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With the rapid development of global maritime trade and the rising demand for
real-time, accurate marine ship monitoring, satellite image-based ship detection
has become crucial for marine management and national defense. However, it
faces two core challenges: complex backgrounds in high-resolution marine
remote sensing images, and great variations in ship sizes—especially difficult
small ship extraction. To address these, this study proposes an enhanced method
based on improved YOLOV13, using China's Gaofen-2 (GF-2) satellite images.
First, GF-2 image data is preprocessed, including radiometric correction to
eliminate atmospheric effects, orthorectification to correct image distortion,
and fusion of multispectral and panchromatic images to improve spatial
resolution and enrich spectral information. Then, three key optimizations are
made to the YOLOvV13 model: 1) In the backbone network, the A2C2f module is
modified by introducing a single-head attention mechanism. By parallelly fusing
global and local feature information, it avoids multi-head redundancy and
improves the recognition accuracy of small ship targets; 2) In both the
backbone and neck networks, the DS_C3K2 module is modified by integrating
a lightweight attention mechanism, which enhances the model's feature
extraction capability in complex backgrounds while reducing channel and
spatial redundancy; 3) In the head network, a path-fused Global Feature
Pyramid Network (GFPN) is introduced, which leverages skip-layer and cross-
scale connections to strengthen cross-scale feature interaction, refine the
representation of small ship features, and effectively address the issues of
insufficient deep supervision and feature information loss in multi-scale ship
detection. Additionally, the improved YOLOv13 model is pre-trained using the
open-source DOTA dataset (rich in non-ship negative samples) to enhance its
ability to distinguish between ship foreground and background clutter, and then
applied to ship detection in segmented sub-images of GF-2 remote sensing
images; finally, the detected sub-images are stitched to restore complete
regional images. Experiments show that the accuracy rate reaches 96.9%, the
recall rate reaches 91.4%, the mAP50 reaches 95.5%, and the mAP50-95 reaches
75.9%, all of which are higher than the mainstream target detection models. It
provides a high-performance solution for complex marine ship detection and has
important practical significance for both civilian and military fields.

marine ship detection, improved YOLOv13, small target detection, complex marine
background, GF-2
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1 Introduction

Ship detection in optical remote sensing images (ORSI) stands as
a critical and inherently challenging task, with profound
implications spanning ecological governance, marine resource
management, and military reconnaissance (Kanjir et al, 2018;
Wang et al., 2011). As a cornerstone of aerial and satellite image
analysis, target detection in optical remote sensing imagery
underpins a broad spectrum of practical applications—from
environmental monitoring and disaster response to national
security operations-by enabling the automated identification and
localization of key objects within vast and complex geospatial
datasets (Cheng and Han, 2016; Goémez-Chova et al., 2015).
Ships, as primary actors in maritime activities, represent pivotal
targets for maritime regulation and surveillance. Effective detection
and recognition methods are indispensable for executing a range of
critical tasks: monitoring and curbing illegal, unreported, and
unregulated (IUU) fishing to preserve marine biodiversity;
regulating unauthorized resource exploitation, such as unlicensed
oil drilling or sand mining, to safeguard coastal ecosystems;
investigating smuggling, piracy, and other transnational maritime
crimes to maintain maritime order; and tracking the movements of
foreign armed vessels to ensure territorial integrity and national
security. Satellite remote sensing technology, with its capabilities for
large-scale, all-weather, and near-real-time observation, has thus
become an irreplaceable tool in safeguarding maritime security,
upholding maritime rights and interests, and supporting the
seamless operation of both military and civilian maritime
transportation networks (Wu et al., 2023; Yue et al., 2021).

Yet, the inherently complex maritime environment poses
formidable challenges to accurate ship target detection. Coastal
zones, in particular, are rife with confounding factors: dense
clusters of port infrastructure (such as docks, cranes, and storage
facilities) often exhibit spectral or structural similarities to ships,
leading to misclassification; dynamic elements like breaking waves,
foam, or tidal fluctuations can obscure ship outlines or create false
positives; and the coexistence of small vessels (e.g., fishing boats)
with large maritime assets (e.g., cargo ships or warships) exacerbates
the difficulty of multi-scale target extraction (Gong et al., 2024; Yan
etal,, 2025). In addition, changing lighting conditions (such as glare
from sunlight on the water, shadowing effects from clouds, and
reflections from ice on the water) further degrade image quality,
making it more difficult to distinguish ship targets from cluttered
backgrounds (Li et al., 2020; Zhang et al., 2026). These complexities
collectively hinder the precision and reliability of ship detection
systems, underscoring the need for more robust and adaptive
methodologies.

Traditional ship detection methods (Zhu et al., 2010; Proia
and Pagé, 2009; Shi et al., 2013) predominantly rely on manually
designed features—such as edge gradients, texture descriptors, or
spectral thresholds-to distinguish ships from backgrounds.
However, these approaches suffer from inherent limitations:
their performance is highly dependent on expert-defined
feature engineering (Li et al., 2025), making them prone to
errors in complex scenarios (e.g., overlapping ships or variable
they lack
perturbations like sea fog, wave glint, or coastal clutter; and

lighting); robustness against environmental

their labor-intensive feature design processes render them costly
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and inefficient to adapt to diverse maritime conditions (Guo
et al., 2023; Ren et al., 2024).

