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Utility-scale solar photovoltaic (PV) are expanding across the Qinghai–Tibet
Plateau, yet their ecological consequences for alpine grasslands remain poorly
quantified. We integrated the Remote-Sensing Ecological Index (RSEI) with a
Long Short-TermMemory (LSTM) network to examine spatiotemporal responses
of alpine grasslands to a 1.2 GW PV plant constructed in 2016. The results
indicated that relative to the pre-construction period (1990–2015), the mean
RSEI within PV system increased significantly by 33.4% (p < 0.01) in the post-
construction period (2016–2024), and the proportion of pixels exhibiting positive
RSEI anomalies rose from 44.1% to 77.6%. Ecological improvements propagated
beyond the panel arrays, producing statistically significant effects (p < 0.05) within
120m and detectable influences up to 720m. Elevation and slope modulated the
magnitude of these spill-over effects. Our findings demonstrate that PV system
can enhance grassland quality in this alpine region and provide a transferable
framework for evaluating renewable-energy impacts in fragile ecosystems.
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1 Introduction

Rapid decarbonisation has elevated solar photovoltaic (PV) to the forefront of
renewable-energy strategies (Olabi and Abdelkareem, 2022), yet the ecological
consequences of utility-scale PV expansion—particularly in climatically sensitive alpine
grasslands—remain poorly quantified. Global PV capacity surged from 402.5 GW in
2017 to 1,185 GW in 2022 (Wang et al., 2024), with China contributing 44% of new
additions (Guo et al., 2019; Liu and Huo, 2024).

Utility-scale PV installations are now the dominant modality for large-scale solar-
energy deployment (Yu et al., 2023). Once deployed, these engineered systems
fundamentally reconfigure land-surface properties and trigger a cascade of
environmental effects (Guerin, 2017). Specifically, land-use conversion, altered
albedo, and modified surface-energy partitioning combine with micro-climatic
feedbacks—driven by panel shading and runoff harvesting—to influence soil
moisture, plant–soil interactions, and ecosystem water-use efficiency. Collectively,
these changes reverberate through multiple ecosystem-service pathways and have
attracted sustained scholarly scrutiny (Pu et al., 2021; Tawalbeh et al., 2021). During
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construction, the removal and compaction of native soils
degrade vegetation cover and elevate erosion risk (Luo et al.,
2023). Mechanical compaction, foot traffic, and grading further
alter soil physical structure and hydrology (Iyer and Scott, 2001).
Once operational, panel shading generates sharp micro-
environmental gradients: soil beneath arrays is cooler and
moister than adjacent sunlit areas (Yue et al., 2021). Notably,
vegetation responses to these gradients remain equivocal. Some
studies report that increased surface roughness and reduced
wind speed beneath panels lower evapotranspiration and foster
plant growth (Luo et al., 2023; Chen et al., 2025). Conversely,
others observe light limitation and lower canopy temperatures
that suppress photosynthetic efficiency, increase habitat
heterogeneity, and ultimately reduce plant diversity and shift
community composition (Wu et al., 2025).

The ecological disturbance effects associated with PV systems
have attracted sustained scholarly attention (Pu et al., 2021;
Tawalbeh et al., 2021). Field studies consistently document
construction-phase impacts: vegetation removal, soil
compaction and accelerated erosion (Liu et al., 2023).
Moreover, construction activities such as mechanical
compaction, human trampling, and land leveling further alter
the physical properties of the original soil matrix (Iyer and Scott,
2001). Post-construction, the shading effects of PV panels create
significant disparities in soil temperature and moisture between
areas beneath the panels and adjacent external zones, which
further reshape community composition (Yue et al., 2021).
Such discrepancies reflect methodological constraints: plot-
level measurements are spatially limited and temporally
discontinuous, hindering regional generalization (Zheng
et al., 2023).

