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Muck soils (Histosols) are vital and highly productive ecosystems for agriculture.
However, managing phosphorus in these organic-rich systems presents a major
challenge. Decades of fertilization have created large legacy phosphorus
accumulation, while drainage and cultivation have altered soil pH increasing
phosphorus immobilization by calcium interaction. Standard soil tests developed
for mineral soils consistently fail to predict crop phosphorus needs in muck soils
because their chemical extractants are often neutralized by high organic matter,
and results confounded by dominant biological phosphorus cycling leading to
inaccurate recommendations. This review provides new insights into how
phosphorus behaves in muck soils and highlights the limitations of current soil
tests in capturing this complexity. Bridging this gap is essential for both
agronomic efficiency and environmental protection. The key recommendation
is to move away from universal extractants toward the development of robust,
regionally calibrated assessment tools. These tools must integrate key soil
properties, such as organic matter, pH, and phosphorus-binding elements, to
effectively guide sustainable nutrient stewardship in these vulnerable
ecosystems.
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1 Introduction

Histosols, which account for about 1.3% of the global soil area, include roughly 7% of
soils in the United States (US) (Kolka et al., 2016; Bai et al., 2025). These soils are typically
found in areas with high water tables and are often formed in wetlands or glaciated regions
(Zobeck et al., 2013). Muck soil plays a significant role in various ecosystems, particularly in
agricultural regions. The inherent fertility, excellent water retention, and friable structure
make them ideal for intensive agriculture (Bhadha et al., 2017). When drained for
agricultural use, these organic soils become exceptionally fertile, making them a vital
resource for cultivating high-value crops. In the US, regions such as the Everglades
Agricultural Area (EAA) in Florida, the mucklands of Michigan, New York, Ohio, and
California use these soils for cultivating vegetables like lettuce, celery, and onions, as well as
specialty crops such as sugarcane (Harmer and Benne, 1941; Mukherjee and Lal, 2015;
Sandoya and Lu, 2020; Bai et al., 2025).

Muck soil is distinguished by a high accumulation of organic matter, typically exceeding
20% (Frazier and Lee, 1971). As a result of more extensive microbial decomposition, muck
soil is richer in mineral content and nutrients compared to peat soil (Reddy and DeLaune,
2008; Bai et al., 2025). Beyond their high organic matter and mineral content, muck soil
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possesses several distinct characteristics. The influence of
Aluminum (Al) and Iron (Fe) is particularly complex in the
muck soil. For example, one study found a positive correlation of
P with Fe, Manganese (Mn), and Al content (Becher et al., 2018),
while other research suggests that muck soil is naturally low mineral
content, making P immobilization by Fe and Al less prevalent under
alkaline conditions (Zhi et al., 2024). Other studies have reported the
formation of ternary complexes in muck soil involving minerals like
[Fe, Al, Calcium (Ca)], humic substances, and P. For instance, Ca
binds with organic matter, such as humic acid derived from muck
soil, rather than directly binding with P minerals. It delays the
formation of stable Ca-P or Al-P/Fe-P (Castillo and Wright, 2008;
Jindo et al., 2023). Although muck soil is generally acidic, in regions
like the EAA, drainage can cause mixing with underlying calcareous
bedrock, which raises soil pH and introduces Ca-P precipitation as a
new fixation mechanism (Wright et al., 2009). Muck soil also
exhibits unique water retention capabilities and surface charge
properties, which significantly influence its chemical reactivity
and ecological function (Sokołowska et al., 2005). In addition to
these chemical interactions, P binding is also influenced by the
unique physical characteristics of muck soil, which differ from those
of mineral soils (Table 1).

