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1 Introduction

Volatile Organic Compounds (VOCs) are key components in the atmospheric oxidative
capacity. They play a key role in aerosol formation (secondary organic aerosol, SOA),
atmospheric chemistry by the ozone formation, and cloud formation implying high sanitary
and climatic impacts (Seinfeld and Pandis, 2016; Tripathi et al., 2022).

Despite being considered to be a dominant source of biogenic VOCs (BVOCs) such as
isoprene and monoterpenes, their measurement-based studies are very limited (Guenther
et al,, 2012; Paton-Walsh et al., 2022). Minimizing uncertainties in estimates of BVOC
emissions necessitates further observations (Guenther, 2013). Conducting experiences to
evaluate BVOCs fluxes such as leaf-level enclosure, tower and aircraft-based above the
canopy is essential to enhance our understanding of the processes influencing BVOC
diversity. Furthermore, the recent use of satellite data aims to provide tendencies and
variability of VOC emissions in the atmosphere (Bauwens et al., 2022) and can be useful for
flux measurements.

Réunion Island (21° S, 55° E), located 700 km east of Madagascar and characterized by a
complex orography due to its volcanic origin (Gillot and Nativel, 1989), is often considered
as a natural laboratory of the exchanges between the atmosphere with the biosphere (ocean
and tropical forests). The island presents a tropical climate, specific atmospheric dynamics
due to steep slopes covered by forests, boundary layer variations and sea breeze
phenomenon, facilitating the transport of VOCs to the mountain summit and
enhancing the cloud formation (Garratt, 1994; Monti et al., 2002; Davis et al., 2020).

In the aim to fill the uncertainties related to VOCs in tropical areas, numerous field
campaigns have been organized at Réunion island with the aim to understand ambient
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VOC concentrations, emissions and behavior (Callewaert et al,
2022; Dominutti et al., 2022; Duflot et al., 2017; Duflot et al.,
2019, Duflot et al., 2022; Rocco et al., 2020; Rocco et al., 2022,
Rocco et al,, 2024; Amelynck et al.,, 2021; Verreyken et al., 2019;
Verreyken et al., 2021; Leriche et al., 2023) considering the context of
dynamical local circulations (Lesouéf et al., 20115 2013; Foucart et al.,
2018; Verreyken et al., 2021). However, to highlight tendencies of
VOC diversity and concentrations, long-term measurements
are required.

Located at an altitude of 2,160 m, OPAR-Maido Observatory
(MO, 21.079° S, 55.383° E) is an ideal place to perform coupled
dynamical and chemical atmospheric studies in a tropical mountain
island context and is essential for our comprehension of emissions in
background sites, comprising VOC. OZC-R Mare-Longue forest
research field station (MALO, 21.350° S, 55.743°E), located on the
south-eastern coast at Saint-Philippe, is dedicated to the observation
and research of native forest ecosystems on Réunion island. This
second site is an ideal place for studying variability and long-term
trends in VOC emissions in lowland forests and VOCs of marine
aerosols contribution to atmospheric chemistry in the forest
environment.

This VOC datasets
monoterpene-represented by a-pinene, $3-pinene, limonene-and
BTEX-as
obtained from measurements at the multi-instrumented MO and

study presents unique (Isoprene,

Benzene, Toluene, Ethylbenzene and Xylenes -)
MALO observations and research stations, for more than 3 years and
1 year, respectively. The sustainability of these data and more
particularly VOC concentrations, are crucial to monitor seasonal
and annual variability and long trends of VOC concentrations in the

southern hemisphere.

2 Materials and methods
2.1 Sampling site description

MO site lies at an altitude of 2,160 m above sea level (asl) on
the western flank of the Island (Supplementary Figure S1). This
GAW (WMO Africa) and numerous
international observation networks (IR-ACTRIS, IR-ICOS
notably) labelled atmospheric research station is directly

global region I,

under the influence of marine and biogenic air masses coming
from the west-north-west downbhill slope, partially covered by a
dense montane forest dominated by the endemic Acacia
heterophylla Willd tree (see Supplementary Figure S2 for some
examples of plant species on site). The part of the mountain slope
characterized by dense forest dominates the coastal sector where
the closest urban areas (Saint Paul and Le port, 13 and 15 km
from the observatory, respectively) are located (Rose et al., 2019).
Over the dense forest and surrounded by subalpine shrublands,
the station can also collect air masses coming from lush tropical
vegetation found further to the north-east, in the Cirque de
Mafate (a densely vegetated volcanic caldera). Being inside the
marine boundary layer during daytime and near the free
troposphere during nighttime, the site is dedicated to
atmosphere studies (Baray et al. (2013); Zhou et al. (2018);
Simu et al. (2021); Koenig et al. (2023); Gantois et al. (2024);
Vimeux et al. (2024); Sicard et al. (2025) and references therein).
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VOC collection is made on the instrumented roof of the station
(6 m above ground level).