In contrast, deep learning-based models have revolutionized
target
outperforming traditional artificial intelligence systems across

detection by enabling end-to-end feature learning,
numerous domains—from computer vision and natural language
processing to speech recognition. In the field of maritime
further highlight their
potential: Hu et al. (2024) proposed a laser point cloud-based

surveillance, recent advancements
ship detection method for unconstrained maritime areas, which
preprocesses lidar data, converts 3D point clouds into 2D bird’s-eye
views, and feeds them into a dedicated object detection network,
achieving high precision in near-shore scenarios. Wang et al. (2021)
integrated edge computing into traditional detection frameworks to
mitigate computational bottlenecks, enabling real-time ship
monitoring on resource-constrained devices. Ye et al. (2005)
developed a visual attention model based on HSI color space
feature extraction, converting RGB images to HSI space and
generating saliency maps via normalized fusion of multi-scale
features, which yielded promising results in detecting ships under
varying illumination.

In recent years, transformer-based object detectors have
with RT-DETR (Real-Time
Detection Transformer) emerging as a representative architecture

achieved remarkable progress,
that effectively balances detection accuracy and real-time efficiency
(Zhao et al,, 2024). RT-DETR leverages a hybrid CNN-transformer
backbone and an end-to-end query-based detection head, which
eliminates the need for post-processing operations such as non-
maximum suppression (NMS). This design allows the model to
perform global context reasoning across the entire image and
enhances detection consistency, making it highly competitive in
natural scene detection tasks. Moreover, its dynamic feature
aggregation and cross-scale self-attention improve general object
localization performance while maintaining real-time inference
speeds. However, when applied to high-resolution optical remote
sensing imagery for maritime ship detection, RT-DETR still
The

intensive

encounters  notable  limitations. transformer-based

architecture is computationally and memory-
demanding, which restricts its deployment in large-scale satellite
images or resource-limited environments. Additionally, the global
self-attention mechanism tends to dilute fine-grained local features
that are crucial for identifying small-scale ships under cluttered
backgrounds such as port facilities, sea waves, and cloud shadows.
Furthermore, the lack of explicit multi-scale feature fusion in RT-
DETR reduces its sensitivity to small object variations compared
with CNN-based detectors optimized for dense targets.

Deep learning-based marine ship detection still faces unique
challenges, particularly in optical remote sensing scenarios. First,
ships exhibit extreme scale diversity-ranging from small fishing
boats (a few meters in length) to large cargo vessels (over 300 m)-
making it difficult for models to balance sensitivity to tiny targets
and precision for large ones. Multi-scale small ships, in particular,
are prone to being missed or misclassified due to their low pixel
coverage and similarity to background noise (e.g., floating debris).
Second, the bounding boxes of small targets often struggle to
converge to their true positions during training, as their sparse
pixel information provides insufficient gradient signals for model
optimization (Shen et al., 2025). Third, mainstream object detection
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algorithms like YOLOv13, while lauded for their lightweight
architecture and efficiency, have limited multi-scale feature
extraction capabilities. In complex marine backgrounds-such as
coastal regions with overlapping port infrastructure, dynamic waves,
or varying cloud cover-they often fail to distinguish ships from
visually similar interference, hindering detection accuracy.
Extracting ships from high-resolution remote sensing imagery
thus remains a critical bottleneck, as existing methods cannot
fully capture fine-grained, multi-scale details necessary for robust
identification.

To address these challenges, this study proposes a method for
detecting small objects in complex backgrounds based on an
improved YOLOv13. First, a single-head attention mechanism is
introduced to construct the A2C2f SHSA (Single-Head Self-
Attention) module, replacing the A2C2f module in the backbone.
This prevents head redundancy and improves the accuracy of small
object ship recognition by combining global and local information in
parallel. Then, a lightweight attention mechanism is introduced to
construct the C3K2_EFAtt module, replacing the DS_C3K2 module
in the backbone and neck components. This enhances the model’s
feature extraction capabilities in complex backgrounds while reducing
channel and spatial redundancy. Finally, a path-fused global feature
pyramid network (GFPN) is introduced in the head, including skip-
layer and cross-scale connections, to enhance cross-scale feature
interactions and refine small object representations. This improves
the model’s multi-scale feature fusion capabilities and enables better
handling of scale diversity and background clutter. These
improvements enable our model to achieve a better trade-off
between accuracy, robustness, and efficiency than transformer-
based approaches like RT-DETR in complex
environments. We validate its performance using high-resolution

maritime

imagery from China’s Gaofen-2 (GF-2) satellite, focusing on
complex marine environments with dense coastal infrastructure
and dynamically changing sea conditions. This research not only
provides a reliable technical solution for overcoming the bottleneck of
multi-scale ship detection in high-resolution remote sensing imagery,
but also promotes the practical application of deep learning in
maritime monitoring. By improving the accuracy and reliability of
ship detection under complex conditions, this research provides
valuable support for strengthening maritime traffic management,
enhancing maritime safety law enforcement, and optimizing
emergency response capabilities. Ultimately, it will help to more
effectively safeguard maritime rights and interests, protect the
ecological environment, and ensure national security.