Remote-sensing approaches overcome these limitations by
enabling continuous, large-scale monitoring. The Remote-Sensing
Ecological Index (RSEI) integrates vegetation cover, soil moisture,
land-surface temperature and dryness into a single metric, providing
a robust proxy for ecosystem health that is well-suited to detect PV-
induced perturbations (Boegh et al., 1999). Although the RSEI was
originally developed for urban ecosystems, it has been successfully
applied to various natural ecosystems in recent years, including
alpine grasslands (Du et al., 2025) and forests (Wang et al., 2022).
Coupling RSEI with deep-learning temporal models—specifically
Long Short-Term Memory (LSTM) model—further allows
disentanglement of PV effects from background climate variability.

The northwestern Sichuan region of China, located on the
eastern Qinghai-Tibet Plateau, boasts abundant solar energy
resources, with a theoretical PV power generation potential
exceeding 85,000 MW (Hu et al., 2016). Since the 2010s, the
large-scale construction of centralized PVs in this area has
created a significant contradiction with the vulnerability of alpine
grasslands. Existing studies have shown that the harsh environment
in alpine areas often results in extremely fragile local ecosystems,
with limited self-regulation and recovery capabilities, and high
sensitivity to external disturbances and climate change (Dong
et al., 2020). Therefore, the construction of PV systems may
cause disturbances to alpine ecosystems (Wang et al., 2025).
Specifically, after the power stations are built, PV modules alter
the original albedo of the ground surface—with the degree of this
alteration varying by underlying surface type; at the same time,

changes in local microclimate conditions, wind speed, and wind
direction may also have significant impacts on the community
structure and soil physicochemical properties of alpine steppes.
However, to date, most studies on the ecological impacts of PV
systems have focused on desert or Gobi landscapes (Ashraf et al.,
2020), while relevant research targeting alpine ecosystems remains
largely unexplored.

Here we quantify the multi-decadal ecological response to
utility-scale PV in alpine grasslands using a 35-year Landsat-
derived RSEI time series (1990–2024) and an LSTM
counterfactual model. Our objectives are threefold: (i) to
characterise spatiotemporal changes in RSEI before and after PV
construction; (ii) to isolate the PV impacts on alpine grasslands from
climatic variability using LSTM-driven counterfactuals; and (iii) to
delineate the spatial extent of PV influence via buffer-zone analysis.
The findings provide a rigorous evidence base for reconciling PV
expansions with conservation of alpine grassland ecosystems in
similar regions.

2 Materials and methods

2.1 Study area

This study focuses on the Meixing photovoltaic plant, situated at
102°22′36.43″E, 31°1′45.08″N in Xiaojin County, Aba Tibetan and
Qiang Autonomous Prefecture, Sichuan, China. The Meixing
photovoltaic plant was constructed in 2016, with an installed
capacity of 50 megawatts (MW) and an annual power generation
capacity of 70 million kilowatt-hours (kWh). It occupies a total area
of approximately 107.15 hectares with elevation range from 3,510 m
to 3,621 m. The PV modules are fixed in bracket mode and the
groups of panels were 1.2 m × 2.2 m, with a tilt angle of 42 ° relative
to the ground. The spacing between rows of panels was around 3 m.
The grasslands both inside and outside the photovoltaic power
station are alpine grasslands. Additionally, free grazing is
permitted on all these grasslands, with the grazing intensity being
basically consistent across them (Figure 1).

The region experiences a cold-temperate plateau monsoon
climate, characterized by an average annual temperature of
approximately 0.9 °C and annual precipitation ranging between
600 and 800 mm, primarily concentrated from May to
September. The analytical domain of this study encompasses a
5 km buffer around the plant perimeter to capture potential
ecological spill-over effects.

2.2 Data sources

This study utilized long-term Landsat series satellite
observations (1990–2024) from the Google Earth Engine (GEE)
platform, specifically including Surface Reflectance (Tier 1)
products from Landsat 5 Thematic Mapper (TM), Landsat
7 Enhanced Thematic Mapper Plus (ETM+), and Landsat
8 Operational Land Imager/Thermal Infrared Sensor (OLI/
TIRS). All datasets underwent radiometric calibration,
atmospheric correction, and geometric precision correction. The
data feature a spatial resolution of 30 m and a nominal temporal

Frontiers in Environmental Science frontiersin.org02

Li et al. 10.3389/fenvs.2025.1693677

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1693677


resolution of 16 days. To ensure data representativeness and
accuracy, 280 cloud-minimized images acquired during the
vegetation growing season (May–August) were selected for
analysis. The remote sensing data employed in this study are
characterized by highly stable orbital and transit times, typically
concentrated between 10:00 and 11:00 a.m. local time. This ensures
relatively consistent solar illumination conditions (such as solar
altitude and azimuth angles) across images acquired on different
dates, thereby substantially reducing variations in illumination and
shadow effects caused by observational time differences (e.g.,
morning vs. afternoon). This consistency guarantees
comparability in pixel reflectance and land surface temperature
retrieval across multi-temporal datasets.