Cropped muck soils are rich in organic matter and total
phosphorus (TP), necessitating careful monitoring to balance
agronomic needs with environmental protection (Audette et al.,

2018). However, the draining and cultivation of these soils trigger
aerobic decomposition and soil subsidence, which fundamentally
alter their structure and chemistry over time, creating complex
management challenges (Bhadha et al., 2020). While these soils
were historically acidic, decades of agricultural practices, including
the incorporation of limestone bedrock have raised soil pH. This
leads to high Ca levels, which can immobilize P, reducing its
availability to plants (Wright et al., 2009). To compensate for
this, additional P is commonly applied, even though the soil’s TP
content is already high (Hochmuth and Hanlon, 2016). While P
fertilization is beneficial, its excessive or long-term application leads
to soil P accumulation. Decades of agricultural production have
often involved applying P fertilizers at rates exceeding crop removal
to ensure maximum yields. This practice has led to a significant
accumulation of legacy P in the soil profile, creating a large but often
poorly available reservoir (McDowell and Haygarth, 2025). The loss
of P creates significant environmental and economic
challenges (Figure 1).

Environmentally, excess P from agriculture and wastewater
leads to water pollution causing harmful algal blooms, hypoxia,
and threats to aquatic biodiversity and human health, as well as
closures of fisheries and recreational areas, which have direct
economic consequences (Liu et al., 2008; Mallin and Cahoon,
2020). This practice is problematic, as excessive P, especially in
dissolved forms can leach into nearby water bodies and cause

TABLE 1 Key differences in the composition, density, porosity, and phosphorus retention between organic muck soil (Histosols) and mineral soil in the
surface horizon.

Characteristic Muck soil (Histosols) Mineral soil

Organic Matter % Very High (>20%) (Reddy and DeLaune, 2008) Very Low (<5%) (Reddy and DeLaune, 2008)

Dominant Composition Decomposed plant material (organic matter) (Reddy and
DeLaune, 2008)

Weathered rock-forming minerals (sand, silt, clay), primarily
quartz and aluminosilicates (Reddy and DeLaune, 2008)

Bulk density 0.1–0.35 g cm-3 (Caron et al., 2015) and 0.41–0.44 g cm-3

(Castillo and Wright, 2008)
1–1.8 g cm-3 (Caron et al., 2015)

Total porosity 0.8–0.95 (Caron et al., 2015) 0.3–0.5 (Caron et al., 2015)

Primary P -binding agents Ternary complexes of Ca2+, organic matter, and P (Jindo et al.,
2023)
Calcium carbonate (Peng et al., 2021)
Fe-Al and humic-fulvic acid fractions (Castillo and Wright,
2008).

In podzolic soils, Al is primary and then Fe (Kedir et al., 2022)
In calcareous soil, while Ca and carbonate interactions
dominate P retention, Fe and Al oxides also contribute when
present (Pizzeghello et al., 2011)
In calcareous soils (both organic and mineral), P binds to soil
organic matter, specifically humic acids, through ternary
complexes with calcium (Audette et al., 2020)

Phosphorus sorption capacity (PSC) Negative correlation with organic matter (Organic acid
competes with phosphate for sorption sites) (Daly et al., 2001)

Positive correlation with Al and Fe oxides (Daly et al., 2001)

P content: organic versus inorganic In pasture muck soil, 78% of total P was in organic forms,
versus 52% in cultivated muck soil (Castillo and Wright, 2008)

Low total P in organic form compared to muck soil. Inorganic
form could be 20%–60% (Wang et al., 2022)

Microbial P content Organic soil has microbial P up to 53% of TP. The amount is
proportional to the organic matter content (Achat et al., 2010)

Mineral soil has microbial P in 1%–5% (Brookes et al., 1982)
2%–11% (Achat et al., 2010)

Role of pH in P retention The higher pH of cultivated soil (6.8) favored P retention in Ca
fractions. The lower pH of pasture soil (5.3) favored P retention
in the humic-fulvic acid fraction. Tillage contributes to higher
pH by incorporating bedrock limestone (Castillo and Wright,
2008)