2 Data description and preprocessing
2.1 Data description

2.1.1 Gaofen-2 remote sensing imagery

The Gaofen-2 (GF-2) satellite is one of the key satellites under
China’s High-Resolution Earth Observation System (CHEOS)
program. It was independently developed by China and
successfully launched on August 19, 2014. GF-2 primarily serves
applications in land resource surveys, crop yield estimation,
environmental protection, disaster prevention and mitigation,

urban planning, and water resource management, providing

Frontiers in Environmental Science

10.3389/fenvs.2025.1707611

TABLE 1 GF-2 sensor parameters.

Parameter Panchromatic/Multispectral
camera

Spectral range Panchromatic 450~900 nm

Multispectral 450~520 nm

520~590 nm

630~690 nm

770~890 nm
Spatial resolution Panchromatic 0.8 m
Multispectral 32m

Swath width 45 km (Combination of Two Cameras)

Revisit cycle 5 days

Coverage cycle 69 days

high-resolution remote sensing imagery and data support to
relevant sectors (Ren et al., 2022).

GF-2 boasts several technical advantages, including high
flexibility,
detection based on GF-2 imagery is not only critical for maritime

resolution, wide coverage, and versatility. Ship
target monitoring and maritime security but also provides essential
data support for monitoring illegal fishing, addressing marine
pollution, and conducting emergency rescue operations. The
technical specifications of GF-2’s sensors are shown in Table 1.

GF-2 remote sensing imagery primarily consists of multispectral and
panchromatic image data. Multispectral data generally has a lower spatial
resolution, as the sensor needs to capture data from multiple bands
simultaneously. Given a fixed data volume, each band receives fewer pixels.
However, multispectral data has a higher spectral resolution, allowing for
the extraction of more spectral characteristics of surface features by
combining data from different bands. In contrast, panchromatic data
typically has higher spatial resolution. Since it is a single band that
integrates information across the visible spectrum, without the need to
divide the data into multiple bands as in multispectral imagery, more
spatial details can be captured within the same data volume.

2.1.2 DOTA dataset

DOTA is a large-scale benchmark dataset dedicated to object
detection in aerial imagery, serving as a critical resource for
developing and evaluating object detection algorithms in aerial
scenarios. Its image data are sourced from diverse sensors and
platforms, with resolutions ranging from 800 x 800 to
20,000 x 20,000 pixels. A key characteristic of DOTA lies in the
significant variations exhibited by its annotated objects, including
extensive diversity in scale, orientation, and shape. All instances
within the dataset are meticulously annotated by experts in aerial
image interpretation

using  arbitrary

quadrilaterals, ensuring precise localization of targets with

8-degree-of-freedom

complex geometric attributes.

The dataset is continuously updated to expand its scale and
enrich its scope, thereby aligning with the dynamic nature of real-
world application scenarios. We selected the DOTA dataset for
model training and validation, primarily due to its inclusion of
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diverse terrain types and the comprehensive coverage of targets with
varying scales, orientations, and shapes—features that make it highly
representative for aerial object detection tasks.

2.2 Data preprocesses

In the study of ship detection based on GF-2 remote sensing
imagery, the processing of image data is crucial for both
accuracy and efficiency. GF-2 data primarily includes
multispectral and panchromatic images. Multispectral images
cover multiple bands (such as visible light and near-infrared),
providing high spectral resolution, which is suitable for
extracting spectral characteristics of surface features.
However, the spatial resolution is relatively low (3.2 m). In
contrast, panchromatic images are single-band images that
record combined reflectance information across the visible
spectrum, offering higher spatial resolution (0.8 m), which
allows for finer spatial details.

To obtain imagery that combines both spectral and spatial
resolution, data preprocessing was conducted in this study,
including radiometric correction (Du et al, 2002; Chen et al,
2004), atmospheric correction (Vermote and Vermeulen, 1999),
data orthorectificatio (Aguilar et al., 2013), projection processing
and multispectral and panchromatic image fusion (Zhu et al., 2024).

The specific process is shown in Figure 1.

3 Methodology

To address the shortcomings of YOLOV13 in detecting small
target ships at sea in complex backgrounds, this study proposes a
comprehensively improved scheme based on multi-scale feature
fusion and lightweight attention mechanisms. Building on the
Generalized-FPN (GFPN) (Jiang et al., 2022), the improvements
are three-fold: first, a single-head attention mechanism is
introduced to construct the A2C2f SHSA module, replacing
the A2C2f module in the backbone. This prevents head
redundancy and enhances the

accuracy of small ship

recognition by parallelly combining global and local
information. Second, a lightweight attention mechanism is
employed to develop the C3K2_EFAtt module, which replaces
the DS_C3K2 module in both the

strengthening feature extraction in complex backgrounds

backbone and neck,

while reducing channel and spatial redundancy. Third, the
path-fused GFPN is integrated into the head, incorporating
skip-layer and cross-scale connections to enhance cross-scale
feature interactions and refine small object representations,
thereby boosting multi-scale fusion capabilities to handle scale
diversity and background clutter. The DOTA dataset provides
abundant negative samples, aiding the model in distinguishing
foreground and background-particularly effective in eliminating
objects. Data
enhance the model’s

interference from nearshore non-ship
further

generalization, ensuring high accuracy across diverse marine

augmentation techniques

meteorological conditions. These combined improvements

significantly improved YOLOvV13’s performance in complex
maritime environments, reducing nearshore interference and
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improving small target detection accuracy. The overall model
flow chart is shown in Figure 2.