MALO site is a monitored lowland tropical rainforest,
characterized by a diverse vegetation, composed of 40% of
Mascarene endemic trees and 20% of Réunion endemic trees.
This is the last remnant lowland forest for the Mascarene’s
archipelago and the geographical isolation associated with its
insularity makes it a recognized biodiversity hotspot (Myers
et al., 2000). The site (Nature reserve) is located in the south-east
of the island, on the slopes of the active volcano Piton de La
Fournaise (2,632 m asl), between 100 and 700 m asl. Classified as
a biological reserve in 1958, the 23 ha Mare Longue reserve was
enlarged to 68 ha in 1981, and has been part of the Réunion National
Park since 2008. Main part of the primary forest is surrounded by
secondary vegetation and sugar cane fields. The site is characterized
by an upper canopy (up to 25 m) of mixed vegetation growing on a
near 360-year-old basaltic flow (Albert et al., 2020), the main plant
species and families being listed in Kirman et al. (2007) (see
Supplementary Figure S3). VOC are sampled in an area of the
forest close to 300 m asl, as close as possible to research experiments
conducted in the area (Machacova et al., 2021; Hoang et al., 2023) in
the framework of OZC-R Mare-Longue research field station works.

2.2 Sampling procedure

Active gaseous VOC sampling was conducted with Tenax®TA
sorbent cartridges (Tenax®TA 60-80 mesh, 250 mg) using Gilian®
Gilair Plus pump with a controlled and constant flow rate of
100 mL min™' for duration being 40 or 60 min, depending on
the site. The axial Tenax®TA sorbent tubes contain porous polymer
chemically inert, highly hydrophobic and widely used for VOCs
measurements of more than 4 C-atoms (Rothweiler et al., 1991; Ho
etal,, 2018; Schieweck et al., 2018). VOCs are weekly collected at MO
site, over a day, with one daytime sample (1 p.m.-5 p.m.) and one at
nighttime (10 p.m. - 00 a.m.), for better representation of the specific
environmental conditions occurring on site. Sampling in MALO is
carried out once or twice a month, depending on environmental
conditions and access capacity to the site.

2.3 Chemicals and material

VOC standards, with a purity better than 98%, (except the B-
pinene compound with a purity of 95%) are purchased from Sigma-
Aldrich, CPA Chem and A2S. The Internal standard Toluene D8 is
obtained from A2S, with a purity of no less than 99%. Methanol for
gas chromatography system with a purity better than 99% is issued
from Carlo Erba Reagents SAS (Val de Reuil, France). Helium with a
high purity of 99.9999% is used as the carrier gas. Tenax®TA (60/
80 mesh) adsorbent cartridges (90 mm/3.5 inches length and
6.35 mm/% inch OD and 5 mm ID stainless steel inert coated,
pre-packed) are purchased from Supelco (Bellefonte, PA,
United States). The instrumental platform used in this study for
VOC analysis is composed of an Automated Thermal Desorption
unit (ATD, PerkinElmer®, TurboMatrix 650) connected to a gas
chromatograph (GC, PerkinElmer®, Clarus 680) and coupled to a
mass spectrometer (MS, PerkinElmer®, 600T).
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TABLE 1 Analytical conditions.
ATD system

Carrier gas: Helium (99.9999%)

Carrier gas: Helium

10.3389/fenvs.2025.1704158

GC system MS system

Run time: 3,400 min

Primary desorption: 270 °C, 25 min

Column temperature program

Mode: MS scan
Mass: 50-300 amu

Total primary desorption flow rate: 40 mL min™

Outlet split flow-rate: 40 mL min™

Initial temperature: 35 °C for 5 min

Rampl: 5.0 deg min"'-160 °C, hold for 25 min

Secondary desorption flow rate: 0.5 mL min™

Valve temperature: 250 "C

Ramp2: 45.0 deg min"'-250 °C, hold for 2 min

Secondary desorption: 300 °C, 15 min

Transfer line temperature: 250 “C

TABLE 2 List of the studied compounds with related limits of detection for Tenax®TA cartridge (LOD in ppt).