A decrease in pH can promote the dissolution of Fe and Al
oxides and hydroxides, leading to form Fe-P and Al-P
complexes
High pH can increase Ca2+ activity and carbonate
concentration, leading to the precipitation of calcium
phosphates (Penn and Camberato, 2019)

Water holding capacity Extremely high (Williams et al., 2015) Low (Williams et al., 2015)

CEC Very high: 139–282 meq100 g-1 (MacLean et al., 1964) Low: 1–50 meq 100 g-1 (Parfitt et al., 1995)
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eutrophication (Steinman and Ogdahl, 2016). Reducing nitrogen
(N) inputs without reducing P can make eutrophication worse by
favoring the growth of nitrogen-fixing cyanobacteria (Carpenter,
2008). Phosphorus accumulation can alter soil microbial
communities, reduce microbial diversity, suppress beneficial
P-mineralizing bacteria, and induce deficiencies in micronutrients
like copper (Cu) and zinc (Zn), ultimately undermining plant and
soil health (Bingham and Martin, 1956; Zeng et al., 2022; Zeng et al.,
2024). Economically, P is a non-renewable resource essential for
food production. Inefficient use of P results in both wasted fertilizer
investments and increased vulnerability to volatile global prices, as
seen in recent P price spikes that have threatened food security
worldwide (Brownlie et al., 2023; Walsh et al., 2023). Furthermore,
the costs of mitigating P pollution, such as for water treatment and
ecosystem restoration, add to these economic burdens (Sena
et al., 2020).

The profound influence of chemical, physical, and biological
factors on P solubility in muck soils highlights a critical disconnect.
While accurate fertilizer recommendations depend on reliable soil
tests, conventional methods are often inadequate. Therefore, this
review aims to 1) synthesize current knowledge on the chemical,
physical, and biological factors governing P dynamics in muck soils
2) critically evaluate how and why conventional P tests fail,
identifying specific research gaps in their calibration and
interpretation for these organic systems, and 3) propose a

framework for developing management strategies built upon
more robust, regionally-calibrated assessment tools. By meeting
these objectives, this work provides a focused pathway for
improving nutrient management to enhance crop yield while
protecting environmental quality.

2 Discrepancy of existing analytical
methodologies for assessing plant-
available phosphorus in muck soil

Unlike mineral soils for which standardized P analysis
procedures exist, there is no universal method for muck soils.
Florida adopted Water Soluble Phosphorus (WSP) for vegetable
crops and Mehlich-3 for sugarcane (Mylavarapu et al., 2021), while
Olsen P was recommended in Ontario (McDonald et al., 2024),
Bray-P in Michigan (Warncke, 2025), and WSP in California (UC
Agriculture and Natural Resources, 2025). This lack of a single
method stems from their chemical diversity, for example, an acidic
Histosols where P is held in organic forms is chemically distinct
from a long-cultivated, alkaline Histosols in the EAA, where P
chemistry is dominated by precipitation with Ca from historical
fertilizer applications and bedrock incorporation (Wright et al.,
2009). Consequently, a test designed for one environment, such
as an acidic extractant, is chemically inappropriate for the other

FIGURE 1
Conceptual diagram illustrating phosphorus (P) cycling and testing challenges in organic soils. P inputs from fertilizers, organic matter, and
weathering contribute to both organic and inorganic P pools. Organic P undergoes mineralization to inorganic forms (Fe/Al/Ca phosphates), which
interact through sorption/desorption and form P-humic complexes. Plant uptake and microbial immobilization regulate P availability, while variable
pH and subsidence affect P dynamics. Inefficient P testing methods poorly predict bioavailable P, increasing the risk of runoff and eutrophication in
nearby water bodies. This figure was created using BioRender (https://biorender.com/).
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environment. Given the limitations of purely chemical extractions, a
comprehensive approach to P management in organic soil should
also include assessing soil enzymatic activities and microbial
communities. Organic agriculture significantly enhances
microbial biomass and enzymatic activity, and these biological
shifts are directly linked to improved soil quality and changes in
P levels (Durrer et al., 2021; Lori et al., 2017). Therefore, monitoring
both biological and chemical soil properties is essential for
optimizing P dynamics in organic systems.