3.1 Multi-class sample dataset

This study leverages the DOTA (Dataset for Object Detection in
Aerial Images) dataset for model training, a comprehensive
benchmark widely recognized for its suitability in aerial and
remote sensing target detection tasks (Ding et al, 2021). A key
advantage of the DOTA dataset lies in its rich and diverse
composition: beyond containing a large quantity of ship target
samples with varying scales, orientations, and maritime contexts
(ranging from small fishing vessels in coastal waters to large cargo
ships in open seas), it also incorporates an extensive array of non-
ship negative samples. These negative samples encompass a wide
spectrum of land-based and coastal features, including buildings
(such as port warehouses, coastal residences, and industrial
(trucks,
machinery), road networks, bridges, and even natural features

facilities), ground vehicles cars, and construction
like vegetation clusters and rocky outcrops-many of which are
specifically distributed in near-shore areas, where ship detection
is most prone to interference.

Such a diverse set of negative samples plays a critical role in
enhancing the model’s discriminative capabilities. By exposing the
model to near-shore non-ship objects that often share visual
similarities with ships (e.g., rectangular port cranes resembling ship
hulls, or large floating structures mimicking vessel outlines), the
training process enables the model to learn subtle distinguishing
features—such as spectral signatures, contour textures, and contextual
associations-that differentiate foreground ship targets from cluttered
background information. This is particularly valuable for mitigating
confusion between ships and coastal infrastructure, a common source of
false detections in complex maritime scenes. Through intensive training
on this balanced dataset, the enhanced YOLOv13 model develops a
robust ability to filter out irrelevant background interference while
accurately identifying true ship targets. This not only reduces the
occurrence of false positives caused by near-shore clutter but also
strengthens the model’s generalization performance across diverse
maritime environments-whether in busy port areas with dense
infrastructure, turbid coastal waters with dynamic wave patterns, or
open seas with sparse but small-scale targets. Ultimately, this training
strategy lays a solid foundation for the model to handle real-world
complex background ship detection tasks with high precision and
reliability.

3.2 Data augmentation

To enhance training data diversity and boost the model’s
generalization ability, this study applies a range of data
DOTA dataset,
random cropping, rotation, flipping, and color jittering. These
methods
maritime remote sensing scenarios: Random cropping exposes

augmentation techniques to the including

are tailored to simulate real-world variations in
the model to ships in diverse spatial contexts (e.g., partially

occluded by coastal structures or surrounded by waves),
improving its adaptability to target positions. Rotation (0°-360°)
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Data preprocessing workflow.
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Flow chart of ship detection model.

and flipping address the arbitrary orientations of ships-shaped by
wind, tides, or navigation routes—preventing overfitting to specific
directions. Color jittering adjusts brightness, contrast, and hue to
mimic variable lighting at sea (e.g., sunlight glare, overcast
conditions), helping the model focus on intrinsic ship features
rather than transient spectral changes.

By training on this augmented data, the model learns robust
representations that persist across ship sizes, orientations, and
lighting conditions. This ensures high detection accuracy even in
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complex, dynamic maritime environments, where weather and
target appearances can shift unpredictably.

3.3 YOLOvV13 algorithm

Previous YOLO series follow the computational paradigm of
“backbone network - neck network - detection head”, which
essentially limits the full transmission of information flow. In
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YOLOV13 network structure.

contrast, YOLOvV13 enhances the traditional YOLO architecture by
implementing full-link feature aggregation and allocation (FulPAD)
through the Hypergraph Adaptive
(HyperACE) mechanism. Therefore, YOLOv13 achieves fine-grained

Correlation Enhancement

information flow and representation coordination throughout the
network, which can improve gradient propagation and significantly
enhance detection performance.

Specifically, as shown in Figure 3, YOLOV13 first uses a backbone
network similar to previous work to extract multi-scale feature maps B1,
B2, B3, B4, B5, but the large kernel convolution is replaced by the
proposed lightweight DS-C3k2 module. Then, unlike the traditional
YOLO method that directly inputs B3, B4 and B5 into the neck network,
YOLOV13 collects and passes these features to the proposed HyperACE
module to achieve high-order correlation adaptive modeling and feature
enhancement of cross-scale and cross-position features. Subsequently, its
FUPAD paradigm uses three independent channels to distribute the
correlation-enhanced features to the connection between the backbone
network and the neck network, the internal layers of the neck network,
and the connection between the neck network and the detection head to
optimize the information flow. Finally, the output feature map of the
neck network is passed to the detection head to achieve multi-scale
object detection.

Frontiers in Environmental Science

3.4 Backbone network optimization

To address the task of detecting small ship targets against
complex backgrounds in remote sensing imagery, we focused on
improving the A2C2f module within the YOLOv13 backbone
network. We incorporated the single-head self-attention (SHSA)
mechanism proposed in SHVIiT (Yun and Ro, 2024), achieving
efficient fusion of global and local information with a lightweight
design, improving small ship detection accuracy.