2.3 Methodological framework

The methodological framework of this study is illustrated in
Figure 2, comprising four key steps.

1. RSEI Calculation: Based on the Google Earth Engine (GEE)
platform, Landsat 5/7/8 imagery was integrated to extract four
ecological indicators: greenness (Normalized Difference
Vegetation Index, NDVI) for vegetation health, wetness
(tasseled cap wetness component) and heat (Land Surface
Temperature, LST) for temperature, and dryness
(Normalized Difference Bare Soil Index, NDBSI). Principal

Component Analysis (PCA) was applied to determine
indicator weights and construct the RSEI index (Xu, 2013).

2. Trend Analysis: Theil-Sen slope estimation and Mann-Kendall
significance tests were employed to conduct pixel-wise trend
analyses of RSEI time series during pre-construction
(1990–2015) and post-construction (2016–2024) periods.
This approach revealed ecological trajectory shifts in alpine
grasslands induced by PV power plant development.

3. Scenario Comparison: Historical RSEI data from 1990 to 2015
(unaffected by PV system) were used to train a Long Short-Term
Memory (LSTM) network. The model simulated natural-state
RSEI trajectories in 2016–2024 without PV impact. Observed
RSEI values were compared against LSTM predictions to
quantify the ecological changes caused by PV system.

4. Impact Boundary: The spatial influence boundary of PV
system on RSEI variations was calculated to identify the
maximum ecological impact extent. A multi-threshold
buffer analysis was implemented to determine the influence
boundary and identify the maximum spatial extent of PV
system impacts on RSEI variations.

2.3.1 Calculation of RSEI
To eliminate the influence caused by different dimensions of

various indicators, this study standardized the four indices (NDVI,
WET, LST, NDBSI) using the mean and variance of the overall time
series data to ensure the consistency throughout the entire research
period (Wen et al., 2025). Meanwhile, this study adopts the method

FIGURE 1
Location of the study area.
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of fixing the direction of eigenvectors to address the inconsistency
between the results of principal component analysis (PCA) and the
expected RSEI values (Zheng et al., 2022), which arises from the
uncertainty in the direction of eigenvectors during the PCA process.
In addition, to ensure that RSEI values are positive, the eigenvectors
of the four components in this study follow the following rules: 1)
The eigenvector directions of the greenness and wetness
components should be positive; 2) The eigenvector directions of
the heat and dryness components should be negative (Ning et al.,
2020). The specific calculation formula for RSEI is shown in
Formula 1:

RSEI0 � PCI NDVIn,WETn, LSTn,(

NDBSIn) VNDVI| |, VWET| |,−VLST| |,−VNDBSI| |( ) (1)

where VNDVI/WET/LST/NDBSI represent the eigenvectors of the
greenness, wetness, dryness, and heat components, respectively.

In addition, to minimize the impact of temporal variations in
image acquisition on other ecological factors, this study restricted
the image acquisition window to the peak months of the vegetation
growing season and their adjacent months, namely, May to August
each year (Zheng et al., 2022).

The principal component analysis based on the four indicators
(Table 1), showed that the first principal component (PC1)
accounted for an average of 76.8% of the total variance across
the 35-year period, indicating that PC1 captures the majority of
the characteristics represented by the four indicators and can
effectively reflect the ecological conditions of the study area.
NDVI and WET showed high average correlation coefficients
with positive loadings, suggesting their positive contributions to
ecological quality. In contrast, NDBSI and LST exhibited negative
loadings, reflecting their adverse effects on ecological quality
assessment, which aligns with the actual conditions observed in
the study area.