3 Issues with common analytical
methodologies

The unique physical, chemical, and biological characteristics of
muck soils present significant challenges for routine P tests, leading

to a disconnect between test results, crop needs, and environmental
risk. Although numerous P extraction methods exist, each possesses
notable limitations in these systems (Table 2). For instance, the
University of Florida’s Institute of Food and Agricultural Sciences
(UF/IFAS) employs a Mehlich-3 recommendation that is a linear
conversion of the older Mehlich-1 test, a method that likely
underestimates crop P needs (Mylavarapu et al., 2014). This
linear conversion does not account for differences in soil
mineralogy or organic matter content (Rodriguez et al., 2024).
Similarly, other analyses, such as the WSP and Olsen P tests,
often fail to predict plant-available P in muck soils accurately.

These analytical inconsistencies arise because P cycling in
organic soils is dominated by biological processes, unlike in
mineral soils, where it is driven by geochemistry (Cross and
Schlesinger, 2001; Pistocchi et al., 2018). In muck soils, a
significant portion of P exists in organic forms (Audette et al.,

TABLE 2 Issues with common analytical methodologies for assessing plant-available phosphorus in the muck soils.

Method Limitation
category

Specific limitation Underlying mechanism of
limitation

References

Mehlich-3 Environmental
Relevance

Poor indicator of environmental P loss risk,
specifically for dissolved reactive P

The Mehlich-3 extracted pool does not provide
information about the immediately soluble P
fraction, which constitutes the primary
environmental risk

Zheng et al. (2015)

Methodological and
Interpretive

Recommendations are often based on flawed linear
conversions from older, inappropriate tests with
Mehlich-1 rather than extensive field tests in muck
soil

Using simple mathematical conversions fails to
account for the differences in chemical pools
extracted by Mehlich-3 versus Mehlich-1, leading
to analytically inconsistent and potentially
inaccurate fertilizer recommendations

Mylavarapu et al. (2014),
Rodriguez et al. (2024)

WSP Agronomic
Relevance

Fails to account for the substantial P supply from
the mineralization of the vast organic P pool
throughout the growing season, particularly for
muck soil

WSP ignores the P that is released over time by
microbial decomposition of organic matter, a
critical pathway in muck soils

Zehetner et al. (2018)

Does not simulate plant-driven P mobilization
mechanisms, such as rhizosphere acidification

Plants are not passive absorbers. Plants actively
exude compounds to acquire nutrients. WSP is a
passive extraction that does not capture this
biological component of nutrient availability

Physical and
Analytical

High water holding capacity of muck soil can cause
the soil to absorb the entire extracting solution

The unique physical properties of muck soils (high
porosity, low bulk density) interfere with standard
lab procedures

Caron et al. (2015)

The soil-to-water use ratio for extraction varies in
the laboratory

This difference in soil-to-water ratio makes inter-
laboratory comparisons difficult

Roswall et al. (2021)

Olsen P Agronomic
Relevance

Fails to measure the P supplied by the
mineralization of the organic P pool

Similar to theWSP test, the Olsen test is a chemical
extraction that does not account for the biological
release of P from organic matter over time

Zheng et al. (2015)

Analytical Highly susceptible to colorimetric interference
from dissolved organic matter (DOM) present in
muck soil extracts

The dark-colored DOM chelates or complexes
with the molybdenum reagent used for P detection.
This reduces the reagent availability to react with
phosphate, causing incomplete color development
and a significant underestimation of the actual P
concentration

Kowalenko and Babuin
(2007)

H3A-P Chemical Reduced extraction efficiency in high pH (>7.7)
calcareous soils

In soils with high pH and free calcium carbonate,
these acids are neutralized and buffered, rendering
them ineffective at dissolving stable calcium-
phosphate minerals