Specifically, the improved A2C2f SHSA module retains the
dimensionality  transformation and residual  connection
architecture of the original module. Its core focus is replacing the
internal feature mixing unit with computational logic based on
single-head attention. Drawing on SHViT’s analysis of multi-head
attention redundancy, the single-head attention module only
computes attention on a subset of channel features (rather than
all). By eliminating unnecessary multi-head parallel operations, this
significantly reduces computational complexity and memory access
costs, adapting to the high-resolution and large-data-volume
characteristics of remote sensing imagery and achieving its
lightweight design goal. This module also fuses two key pieces of

information through parallel paths: First, it uses deep convolution to
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extract fine local features of small ship targets, leveraging (FEN), input and output features are fused via residual

convolution’s strength in capturing local spatial correlations.
Second, it uses single-head attention to model global contextual
relationships (such as the spatial distribution of ships and complex
backgrounds like waves and islands), addressing the inadequacy of
traditional convolution in modeling long-range dependencies. This
parallel fusion mechanism enables the model to accurately identify
subtle features of small ship targets while effectively distinguishing
between targets and complex background interference. This
significantly improves the robustness of feature representation,
particularly in remote sensing scenarios with small ships and
high background noise.

The A2C2f SHSA module is an improvement based on the
A2C2f module in YOLOvV13. The core enhances feature expression
capabilities by introducing the single-head self-attention (SHSA)
mechanism. The process is as follows: the input feature is first
compressed from cl to the hidden channel c_by 1 x 1 convolution
(cvl), achieving dimensionality reduction to reduce computational
overhead; then enters the multi-branch feature processing stage, and
selects different branch structures according to the parameter “a2” -
when a2 is True, a branch consisting of two ABlock stacks is used
(retaining the original A2C2f multi-head attention mechanism), and
each ABlock captures global dependencies through multi-head self-
attention (MHSA) and MLP layers; when a2 is False, the branch is
replaced by the C3k_SHSA module, which contains two SHSABlock
stacks, each SHSABlock first passes through a 3 x 3 Deep
convolution extracts local features, then single-head attention
(SHSA) computes global correlations for some channels (pdim)
while retaining features from the remaining channels. After
enhancing channel interactions through a feedforward network

Frontiers in Environmental Science

connections. The output features of all branches are concatenated
by channel and compressed by a 1 x 1 convolution (cv2) to reduce
the number of channels from (1 + n) x c_to c2. If the residual
mechanism is enabled, the output features are weighted by a
learnable parameter gamma and then added to the output of
cvl to form the final module output. By dynamically switching
attention modes, this module reduces multi-head redundancy while
fusing global and local information simultaneously, making it
particularly suitable for feature extraction of small ships against
complex backgrounds. As shown in Figure 4.

This improvement, which only involves adjustments to the
A2C2f module in the backbone network, leverages SHViT’s
lightweight attention design to enhance the feature capture of
small ship targets while maintaining overall model efficiency,
providing a more robust feature foundation for detection tasks in
complex backgrounds.

3.5 Lightweight EFAttention optimization

To detect small ships against complex backgrounds in remote
sensing imagery, we leveraged the lightweight attention mechanism
from LAEDNet to improve the backbone and neck of YOLOv13
(Zhou et al., 2022). We replaced the original DS_c3k2 module with
the C3k2_EFAttention module, which incorporates a highly efficient
attention mechanism. This aims to enhance the model’s feature
extraction capabilities for small ships and reduce redundancy in
channel and spatial dimensions. The core of this improved module
lies in the embedded EFAttention (Efficient Fusion Attention)
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mechanism, which achieves refined feature screening and
enhancement through a dual-branch structure: the channel
branch uses global average pooling to compress spatial
information, and then combines it with 1D convolution to model
the channel dimension to generate a dynamic channel weight vector.
It can effectively highlight channel information related to ship
features (such as hull edges and masts) and suppress the
interference of background noise channels; the spatial
branch compresses features into a single channel through
1 x 1 convolution, and generates a spatial attention map through
sigmoid activation, accurately focusing on the area where the ship
target is located and weakening the spatial redundant information of
complex background (such as waves, islands, clouds, etc.). The
output features of the two are adaptively fused through element-
by-element addition to achieve channel and spatial information. At
the same time, the AdaptiveFeatureFusionBlock introduced in the
module is combined with SELayer (squeeze-excitation module) to
further optimize feature flow and fusion efficiency through multi-
path convolution and attention reweighting, so that the model can
more accurately capture the subtle features of small target ships
(such as the blurred outlines of distant ships and the edge
information of low-contrast targets) while maintaining its
lightweight characteristics, effectively alleviating the problem of
feature confusion in complex backgrounds, and providing a more
robust feature foundation for subsequent detection tasks, thereby
improving the accuracy and stability of the model in small target
ship detection in remote sensing images.

The process is as follows: the input feature is first compressed
from cl to the hidden channel ¢ (c_ = int (2 x e)) by a
1 x 1 convolution to achieve dimensionality reduction to reduce
computational overhead; then it is split into the main branch and the
residual branch, the main branch enters the multi-branch feature
processing stage, and different branch structures are selected
according to the parameter “c3k” - when c3k is False, a branch
processed in sequence by n EFAttention modules is used, and each
EFAttention enhances features in parallel through two branches: the
channel branch compresses the feature into a 1 x 1 x c_vector
through global average pooling, and then generates a channel
attention map through 1D convolution and Sigmoid, which is
multiplied with the

compresses the feature to 1 channel through 1 x 1 convolution,

original feature; the spatial branch
and then generates a spatial attention map through Sigmoid, which
is multiplied with the original feature, and the outputs of the two
branches are added together to achieve fusion; when c3k is True, the
branch is replaced by a C3k module, which contains 2 Bottleneck
stacks, and is multiplied by 3 x 3 Convolution extracts local features;
the features processed by the main branch are concatenated with the
residual branch features by channel, and then the number of
channels is compressed from 2 X c_to ¢2 through
1 x 1 convolution. Finally, they are fused with the input features
(after dimension adjustment) through residual connection to obtain

the module output. As shown in Figure 5.