Compound Class CAS number Molecular formula LOD (ppt)
Isoprene Hemiterpene 78-79-5 CsHg 26
Benzene Aromatic HC* 71-43-2 CgHg 121
Toluene Aromatic HC* 108-88-3 C,Hg 112
Ethylbenzéne Aromatic HC* 100-41-4 CgHo 20
(m + p)-xyléne Aromatic HC* 106-42-3 CsHyo 40
(0)-Xyléne Aromatic HC* 95-47-6 CgHyg 58
a-pinene Monoterpene 7785-70-8 CioHie 11
B-pinene Monoterpene 19,902-08-0 CioHi6 8
Limonene Monoterpene 5989-54-8 CioHis 40

“HC means hydrocarbon

2.4 Sample extraction and instrumental
setup for VOC analysis

The global analytical methodology for VOC determination
using Tenax®TA (60/80 mesh) adsorbent cartridges is well
known and available in the literature from nearly several decades
(Pankow et al., 1982; Hellén et al., 2024). We will consequently limit
ourselves here to summarize analytical conditions applied in the
framework of this work in Table 1.

2.5 Quality control and quality assurance

The use of Tenax®TA cartridges is subject to precautions to be
considered in order to ensure the reliability and data quality. Among
these precautions, it is obviously fundamental that the recycled
tubes, reused for new collections, no longer contain any of the VOC
species that we wish to sample and measure, but also that successive
cartridges recycling does not degrade the loading capacity of the
resins. In line with previous studies (De Bortoli et al., 1992; Arnts,
2010), no Tenax®TA cartridge was used or recycled more than
10 times during the entire collection period, even though some
studies have shown no change in adsorbent capacity with old
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cartridges or cartridges recycled up to 20 times. This precaution
coupled to purchase of new fresh Tenax®TA batches allow us to
ensure that there is no aging or recycling effect occurring during this
study. Random analysis of the regenerated cartridges shows a total
absence (up to 50% of all analyses) or restricted presence of the VOC
compounds sought in our sites at concentrations below the
estimated limits of detection (LOD) (Table 2) related to our
analytical setup.

Percentages of usable VOC concentration data, i.e., analytical
results of samples for which we have (i) detected a compound and
(ii) validated a concentration value above the detection limit, are
expressed in Figure 1. Variability observed in the percentage of valid
and usable VOC data versus the number of TENAX cartridges
collected and compounds searched for is dependent on several
factors related (i) to the compounds under consideration
(compounds with a low or high presence that are emitted into
the studied environment), (ii) to environmental conditions and time
period (season) related to field sampling (weather conditions
including cyclone events, biomass growth period), and also to the
analytical capacity employed in laboratory. Considering all VOC
compounds and all classes combined since collection started at each
site, the monthly percentage of usable concentration data is not
below 17%. Some months showed 100% of valid data, i.e. 100% data
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FIGURE 1

Annual average and monthly percentage of usable (qualified)

VOC concentrations data (Isoprene, monoterpene-represented by a-
pinene, B-pinene, limonene -) and BTEX-as Benzene, Toluene,
Ethylbenzene and Xylenes) observed since April 2022 and August
2024 in OPAR-Maido observatory (MO - upper panel) and at the Mare-
Longue tropical forest natural reserve related to OZC-R Mare-Longue
research station (MALO - lower panel), respectively. Stars represent
the monthly number of collected TENAX cartridges in each sampling
site: 1 <* <= 3; 4 < ** 6; 7 =< **¥* <9, **¥**10. Grey squares represent
no sampling.

on VOC concentrations above detection limits for all the
compounds investigated. On an annual basis and even if we have
to consider the lower collection frequency in MALO site compared
to MO one, more than 50% of data are at least valid in MO versus
more than 70% in MALO.