Haney et al. (2017)

FeO-P Methodological Lack of standardized procedures for the
preparation of the iron-oxide-coated paper and for
the extraction process itself

The P-sorbing capacity of the strip is susceptible to
its preparation. Minor variations in protocol
between labs can significantly alter the amount of P
extracted, leading to poor reproducibility and
comparability of results

Chardon et al. (1996)
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2018), and the high organic matter content can neutralize acidic
extractants, such as Mehlich-1 and 3, thereby compromising the
analysis (Mylavarapu et al., 2014). Therefore, instead of seeking a
single universal index, research should focus on developing site-
specific, validated recommendations and regionally calibrated
mechanistic tools. A robust P risk index for Histosols must
integrate targeted chemical extraction with key soil properties
that govern P mobility, such as organic matter content, pH, and
the concentrations of P-binding elements (e.g., Fe, Al, and Ca). For
example, in some areas of muck soil, Mehlich-3 extractable Fe
played a more significant role in P retention than Mehlich-3
extractable Al, leading one research group to apply a statistically
determined multiplier of five to the Fe value to better account for its
role when calculating a Phosphorus Saturation Ratio (PSR) (Gué
et al., 2007). Other researchers have followed a similar approach to
calculate degrees of PSR (Guérin et al., 2011; Leblanc et al., 2013).
Other studies, such as those in Brazilian Histosols, used a different
index calculated with a Mehlich-1 extractant and no Fe multiplier to
determine degrees of PSR (Mikosik et al., 2024). Another study
suggested that PSR in wetland soil is unaffected by the amount of
organic matter, and P solubility is regulated by Fe and Al (Nair,
2014). PSR is the molar ratio of extractable P to the sum of
extractable Fe and Al. The PSR is used as a threshold-based
indicator of soil phosphorus loss risk in many systems (Nair and
Harris, 2014). These examples underscore the necessity of validating
P risk indices based on local soil conditions rather than pursuing a
single universal standard.

4 Phosphorus management in muck
soil: recommendations

Effective P management in muck soils requires careful
consideration of their unique biogeochemical properties.
Management strategies must be carefully tailored to maximize
crop yield while minimizing environmental P loss. Pre-season
soil testing, using tools such as the Phosphorus Saturation Index
(PSI), can inform fertilizer decisions by indicating the soil’s potential
for phosphorus (P) loss. The PSI is a sorption-derived index, derived
from a single-point or isotherm approach, used to estimate a soil’s P
sorption capacity and degree of saturation (de Campos et al., 2016).
Fertilizer applications should be avoided when index values are
above established threshold values. Tomaximize uptake efficiency, P
applications should be synchronized with crop demand, particularly
during early growth stages. In-season monitoring via plant tissue
analysis is also a practical tool that provides direct information on
the crop’s nutritional status and supports corrective, targeted
fertilization only when deficiencies are confirmed (Silveira, 2014).
Once the correct P rate is determined, the application method
strongly affects its efficiency, especially in high-fixation soils. For
instance, banding fertilizer increases early crop access to applied P
and improves its use efficiency relative to broadcast placement
(Hochmuth et al., 2014). It is also important to note that
excessive application of P can negatively affect the uptake of
other essential nutrients, such as Cu, Fe, Mn, S, and Zn (Safaya,
1976; Yu et al., 2020; Assefa et al., 2021; Yang et al., 2024). Achieving
efficient phosphorus utilization requires an integrated approach that
encompasses the following key strategies.