3.6 Multi-scale feature fusion

GFPN is a feature fusion method designed to enhance multi-
scale feature interactions in object detection (Jiang et al., 2022). Its
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core advantage lies in its flexible and comprehensive cross-scale and
cross-layer connection mechanism, which goes beyond the
traditional bidirectional flow and achieves more efficient
information exchange between features at different levels. The
difference between GFPN and several common feature fusion
methods such as FPN (Lin et al, 2017a), PANet (Liu et al,
2018), and BiFPN (Tan et al,, 2020) is shown in Figure 6. GFPN
introduces a “queen fusion” strategy that allows feature information
to flow freely across scales and levels like the queen in chess. This
includes log,n connections (skip connections), which efficiently pass
information from early nodes to later nodes while minimizing
redundancy; and dense connections, which enable each feature in
the kth layer to receive inputs from all previous layers, ensuring that
historical feature information is fully utilized. This design promotes
a more thorough fusion of high-level semantic features with low-
level spatial details, significantly improving the model’s ability to
detect objects of different sizes, especially small and medium-sized
objects. In GFPN, feature fusion is optimized through an adaptive
connection mechanism rather than explicit learnable weights. By
dynamically adjusting the information flow according to the
importance of different features, GFPN can emphasize key
feature components while suppressing less useful feature
components, thereby improving the quality of fused features
without increasing computational overhead. The structure of
GFPN is based on PANet, but it unnecessary

restrictions on the feature propagation path. It adds cross-scale

removes

connections between adjacent layers and cross-layer connections
within the same scale, thereby building a more interconnected
feature fusion network. This structure can be easily extended to
deeper layers, allowing for more complex feature refinement while
maintaining computational efficiency. By repeating this generalized
fusion structure multiple times, GFPN continuously enhances the
interaction between multi-scale features, ultimately improving
detection accuracy and robustness in complex scenarios. The
structure of the improved YOLOv13 model we proposed is
shown in the Figure 7.

4 Experiments and discussion
4.1 Experimental dataset

In this study, we used the DOTAv1.0 dataset for model training
and validation, and finally used the model to test the application of
the model on GF-2 remote sensing data.

Specifically, the GF-2 test imagery used in this study was
acquired on October 11, 2022, covering the Nantong Port area in
Nantong City, Jiangsu Province, China (approximately E120.8"
N32.1%). This region is one of the busiest coastal transportation
hubs along the Yangtze River Delta, characterized by dense maritime
traffic, complex near-shore environments, and frequent vessel
The ship
types—including cargo ships, fishing vessels, and port service

activities. scene contains a diverse range of
boats—distributed across both open-water and dockside zones. In
addition, the coastal area exhibits high background complexity
(e.g., docks,

warehouses), variable illumination conditions, and wave clutter,

caused by port infrastructure cranes, and

all of which pose significant challenges for precise ship detection.
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FIGURE 6
Different FPN design. (a) FPN. (b) PANet. (c) BiFPN. (d) GFPN.

4.1.1 Data preprocessing

To obtain imagery that combines both spectral and spatial
resolution, data preprocessing was conducted in this study,
including radiometric calibration, atmospheric correction,
orthorectification, projection processing, and data fusion.

After completing the data preprocessing steps, in order to fuse
the low-resolution multispectral image with the high-resolution
panchromatic image to obtain an image with both high spectral
resolution and spatial resolution, we use the Gram-Schmidt
transform to pansharpen the image, and finally generate an
image with both high spatial resolution and rich spectral

information, as shown in Figure 8.

4.1.2 Image enhancement

To further improve the contrast and visual effect in ship
recognition, image enhancement is applied to the fused images.
This experiment uses the percentage stretch method to adjust the
brightness and contrast of the images, making the boundaries
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between the ship’s body and the background water area clearer.
The enhancement process allows for better identification of the
ship’s contours and provides higher visual clarity for target
extraction. The low percentile is set to 0.3, and the high
percentile is set to 99.7, normalizing the image pixel values to the
range of 0~255.

4.1.3 Image cropping
After completing the image enhancement process, the image is
cropped twice to more effectively identify ships.

o First Crop: The primary cropping step involves extracting the
core research area from the original remote sensing image,
with the goal of eliminating most land-based regions (such as
coastal buildings, vegetation, and infrastructure) while
retaining only the water areas that are critical for ship
detection. This targeted cropping significantly increases the
proportion of water bodies in the image, thereby concentrating
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FIGURE 7
Improved-YOLOV13 network structure.