FIGURE 2
Methodological framework for quantifying the ecological impact of PV system.
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2.3.2 Theil-sen slope and Mann-Kendall analysis
The Theil-Sen slope method quantifies trend magnitude and

direction by calculating the median slope of all paired data points,

offering robust trend evaluation while mitigating outlier influences
(Zheng et al., 2021; Zhang et al., 2022). The Mann-Kendall (MK)
trend test, a non-parametric statistical test, evaluates the significance

TABLE 1 Principal component analysis results of RSEI.

Years PC1 Eigenvalue Contribution rate %

NDVI WET NDBSI LST

1990 0.4173 0.6294 −0.6542 −0.0424 0.0613 75.12

1991 0.6029 0.5949 −0.5173 −0.1227 0.0548 75.08

1992 0.4423 0.7397 −0.5063 −0.0275 0.0530 72.41

1993 0.5195 0.7110 −0.4605 −0.1120 0.0438 75.03

1994 0.5023 0.6570 −0.5542 −0.0942 0.0676 76.52

1995 0.4478 0.7046 −0.5487 −0.0436 0.0608 74.94

1996 0.5592 0.6206 −0.5405 −0.1003 0.0670 76.56

1997 0.5959 0.6032 −0.5111 −0.1404 0.0774 79.58

1998 0.5775 0.5675 −0.5757 −0.1138 0.0662 79.24

1999 0.4925 0.7417 −0.4370 −0.1275 0.0427 74.17

2000 0.6027 0.5746 −0.5357 −0.1403 0.0689 79.19

2001 0.5364 0.6662 −0.5048 −0.1171 0.0645 76.21

2002 0.5059 0.6479 −0.5576 −0.1158 0.0653 78.02

2003 0.4785 0.7002 −0.5182 −0.1106 0.0463 68.10

2004 0.4901 0.6547 −0.5598 −0.1337 0.0499 74.29

2005 0.5692 0.5985 −0.5504 −0.1225 0.0440 67.50

2006 0.6244 0.6314 −0.4289 −0.1657 0.0773 83.25

2007 0.5791 0.7143 −0.3537 −0.1710 0.0601 80.17

2008 0.4699 0.8555 −0.1428 −0.1642 0.0395 81.07

2009 0.6061 0.7602 −0.1323 −0.1929 0.0458 80.38

2010 0.4589 0.8245 −0.2122 −0.2542 0.0237 75.26

2011 0.4055 0.8746 −0.2111 −0.1612 0.0370 81.60

2012 0.6489 0.1607 −0.7011 −0.2483 0.0361 61.91

2013 0.6438 0.6761 −0.2744 −0.2306 0.0614 84.12

2014 0.5572 0.7594 −0.2584 −0.2146 0.0516 81.07

2015 0.6439 0.6784 −0.2780 −0.2188 0.0458 77.17

2016 0.5838 0.7492 −0.2287 −0.2133 0.0513 83.86

2017 0.6203 0.6813 −0.3273 −0.2096 0.0504 78.12

2018 0.7624 0.4848 −0.3246 −0.2799 0.0481 74.36

2019 0.6205 0.6803 −0.3220 −0.2204 0.0492 78.85

2020 0.5890 0.7208 −0.2716 −0.2443 0.0312 74.12

2021 0.6205 0.6727 −0.3271 −0.2353 0.0418 80.78

2022 0.6703 0.6224 −0.3322 −0.2303 0.0520 78.23

2023 0.6124 0.6888 −0.3113 −0.2315 0.0667 83.60

2024 0.6497 0.6277 −0.3778 −0.2028 0.0547 68.59
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of monotonic trends in RSEI time series without assuming specific
data distributions. This approach demonstrates strong robustness
against outliers, with smaller p-values indicating higher probabilities
of statistically significant trends (Ren et al., 2022).

This study synergistically applied Theil-Sen slope estimation
and MK testing to analyze pixel-scale RSEI trends during pre-
construction (1990–2015) and post-construction (2016–2024)
periods. This combined methodology enables comprehensive
characterization of ecological evolution patterns in alpine
grasslands under PV system scenarios.