4.1 Strategy to adjust the soil chemical
properties

The specific chemistry of the soil dictates the appropriate
management response. For example, in muck soils overlying
limestone bedrock that have high Ca content and high pH, P
tends to precipitate as less soluble calcium phosphates. The
drainage needed for agricultural production initiates subsidence,
which can alter mineral inputs and surface chemistry, ultimately
increasing soil pH. The abundant Ca interacts with phosphate ions
to form insoluble calcium phosphate minerals, often rendering
typical fertilizer rates insufficient for optimal crop growth
(Naeem et al., 2013). This is particularly important for muck soil,
as it exhibits significantly variable P retention capacities, which play
a key role in determining P mobility. Soils with a low P retention
capacity pose a higher risk of nutrient loss into surrounding
ecosystems (Wright et al., 2009; Kedir et al., 2022). In these
cases, management can involve using acid-forming fertilizers or
applying elemental sulfur (S) to lower the soil pH (Orem, 2007;
Wright et al., 2009; Hochmuth and Hanlon, 2016; Hochmuth et al.,
2025). In contrast, acidic muck soils with high Fe and Al content can
strongly adsorb P to oxides and hydroxides, making it unavailable.
For these soils, liming to raise the pH to a range of 6.0–7.0 can
increase P availability (Reddy and DeLaune, 2008; McCray, 2022).
Soils that lack significant P-retaining minerals, applied P remains
highly soluble, and application rates should not exceed crop nutrient
requirements to prevent losses (Harris et al., 2010).

4.2 Soil management and conservation
strategies

Beyond fertilization and soil physical-chemical techniques,
broader conservation practices are essential for maintaining soil
and its associated P in the field. This includes adopting practices like
cover cropping, precision land leveling, and conservation tillage to
minimize erosion from wind and water (Sharpley et al., 2013).
Adding biochar can also improve P availability depending on
feedstock, pyrolysis temperature, and application rate (Novak
et al., 2014; Glaser and Lehr, 2019; Freitas et al., 2020). Such
integrated practices that improve fertilizer uptake efficiency are
both economically beneficial and environmentally protective by
minimizing residual P accumulation in the soil (Doydora
et al., 2020).

4.3 Statistical frameworks for P application
determination

A statistical framework can further refine environmental P
management. This approach moves beyond simple linear models
to more accurately reflect the non-linear nature of crop yield
response to nutrient inputs. The primary agronomic benefit is
the prevention of over-fertilization, which provides clear
economic advantages by eliminating unnecessary fertilizer
expenditures that offer no additional yield. Research has
established several location-specific change points for muck soils.
For instance, in the Wasda Muck of North Carolina, a Mehlich-3 P
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threshold of 115 mg kg-1 was identified. Exceeding this threshold
value led to a tenfold increase inWSP, indicating a heightened risk of
P loss (Bond et al., 2006). In muck soils in Ontario, Canada, one
study found that exceeding a FeO-P value of 238.6 mg kg-1 increased
dissolved reactive phosphorus (DRP) loss in subsurface leachate by
more than fourfold (Zheng et al., 2015), while another study
reported exceeding 233.8 mg kg-1 in surface runoff increased
DRP loss by nearly twelvefold (Zheng et al., 2014). Studies have
found that achieving a profitable crop yield is unlikely when FeO-P
values exceed 20 mg kg-1 (Sims et al., 2002; Nair, 2024). Beyond
20 mg kg-1 of extractable FeO-P, P application would be
environmentally detrimental. These bioavailable forms of P
extraction could provide more reliable estimates of P
requirements. However, the conversion of Mehlich-3 to FeO-P is
highly site-specific; therefore, it cannot be accurately represented by
a single conversion factor for a given site (Rodriguez et al., 2024).

Muck soils hold large but complex P reserves shaped by organic
matter dynamics, Ca interactions, and drainage-induced
pH changes. Future research should focus on developing unified,
soil-specific P indices, exploring biological P mobilization pathways,
and validating site-based thresholds for fertilizer use. A balanced
application of P, combined with proper management practices can
optimize crop yield while minimizing environmental nutrient losses.
P fertilizer use in agriculture should be prohibited when soil tests
show no P deficiency, and nutrient bioavailability can be maintained
through management practices.
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