei, N., Fournier, M., Laignel, B., and Vidal, J. P. (2021). Spatiotemporal and cross-scale interactions in hydroclimate variability: a case-study in France. *Hydrol. Earth Syst. Sci.* 25 (11), 5683–5702. doi:10.5194/hess-25-5683-2021

Goodwin, S., and Olazabal, M. (2025). Revisiting the challenges to monitoring, evaluation, reporting, and learning for climate adaptation. *Environ. Sci. Policy* 172, 104199. doi:10.1016/j.envsci.2025.104199

Haqiqi, I., Grogan, D. S., Hertel, T. W., and Schlenker, W. (2021). Quantifying the impacts of compound extremes on agriculture. *Hydrol. Earth Syst. Sci.* 25 (2), 551–564. doi:10.5194/hess-25-551-2021

Holman, I. P., Brown, C., Carter, T. R., Harrison, P. A., and Rounsevell, M. (2019). Improving the representation of adaptation in climate change impact models. *Reg. Environ. Change* 19 (3), 711–721. doi:10.1007/s10113-018-1328-4

Maciejewski, K., De Vos, A., Cumming, G. S., Moore, C., and Biggs, D. (2015). Cross-scale feedbacks and scale mismatches as influences on cultural services and the resilience of protected areas. *Ecol. Appl.* 25 (1), 11–23. doi:10.1890/13-2240.1

Robertson, A. W., Vitart, F., and Camargo, S. J. (2020). Subseasonal to seasonal prediction of weather to climate with application to tropical cyclones. *J. Geophys. Res. Atmos.* 125 (6), e2018JD029375. doi:10.1029/2018jd029375

Schillerberg, T. A., and Tian, D. (2024). Global assessment of compound climate extremes and exposures of population, agriculture, and forest lands under two climate scenarios. *Earth's Future* 12 (9), e2024EF004845. doi:10.1029/2024ef004845

Sparkes, E., and Werners, S. E. (2023). Monitoring, evaluation and learning requirements for climate-resilient development pathways. *Curr. Opin. Environ. Sustain.* 64, 101329. doi:10.1016/j.cosust.2023.101329

Tripathy, K. P., Mukherjee, S., Mishra, A. K., Mann, M. E., and Williams, A. P. (2023). Climate change will accelerate the high-end risk of compound drought and heatwave events. *Proc. Natl. Acad. Sci.* 120 (28), e2219825120. doi:10.1073/pnas.2219825120

UCFCCC (2023). Monitoring and evaluation of adaptation at the national and subnational levels: technical paper by the adaptation committee.

Walden, L., Fontaine, J. B., Ruthrof, K. X., Matusick, G., and Harper, R. J. (2023). Drought then wildfire reveals a compound disturbance in a resprouting forest. *Ecol. Appl.* 33 (2), e2775. doi:10.1002/eap.2775

Yin, G., Yoshikane, T., Kaneko, R., and Yoshimura, K. (2023). Improving global subseasonal to seasonal precipitation forecasts using a support vector machine-based method. *J. Geophys. Res. Atmos.* 128 (17), e2023JD038929. doi:10.1029/2023jd038929