FIGURE 8
Comparison of pre- and post-fusion images.

the model’s attention on the relevant maritime domain. By
filtering out extensive land interference upfront, this step not
only reduces the computational burden of processing
irrelevant background information but also minimizes false
detections caused by land features that may visually resemble
(e.g., port
Consequently, it lays a more efficient foundation for

ships cranes or rectangular structures).

subsequent recognition tasks, enhancing both the accuracy
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and speed of ship detection. The output of this first cropping
step is illustrated in Figure 9.

o Second Crop: Despite the first crop, the resulting image
remains relatively large in size, which could exceed the
computational limits of the detection model and hinder
efficient processing. To address this, the image is further
divided into multiple smaller sub-images. Each sub-image is
standardized to a resolution of 640 x 640, matching the
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FIGURE 9
Image after the first crop.

resolution of the training data to ensure consistency during
model inference. During the ship recognition phase, a sliding
window approach is employed to process each sub-image
individually-this method systematically scans the entire
cropped area, ensuring no potential ship targets are
overlooked. By breaking down the large image into
manageable sub-images, this step not only aligns with the
model’s input requirements but also reduces the impact of
complex background clutter within each processing unit,
allowing the model to focus more precisely on local ship
this two-stage cropping strategy
balances efficiency and accuracy, optimizing the overall

features. Ultimately,

performance of the ship detection pipeline.

4.2 Model training

This paper uses the DOTA-v1.0 dataset, retaining all samples
from nearshore waters and all samples containing ships from
high seas. The dataset is randomly divided into training,
validation, and test sets in an 8:1:1 ratio. The training set
1,818 data
9,090 training samples are obtained.

contains images, and after augmentation,

The experiments in this paper are all based on the Linux
operating system, NVIDIA A100 accelerated processor and
Pytorch to build a deep learning system. The pre-trained model
used in training is YOLOvV13-s, and some hyperparameters are as
follows: epoch = 100, batch-size = 16, imgsz = 640, initial-Ir = le-3.
The effect of the model on the validation set is shown in Figure 10. It
can be seen from the figure that most ships can be accurately
identified in complex backgrounds, and only a small number of
ships are misinspection or missed inspection.

In the detection results, the model demonstrates excellent
detection performance. Specifically, the precision reaches 96.9%,
indicating that 96.9% of the targets predicted as ships are correct,
with a low false positive rate. The recall is 91.4%, showing that the
model successfully identifies most ship targets, with only about
8.6% missed.

Regarding average precision, the mAP50 achieves 95.5%,
reflecting the model’s high accuracy in detecting ships under a
relatively lenient IoU threshold (0.5). However, the mAP50-95 is
75.9%, indicating a decline in accuracy under stricter IoU
thresholds, possibly due to complex backgrounds and challenges

in precise localization.
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Opverall, the detection performance for the ship class is excellent,
and the model is able to reliably detect ship objects and achieve high
precision and recall in most cases.

4.3 Ablation experiment

To verify the effectiveness of each core optimization, we
conducted ablation experiments on the DOTA dataset with
YOLOvI3 as the baseline, focusing on three
components: SHVIT single-head attention (A2C2f SHSA),
LANet lightweight attention (C3K2_EFAtt), and GFPN. Results
are shown in Table 2.

The baseline YOLOV13 achieves 0.961 precision (P), 0.911 recall
(R), and 0.732 mAP. Adding SHVIiT alone (YOLOv13-SHViT)
improves performance to 0.965 P, 0.916 R, and 0.760 mAP,
confirming its effectiveness in avoiding multi-head redundancy

original

and enhancing small-ship recognition through efficient
global-local feature fusion. However, LANet alone (YOLOvV13-
LANet) causes a performance drop (0.947 P, 0880 R,
0.675 mAP) because lightweight
compresses feature representations, leading to the loss of
details the
sensitivity to small or low-contrast ships. When GFPN is applied
independently (YOLOv13-GFPN), modest gains are observed
(0.963 P, 0.910 R, 0.753 mAP), indicating that multi-scale feature
fusion alone cannot fully compensate for insufficient attention-

its attention excessively

discriminative spatial and weakening model’s

driven feature refinement. In contrast, two-component
combinations exhibit synergy: SHVIiT + GFPN (0.964 P, 0.916 R,
0.759 mAP) benefits from the integration of global contextual
modeling with enhanced feature aggregation, while LANet +
GFPN (0.962 P, 0912 R, 0.753 mAP) partially offsets LANet’s
loss of detail through improved hierarchical fusion. Notably, the
SHVIT + LANet combination achieves a balanced global-local
feature representation, as SHVIT captures long-range semantic
dependencies and LANet suppresses background redundancy,
resulting in a higher recall (0.920) with stable precision. The full
integration of SHViT, LANet, and GFPN yields the best overall
performance (0.969 P, 0.914 R, 0.759 mAP), demonstrating that the
three modules complement each other-SHViT enhances global
perception, LANet refines fine-grained attention, and GFPN
strengthens  multi-scale  interaction-forming a  synergistic
architecture optimized for accurate and efficient ship detection in
complex maritime environments.

4.4 Comparative experiment

In order to verify the effectiveness of the proposed method, the
method proposed in this paper was compared with algorithms such
as SSD (Liu et al, 2016), Retinanet (Lin et al., 2017b), Centernet
(Zhou et al,, 2019) and RT-DETR (Zhao et al., 2024), as shown in
Table 3.

As observed, traditional detectors perform poorly in complex
maritime scenarios. SSD variants (SSD-mobilenetv2, SSD-vgg)
exhibit low recall (0.393 and 0.553) and mAP (0.546 and 0.637),
while RetinaNet also suffers from limited robustness (recall = 0.360,
mAP = 0.610) due to its difficulty in distinguishing ships from
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Qualitative ship detection results on the validation dataset. (a) Ground Truth. (b) Yolov9-GFPN.