2.3.3 LSTM model
LSTM is a specialized deep learning model designed for

processing long-term sequential data, capable of capturing
nonlinear features in time series while avoiding the vanishing
and exploding gradient problems common in traditional
Recurrent Neural Networks (RNNs) (Gers et al., 2000). This
study developed a two-layer LSTM model architecture. The
output from the first LSTM layer serves as direct input to the
second layer, enhancing the model’s capacity to model complex
temporal patterns (Wang et al., 2018). The model consists of two
hidden layers with 128 hidden units each. The input sequence length
was set to 26 years to predict the RSEI value for the subsequent year.
Model training was performed using the Adam optimizer with a
learning rate of 0.001 over 50 epochs and a batch size of 16. To
mitigate overfitting, the training set was randomly reshuffled each
epoch, and model performance was monitored on a held-out
validation set. Additionally, we implemented dropout
regularization (rate = 0.2) within the LSTM architecture and
employed early stopping with a patience of 5 epochs,
automatically terminating training when validation performance
ceased to improve to ensure optimal generalization capability.

As shown in the Table 2, the input dataset for the LSTM model
aggregates 26 RSEI sequence samples extracted from actual
observations during 1990–2015 in areas unaffected by

photovoltaic development,, totaling 50,000 samples. These
samples were divided into a 90% training set and a 10% testing
set for model training and performance evaluation, respectively. The
trained LSTM model was subsequently employed to simulate RSEI
data for 2016–2024 under a hypothetical scenario without PV
system impacts.

3 Results

3.1 RSEI changes before and after PV
construction

Figure 3 illustrates the spatiotemporal evolution of the RSEI
index across the PV system and its 5 km buffer before (1990–2015)
and after (2016–2024) construction. Spatially, pre-construction,
52.4% of the study area exhibited declining trends, primarily
located in high-altitude canyon regions, which are characterized
by sparse grassland. Whereas 47.6% displayed increasing trends,
mainly along riparian corridors. Within PV panel zones, 55.9% of
areas displayed declining RSEI trends and 44.1% showed increases.
However, neither trend was significant, indicating ecological
stability in before construction period.

Post-construction, the regional balance shifted: declining RSEI
pixels fell to 48.3%, while rising pixels increased to 51.7%. Notably,
within the panel zones, 77.6% of pixels exhibited significant
increasing trends and only 22.4% showed declines, demonstrating
a marked ecological enhancement attributable to the PV system.

Temporally, the study area exhibited fluctuating declines in mean
RSEI values. During the pre-construction period (1990–2015), mean
RSEI declinedmodestly from 0.430 in 1990 to 0.428 in 2015. A parallel
trend occurred in PV panel zones, where mean RSEI declined from
0.488 to 0.478. After 2016, the entire study area demonstrated modest
ecological recovery, with mean RSEI rising to 0.429 by 2024. Notably,
the temporal analysis revealed a distinct “short-term disturbance and

TABLE 2 Configuration parameters of LSTM model.

Parameter category Parameter Value/Setting Description

Model Architecture Layers 2 Number of LSTM layers

Hidden units per layer 128 Neurons in each LSTM layer

Input sequence length 26 years Historical years used for prediction

Optimizer Adam Gradient descent optimization algorithm

Training Parameters Learning rate 0.001 Step size for weight updates

Batch size 16 Samples processed per training

Epochs 50 Complete passes through the training dataset

Total samples 50,000 RSEI sequences (1990–2015)

Data Configuration Training set 45,000 (90%) Parameter optimization

Testing set 5,000 (10%) Performance evaluation

Dropout rate 0.2 rate Applied between LSTM layers and before output

Overfitting Control Validation monitoring Continuous 5,000 samples throughout training

Early Stopping Patience = 5epochs Automatic termination on validation plateau
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long-term recovery” dynamic pattern (Figure 3k). Specifically, within
the PV panel area, the mean RSEI decreased from 0.436 in 2015 (pre-
construction) to 0.423 in 2016 (construction year), reflecting the
short-term adverse impact of construction activities on the
ecological environment. However, during the operational phase
(2016–2024), the RSEI showed a continuous recovery, ultimately
reaching 0.508 by 2024, which exceeded the pre-construction level.
This divergence underscores PV system’s capacity to reverse prior
ecological decline trends within their immediate operational areas.