Usable data related to each VOC classes (isoprene alone as
hemiterpene, BTEX and monoterpenes) are also shown in
supplementary material (Supplementary Figure S4,S5). Isoprene
measurements in MO show a validity rate up to 80% both in
2023 and 2024 for complete years of collection (Supplementary
Figure 54) while the lowest annual validity rates are observed for the
BTEX class for this same site. For monoterpenes measurements, the
findings are more mixed with alternatively high rate in valid and
usable data in 2022 (82%) and 2024 (85%) compared to 2023 (50%)
and 2025 (37%) although the years 2022 and 2025 should be treated
with caution due to the incomplete time series. In MALO and always
on an annual basis, 100% of the isoprene and BTEX data are valid
and usable, compared with around 60% for compounds in the
monoterpene class.

3 VOC distribution from both sites

Concentrations of qualified data (Figure 1) for all time period
collection are presented for each VOC in Figure 2 and briefly
described. Only results issued from each group of VOCs in MO
are shown, as there are currently too few VOC data from MALO to
be well represented graphically. However, the VOCs concentrations
currently recorded at the MALO site are discussed below in
comparison with those observed at MO. Qualified data (Rocco
et al., 2025a; Rocco et al, 2025b) from both sites can be freely
downloaded (open data access) via the GEOSUR website managed
by OSU-Réunion and as data
availability statement.

referenced in  the
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High concentrations of isoprene are reported at both sites.
Average concentrations are 439 + 325 pptv and 1100 + 597 pptv
for isoprene in MO (number of data n = 210) and MALO (n = 15),
respectively. Our measurements are in range with previous
measurements reported at MO site which showed concentrations
from few pptv to ~250 pptv on average (Duflot et al., 2019; Rocco
et al., 2020; Rocco et al.,, 2022; Verreyken et al., 2021) and highest
concentrations up to 550 pptv. In other background site
measurement in South Africa (Welgegund, Jaars et al, 2018),
values are lower than our measurements. Indeed, averaged VOC
concentrations VOC were 28 and 23 pptv for isoprene in Jaars et al.
(2018) for two different field campaigns. Endemic tropical forests
are known to be high emitters of VOC compounds, MALO
concentrations are normally higher in area where isoprene is the
dominated emitted compound (Rocco et al., 2024). In comparison,
another Réunion’s site, a tropical montane cloud forest (Bélouve
forest, 1200 m asl) average concentration is 400 + 160 pptv and
showed concentrations up to 750 pptv. In comparison, other
southern hemisphere tropical forests of several ppb (Tripathi
et al, 2021; Paton-Walsh et al., 2022 and references therein) and
site such as Amazon forest showed concentrations 2 to 10 times over
our concentration (2 x 10’ to 10 x 10* pptv, Wei et al., 2018). More
recently, a study reported BVOC emissions from tropical forest in
Thailand with averaged annual concentrations of 4253 + 1354 pptv
(Pripdeevech et al., 2025).

BTEX show high concentrations in MO (total n = 268) with
average concentration of 160 + 75 pptv for ethylbenzene, 674
499 pptv for toluene, 314 + 113 pptv for (m, p) xylenes, 364
143 pptv for (o) xylenes and 706 + 513 pptv for benzene. These

+
+

measurements are one order of magnitude higher than measured in
previous studies realized during 2018-2019 in the same site
(benzene, 12-25 pptv/80 pptv; xylenes, <40 pptv in Rocco et al,
20205 Verreyken et al., 2021). This is probably due to the difference
of measurement techniques used. Indeed, in these other studies,
different instrumentation was used for BTEX measurements.
TENAX tubes
concentration of benzene for which we have paid particular

Furthermore, are known to have residual
attention to the treatment and regeneration of TENAX cartridges
(Wong and Webster, 2021). Also, high concentrations have been
reported in Welgegund background site up to 290 pptv for benzene,
8590 pptv for toluene, 2040 pptv for ethylbenzene, 5800 pptv for (m
+ p)-xylenes and 1820 pptv for o-xylene (Jaars et al., 2018). Over all
the year, the concentration of BTEX at MALO (n = 31) reached on
average 557 * 859 pptv (versus 342 + 335 pptv for MO from April
2022 to July 2025) with highest values for benzene concentration
(from 440 to 4899 pptv). It is now known that a part of measured
BTEX can be produces by leaves as a stress indicator (Heiden et al.,
1999; Misztal et al.,, 2015). Other studies showed fewer or similar
BTEX concentration in tropical forests (<150 pptv, Kesselmeier
et al., 2000; ~96 pptv, 1286 pptv, 30-150 pptv for benzene, toluene
and xylenes in Paralovo et al, 2016 and 324 + 168 pptv, 181 *
110 pptv and 97 + 33 pptv in Pripdeevech et al,, 2025).