TABLE 2 The ablation experiment results.

Model P R mAP (0.50:0.95)
YOLOv13 0961 | 0911 0.732
YOLOV13-SHViT 0965 0916 0.760
YOLOv13-LANet 0947 0.880 0.675
YOLOV13-GEPN 0963 | 0910 0.753
YOLOV13-SHVIT + LANet 0906 | 0920 0.758
YOLOVI3-SHVIiT + GEPN 0964 | 0916 0.759
YOLOv13-LANet + GFPN 0962 | 0912 0.753
YOLOVI3-SHVIT + LANet + GFPN  0.969 = 0.914 0.759

Bold values indicate the optimal results in the experiment.

TABLE 3 Comparison with other algorithms.

Model P R mAP (0.50:0.95)
SSD-mobilenetv2 0.884 0.393 0.546
SSD-vgg 0.930 0.553 0.637
Retinanet 0.912 0.360 0.610
Centernet 0.957 0.854 0.691
RT-DETR 0.933 0.890 0.656
YOLOvV13 0.961 0.911 0.732
Improved-YOLOv13 0.969 0.914 0.759

Bold values indicate the optimal results in the experiment.

cluttered backgrounds and detecting small-scale targets. CenterNet
shows moderate improvement (0.957 P, 0.854 R, 0.691 mAP) by
incorporating keypoint-based localization but still lacks strong
multi-scale feature integration.

Frontiers in Environmental Science

The transformer-based RT-DETR achieves relatively balanced
performance (0.933 P, 0.890 R, 0.656 mAP), benefiting from its end-
to-end query-based detection architecture and global attention
mechanism. However, its global self-attention introduces heavy
computational overhead and often weakens local feature
representation, leading to reduced precision in dense or small-
object scenarios typical of high-resolution maritime imagery.

The YOLO series performs more effectively under such
conditions. The baseline YOLOv13 achieves 0.961 P, 0911 R,
and 0.732 mAP, demonstrating strong efficiency and spatial
sensitivity. Our Improved-YOLOv13 further enhances all metrics
to 0.969 P, 0914 R, and 0.759 mAP-surpassing all compared
models, including RT-DETR. These results confirm that the
proposed optimizations (SHViT, LANet, and GFPN) effectively
strengthen multi-scale feature representation and cross-scale
fusion while maintaining computational efficiency, thereby
improving both the accuracy and robustness of ship detection in
complex maritime environments.

4.5 Ship detection

Ship detection is performed on the GF-2 remote sensing image,
using the trained YOLOV13 object detection model. The sub-images
detection results are shown in Figure 11.

After completing ship recognition on all sub-images, the results
are stitched to reconstruct the full regional image, enabling a unified
and complete visual output for further spatial analysis. The
experimental results, as shown in Figures 12, 13, demonstrate the
effectiveness of the proposed method.

Through a complete workflow including data preprocessing,
pansharpening, data augmentation, and cropping, this study
successfully constructed high-resolution multispectral images
based on GF-2 data and applied them to ship detection in
complex water environments. The recognition results indicate
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FIGURE 11
Sub-images detection results.

FIGURE 12
Overall detection results

that the model well even under complicated

backgrounds, with most ships correctly detected and classified.

performs
The bounding boxes are accurately placed, and confidence scores

are consistently high (mostly above 0.80), showing strong
robustness and precision.
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Overall, the proposed approach provides reliable detection
performance in challenging scenes with mixed land-water
features, dense ship distribution, and varied vessel types,
indicating its potential for practical applications in maritime
monitoring and remote sensing-based ship detection.

5 Conclusion

In this study, an improved YOLOv13-based ship detection framework
was developed and validated using high-resolution GF-2 optical satellite
imagery. The proposed method significantly enhances detection accuracy
and robustness in complex maritime environments characterized by dense
coastal infrastructure, dynamic sea states, and high background
interference. By optimizing multi-scale feature representation and
introducing attention-guided mechanisms, the framework achieves a
superior balance between precision,
efficiency. Experimental results demonstrate that the proposed model
performs exceptionally well in ship detection, achieving precision and

recall, and computational
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FIGURE 13
Detection details.

recall rates of 969% and 914%, respectively. The improved
YOLOv13 model provides a reliable and scalable solution for high-
precision maritime monitoring, supporting applications in vessel traffic
management, coastal surveillance, and marine environmental governance.

Despite its excellent performance, it still has some limitations. Under
adverse atmospheric conditions, such as heavy sea fog, haze, and low
visibility, optical signals from GF-2 imagery suffer severe attenuation and
reduced feature contrast, resulting in diminished detection confidence.
Additionally, sun-glint
reflections, surface
brightness-may distort spatial features and lead to false or missed

complex  illumination effects-including

shadow occlusions, and variable sea
detections, particularly for small and low-contrast vessels. Moreover,
the current framework primarily relies on single-source optical data and
lacks multi-modal fusion mechanisms capable of integrating
complementary information from synthetic aperture radar (SAR),
multispectral, or infrared imagery to enable all-weather and all-time
detection capabilities. Future research will focus on addressing these
limitations by developing multi-source data fusion strategies, adaptive
illumination and atmospheric correction modules, and temporal feature
modeling from sequential or multi-temporal imagery to enhance the

system’s stability under dynamic marine environments.
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