3.2 Evaluation of the LSTM model
performance

To comprehensively evaluate the performance of the LSTM
model’s performance in predicting RSEI, this study conducted

simulation experiments using 50,000 samples from the
1990–2015 period. Among these, 45,000 samples were used for
model training, and the remaining 5,000 samples were utilized to test
the model’s predictive capability. Simulation results demonstrated a
mean absolute error (MAE) of 0.038, indicating an average deviation
between predicted and observed RSEI values. The root mean square
error (RMSE) of 0.051 further confirmed the concentration of error
distribution. A coefficient of determination (R2) of 0.878 revealed
that the model effectively explained the data variability, highlighting
its superior nonlinear fitting capacity. From the loss curve, it can be
observed that the model fits well, with training and validation losses
converging stably without significant overfitting (Figure 4). These
robust performance metrics underscore the exceptional robustness
of the LSTM model.

Model fidelity was further corroborated through ordinary least-
squares regression between observed and predicted RSEI values. The

FIGURE 3
Spatial and temporal variations of RSEI and significance tests pre (1990–2015) and post (2016–2024) the construction of the PV system: Spatial
variations (a,b,e,f); Significance tests (c,d,g,h); Temporal variations (i,j).
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fitted slope of 0.896 ± 0.005 (mean ± SE, p < 0.001) indicates a
marginal overestimation, yet the slope is statistically
indistinguishable from unity, confirming high predictive
accuracy. Violin plots reinforced this conclusion: the kernel-
density curves of predicted and observed distributions overlap
almost completely across the primary interval [0.18, 0.75]. These
non-parametric results demonstrate that the LSTM model not only
captures individual RSEI values with minimal bias but also preserves
the full distributional characteristics.

3.3 Impacts of PV system on alpine
grasslands

Figure 5 contrasts the observed post-construction RSEI
distribution with a counterfactual simulation in which the PV
system was never installed. As shown in Figure 5a, after
construction, RSEI exhibits a clear south-to-north gradient, with
the highest values (RSEI >0.60) concentrated along river corridors,
valley floors and beneath PV panels (mean = 0.52). In the no-PV
simulation (Figure 5b), the same south-high-north-low pattern is
evident, but mean RSEI in the PV system is markedly lower (mean =
0.38). This divergence indicates a net ecological benefit attributable
to the PV system.

Figure 5c quantifies the spatial difference between the two
scenarios. While both positive and negative RSEI anomalies
occur, most variations lie within the −0.10 to +0.10 range.
Overall, positive deviations dominate within the panel zones,
confirming that PV infrastructure has enhanced rather than
degraded alpine grassland conditions, and highlights the spatially
heterogeneous nature of these interactions.

3.4 Impact scope of PV system

By using a counterfactual framework, the study derived the net
ecological effect of the PV system by differencing post-construction
(2016–2024) RSEI observations against LSTM-predicted values for a
no-construction scenario (Figure 6). Results demonstrate that PV

system generated significant positive ecological effects on
surrounding grasslands, though these effects exhibited distinct
spatial decay patterns. Specifically, the core PV panel-covered
area showed a statistically significant increase of 0.14 in mean
RSEI compared to pre-construction baseline levels, indicating a
pronounced ecological improvement.

T-test analyses confirmed that RSEI increments within 120 m of
the PV system were statistically significant (p < 0.05). Beyond 120m,
the influence gradually weakened, and the previously observed
stabilization trend ceased beyond 720 m, establishing a clear
spatial boundary for the ecological impacts of PV system
(Figure 6a). Furthermore, the study incorporated topographic
factors to analyze the spatial distribution patterns of PV system
impacts on the grasslands along elevation gradients.

Moreover, the ecological benefit attenuated exponentially with
distance from the PV system. RSEI increments declined by 50%
within 30 m (0.07), reached 0.02 at 60 m, and became negligible
(0.005) at 120 m (Figures 6b,c). T-test analyses confirmed
significance (p < 0.05) out to 120 m; beyond this radius the
effect gradually weakened and effectively disappearing after 720 m.