At MO, a-pinene, f-pinene and limonene concentrations have
been recorded of 145 + 87 pptv, 175 + 121 pptv and 249 + 75 pptv,
respectively. Previous studies showed concentrations at the same
order of magnitude (<200 pptv in Rocco et al., 2020). At Welgegund
background limonene

with

station, a-pinene, [P-pinene and

concentrations were lower than our measurements
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FIGURE 2

VOCs concentrations (expressed in pptv - STP conditions) at the OPAR-Maido observatory (MO) (statistics from April 2022 to July 2025) for isoprene,
a-pinene, p-pinene and limonene (monoterpenes), benzene, toluene, ethylbenzene, (m + p + 0)-xylenes (BTEX),. The violin plots and boxplots represent
the data distribution. The horizontal line within each box indicates the median. The lower and upper edges of the box correspond to the first (Q1) and third
(Q3) quartiles, respectively, defining the interquartile range (IQR). The whiskers extend to 1.5 times the IQR above Q3 and below Q1. Data points
outside this range are considered outliers and are plotted individually. The width of the “violin” reflects the data density at different values.

concentrations of 71 pptv, 19 pptv and 30 pptv, respectively (Jaars
et al, 2018). In MALO, only concentrations of a-pinene and
limonene have been reported (314 pptv and 367 pptv in average,
respectively). Previous study showed that endemic species from
MALO are mostly isoprene emitters (~50 pptv at emission in Rocco
et al,, 2024; Supplementary Material S1). In comparison with other
studies, concentrations at MO were <50 pptv (Rocco et al., 2020;
Verreyken et al., 2021) and close to 200 pptv in another tropical
forest in Reunion Island (Bélouve). In Thailand and Amazon forests
(Pripdeevech et al., 2025; Kesselmeier et al., 2000), concentrations of
145 + 72 pptv of limonene and ~200 pptv of total monoterpenes
have been reported. In background site, average total concentration
of monoterpenes was up to 215 pptv, in line with our measurements.

4 Conclusion

Isoprene, monoterpene (a-pinene, {3-pinene, limonene) and
BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) are
investigated in the OPAR-Maido observatory (MO) and in the
Mare-Longue lowland forest related to OZC-R Mare-Longue

Frontiers in Environmental Science

forest research station (MALO) from 2022 to 2024, respectively.
Monitoring of such VOC, based on discrete sampling with
adsorbent tubes (Tenax®TA) followed by GC-MS analysis,
provides a unique dataset in the Southern Hemisphere, in an
area (Indian Ocean) where few VOC data are available.
Combined with ancillary variables (meteorology, chemistry
species out of VOC as Oz, NO, in particular), data collected in
this study should contribute to a better knowledge of VOC (BVOC
their behavior and related
evolutionary trends in primary tropical forests and specific

in particular) concentrations,
tropical insular mountain environments, in the context of global
climate change and associated impacts on the natural environment.
These measurements are notably essential for a better understanding
of secondary organic aerosol (SOA) formation, atmospheric
chemistry - particularly ozone formation - and cloud formation,
all of which have significant implications for human health and
climate. These two datasets, currently in progress, should lead to
modelling improvements in such coupled tropical-oceanic
environment. They should also lead to better mapping of VOC
spatial distribution with the integration into last version dedicated

models, from the synoptic scale to the turbulent scales, as in the
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Meso-NH mesoscale meteorological research model (Lac et al.,
2018) including the MEGAN (Model of Emissions of Gases and
Aerosols from Nature) tool focused on fluxes of biogenic
compounds (Guenther et al, 2006; 2012). Lastly, these data
are also invaluable for identifying the links between BVOC
emissions and local vegetation (atmosphere-biosphere
relationship in the study of the critical zone), and for
assessing biotic responses to climate stress and global change

(Méndez et al., 2023).

Data availability statement

The datasets presented in this study can be found in online
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references: (Rocco et al., 2025a; Rocco et al., 2025b). Requests for
better understanding of data and their use should be addressed to the
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