4 Discussion

4.1 Impacts of PV system on alpine
grasslands

This study validates the applicability of RSEI in the alpine
grasslands through principal component analysis. The results
show that the contribution rate of the first principal component
consistently exceeds 70%, indicating that the model effectively
integrates information from the four core ecological
indicators—greenness, wetness, heat, and dryness. This finding
not only confirms the reliability of the RSEI model for assessing
ecologically fragile areas but also provides empirical support for its
use in monitoring the ecological effects of photovoltaic power
stations in this study.

Comparative analysis of RSEI before and after PV system
construction reveals that post-construction areas with increasing

FIGURE 4
Evaluations of the LSTM model for RSEI prediction. (a) Linear Fit Plot; (b) Violin plot.
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RSEI slightly exceeded pre-construction levels, while regions
exhibiting declining RSEI decreased. This indicates improved
ecological conditions following PV system, particularly within PV
panel zones. These ecological impacts exhibit a dynamic pattern
characterized by short-term degradation followed by long-term
improvement. During the construction phase, photovoltaic power
stations inevitably cause surface disturbance through excavation,
filling, stacking, and compaction, significantly impacting the original
topsoil, vegetation, and surface crust. This leads to the destruction of
the surface crust, reduced vegetation coverage, ecological
deterioration, and decreased plant community diversity (Zhou
and Wang, 2019). However, research findings indicate that after
the power station becomes operational, ecological quality gradually
recovers and improves. The microclimatic effects generated by PV
arrays, such as the shading effect of panels that effectively reduces
surface water evaporation and wind speed, thereby improving soil
physicochemical properties (Jiang et al., 2021), along with the
function of PV panels as rainwater collection surfaces (Myyas
et al., 2022), create microclimatic conditions in inter-panel areas
that may be more conducive to plant growth. These factors are likely
key reasons for the continuous recovery of RSEI values during the
operational period (2016–2024) and their eventual surpassing of
pre-construction levels. Therefore, this study concludes that alpine

grassland ecosystems demonstrate significant potential for
ecological recovery after the initial disturbance phase of
photovoltaic construction.

Counterfactual simulations based on the LSTM model
demonstrate that PV system generates both positive and negative
ecological effects, though net positive impacts dominate. The
observed RSEI enhancement in PV panel areas may be attributed
to the PV panel’s capacity to substantially increase vegetation and
soil carbon/nitrogen stocks (Zhang et al., 2024), thereby boosting
grassland aboveground productivity and plant species diversity (Bai
et al., 2022). For instance, the PV system in Qinghai Gonghe Basin
exhibits significantly higher vegetation diversity indices, soil
moisture content, organic matter, and total nitrogen levels
compared to adjacent areas, effectively promoting vegetation
recovery and wind-sand stabilization (Wu et al., 2024). PV
panels reduce wind speed through physical obstruction while
their shading effects decrease evaporation and evapotranspiration,
enhancing soil moisture retention (Liu et al., 2019). Precipitation
concentrated along panel edges flows into inter-array spaces,
increasing soil moisture via water redistribution (Armstrong
et al., 2014). Furthermore, elevated photosynthetically active
radiation in inter-panel gaps stimulates plant photosynthesis (Bai
et al., 2012; Zhang et al., 2023). The combined effects of improved

FIGURE 5
Spatial distribution patterns of RSEI after the PV system construction: (a) Actual RSEI; (b) Predicted RSEI based on LSTMmodel; (c)Net impact of the
PV system on RSEI.
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soil moisture and photosynthetic efficiency promote grassland
growth, while increased biomass generates more litter input to
soils, enhancing nutrient supply, soil structure, and water-holding
capacity (Deutsch et al., 2010). These interconnected mechanisms
collectively drive the significant positive ecological impacts of PV
system on local environments.

This study found that ecological conditions in areas adjacent to
PV system also experienced notable improvements. Specifically, the
ecological enhancement effects of PV system were most pronounced
within 120 m of the facilities, gradually diminishing with increasing
distance and ceasing beyond 720 m. This demonstrates that PV
system impacts on ecosystems exhibit both spillover and boundary
effects. The observed spillover effects may be attributed to the cold
island effect induced by PV system (Li et al., 2021), with its spatial
extent simultaneously constrained by topographic gradients
particularly including elevation and slope. The significant impact
zone within 120 m reflects direct ecological responses to PV system,
while the attenuation transition belt between 120 and 720 m likely
results from interactions between artificial facility effects and natural
topographic-ecological process. Topographic analysis revealed that
this distance-dependent decay is partly governed by elevation. The
elevation gradually decreases with increasing distance from the PV

system: at 120 m—the distance of significant ecological impact—the
elevation drops to 3,508 m, representing a decline of 38.2 m. At the
critical distance of 720 m, the elevation further decreases to 3,218 m,
resulting in a total elevation difference of 328 m. This elevational
gradient has likely influenced the observed spatial pattern of
ecological effects by altering local hydrothermal conditions
(Okland et al., 2008; Moeslund et al., 2013). Notably, impact
extents may vary depending on site-specific factors including
geographical location, plant scale, array layout, and technical
specifications such as panel height, orientation, and tilt angles.
Nevertheless, the proposed framework effectively quantifies the
magnitude and spatial boundaries of PV system’s ecological
impacts, providing a reliable methodological foundation for
analogous environmental assessments in renewable energy
development.

4.2 Limitations and future directions

While this study has systematically evaluated the impacts of
PV systems on alpine grasslands, our research still has the
following limitations: First, due to technical constraints of

FIGURE 6
Impact scope of PV system: (a) Impact scope; (b) 30-m interval buffers; (c) Variations of RSEI with distance to PV system.
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remote sensing detection, the reflectivity and shading effects of
PV panels may lead to the underestimation of vegetation
changes beneath the panels. Additionally, the limitation of
remote sensing image resolution prevents comparative studies
on grasslands between “areas beneath panels” and “inter-array
gaps”—both issues introduce uncertainty into ecological
assessments (Xu et al., 2024). Furthermore, the shading from
PV panels also hinders the accurate acquisition of key ecological
parameters, which may in turn compromise the accuracy of the
RSEI. Second, this study did not consider the applicability of the
RSEI in alpine grassland ecosystems, which may result in the
relevant findings failing to reflect the true changes in
environmental quality before and after the construction of PV
systems. Third, the 8-year post-construction monitoring period
can only capture mid-term ecological responses and is
insufficient to assess long-term processes such as soil
biogeochemical transformations and community succession
(Li et al., 2023). Fourth, this study did not account for the
short-term impacts during the construction phase of PV
systems. Therefore, the ecological changes monitored in this
study are actually a comprehensive reflection of short-term
disturbances and long-term adaptations. Additionally, our
understanding of the spillover effects of PV systems may not
be accurate. This is because slope itself influences the
construction of PV systems; for instance, PV facilities cannot
be built in areas with excessively steep slopes. Finally, this study
relies primarily on remote sensing data and model simulations,
with a lack of ground validation. Although remote sensing
technology enables large-scale and continuous monitoring, its
accuracy is limited by cloud/snow cover, atmospheric correction
errors, and sensor performance (Zhu et al., 2015), thus, ground
validation is essential. To address these limitations, we suggest
that future studies should extend the monitoring period,
integrate simultaneous ground observations, and adopt
satellite images with higher resolution to improve the
accuracy and reliability of research results.

5 Conclusion

This study presents an integrated framework that couples the
RSEI index with LSTM network to quantify the ecological
consequences of utility-scale PV system in alpine grasslands.
Results indicate a 4.08% reduction in grassland degradation
areas during the post-construction period (2016–2024)
compared to the pre-construction baseline (1990–2015). Within
the panel area, the pixels exhibiting positive RSEI change rose from
44% in the pre-construction period to 77.5% in the post-
construction period. Counterfactual simulations corroborate
these gains, revealing statistically significant ecological spill-over
effects extending 120 m from the PV system, with perceptible
influences up to 720 m. These results provide a robust scientific
basis for siting and managing PV infrastructure in fragile alpine
environments. We call for the implementation of ecological impact
assessments and long-termmonitoring in and around photovoltaic
power stations, and urge policymakers to conduct ecological
compensation when constructing photovoltaic facilities in alpine
grassland areas.
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