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The Kalamaili Ungulate Nature Reserve is a vital ecological unit and an important
sanctuary for wild ungulates. Given its high sensitivity to climate change,
understanding the dynamics of vegetation growth in the reserve is crucial for
effective management and conservation efforts. This study assessed vegetation
growth in the Kalamaili Ungulate Nature Reserve using NDVI and meteorological
data from 2001 to 2022. A combination of methods, including Theil–Sen trend
analysis, the Mann–Kendall test, the Hurst index, partial correlation analysis, lag
time analysis, and multiple regression residual analysis, were employed to
evaluate the response mechanisms of NDVI to climate change and human
activities. The results showed that (1) NDVI in the reserve exhibited an
increasing trend from 2001 to 2022, with a growth rate of 0.0002 per year,
and NDVI values were generally higher in the western region than in the eastern
region. (2) Temperature was the dominant factor influencing NDVI on both
annual and growing-season scales, while precipitation had a greater effect on
NDVI during the annual summer, autumn, and growing seasons. (3) The NDVI
trend is projected to shift from an upward to a downward trend in the future,
potentially affecting 59.16% of the reserve. (4) Temperature showed a two-month
lag effect onNDVI, whereas precipitation had a one-month lag effect. (5) Residual
analysis revealed that both climate change and human activities contributed to
vegetation improvement, accounting for 55.69% of the observed changes. These
findings emphasize the importance of ongoing vegetation monitoring in the
Kalamaili Ungulate Nature Reserve. Given that the reserve lies within China’s arid
northwestern region and is highly vulnerable to global warming, the results
provide a scientific foundation for managing the reserve and developing
sustainable strategies. They also offer valuable insights for research on similar
desert ecosystems.
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1 Introduction

As a primary producer, vegetation acts as a conduit between the
soil, air, and water, and it plays a significant role in regulating global
warming (Gillespie et al., 2019; Ding et al., 2020; Liu et al., 2021).
Assessing vegetation growth conditions is essential for ensuring the
long-term stability and sustainability of terrestrial ecosystems (Hao
et al., 2012; Meng et al., 2019). Therefore, monitoring and
quantifying the spatiotemporal variations in vegetation dynamics
are of great ecological importance. The Normalized Difference
Vegetation Index (NDVI) is one of the most widely used
indicators for assessing vegetation health because of its
accessibility, high spatial and temporal resolution, and broad
coverage (Nemani et al., 2003). A detailed analysis of the
relationship between vegetation changes and climatic variables
helps clarify their intrinsic linkages (Kong et al., 2018; Sun et al.,
2021; Ding et al., 2022; Ren et al., 2023; Zheng et al., 2024). Such
analyses are particularly valuable for understanding how
environmental factors influence vegetation patterns in arid
ecosystems.

Temperature is a key climatic factor of vegetation improvement,
as it strongly influences plant growth processes, including the onset,
cessation, and efficiency of respiration (Wang et al., 2011). Since
1980, global satellite observations have revealed significant
alterations in vegetation structure, productivity, and coverage
across the Northern Hemisphere, from temperate to boreal
zones, largely attributed to rising global temperatures (Myneni
et al., 1997; Nemani et al., 2003). Precipitation also serves as a
critical determinant of vegetation growth (Guo et al., 2021). In arid
regions, vegetation growth is mainly constrained by soil moisture;
hence, even slight increases in precipitation can lead to substantial
vegetation responses (Zhou et al., 2018; Du et al., 2025). The effect of
precipitation varies across spatial and temporal scales. Over longer
periods (≥10 years), persistent changes in precipitation can alter
plant functional types and biodiversity composition within
ecosystems, while interannual or seasonal precipitation variability
can affect vegetation phenology and ground cover (Snyder and
Tartowski, 2006). Moreover, human activities have exerted a
pronounced influence on vegetation coverage (Zhang and Wu,
2020; Shi et al., 2021; Guo et al., 2023). With the acceleration of
population growth and global economic development,
anthropogenic impacts on ecosystems have intensified, potentially
reshaping regional vegetation patterns (Liu et al., 2015). It is widely
recognized that vegetation change results from the combined effects
of natural and human drivers (Gao et al., 2023). However, these
drivers interact in complex ways, jointly determining the spatial and
temporal dynamics of vegetation.

Xinjiang, located in the arid northwestern region of China,
possesses a fragile ecological environment but holds substantial
ecological and strategic significance. Therefore, studying changes
in vegetation cover across Xinjiang is essential for promoting
ecological restoration and supporting the region’s sustainable
development. Zhang et al. (2024) investigated the driving factors
affecting NDVI and found that temperature exerts a greater
influence on NDVI than precipitation. In contrast, Ma et al.
(2025) reported that NDVI in Xinjiang is negatively correlated
with temperature but shows a significant positive correlation with
precipitation. Similarly, according to Cui et al. (2021), precipitation

is the primary limiting factor influencing the evolution of desert
vegetation in Xinjiang. Based on these studies, it can be inferred that
NDVI in Xinjiang is primarily influenced by precipitation. However,
inconsistencies among findings may arise due to variations in study
areas, temporal scales, and methodological approaches. Although
several studies have explored the impact of climate variables on
NDVI, relatively few have examined how human activities
contribute to its variation.

This study focuses on the Kalamaili Ungulate Nature Reserve
(hereafter referred to as the “Kashan Reserve”) in Xinjiang to
investigate the combined effects of climate change and human
activities on NDVI dynamics. Situated on the eastern edge of the
Junggar Basin, the Kashan Reserve represents a typical
desert–grassland ecotone that is highly sensitive to environmental
fluctuations. This unique location makes it an ideal site for exploring
vegetation responses to climatic and anthropogenic factors.
However, most existing NDVI research has concentrated
primarily on broader regions of Xinjiang (Zhang et al., 2021;
Zhang et al., 2024; Deng et al., 2024), while studies specifically
targeting desert ecosystems remain limited.

Accordingly, this research takes the Kashan Reserve as the core
study area and employs multiple analytical methods to
comprehensively assess the interannual and seasonal
spatiotemporal variations in NDVI from 2001 to 2022. The study
further explores projected NDVI trends, the relationship between
climate change and human activities in relation to NDVI, the
relative contributions of climate and human activities, and the
lag effects of climate change on vegetation. The objective is to
provide a robust scientific foundation for the sustainable
management of the Kashan Reserve and to offer insights for the
long-term conservation of desert ecosystems.

2 Materials and methods

2.1 Study region

The Kashan Reserve (44°38′59″-46°03′43″N, 88°26′58″-
90°09′43″E) is situated on the eastern periphery of the Junggar
Basin and experiences a temperate desert climate (Figure 1). The
topography of the area is a gradient, with lower elevation in the
west and a gradual increase in elevation as it extends eastward.
The reserve was established to protect a diverse range of rare and
endangered ungulates and their habitats, preserving unique and
vulnerable species that are critical to the region’s ecological
integrity. It is one of the largest nature reserves in China’s
lowland desert areas and plays a vital role in maintaining
regional ecological balance and promoting biodiversity.
Furthermore, the reserve functions as an essential ecological
barrier preventing the eastward expansion of the
Gurbantunggut Desert and an important ecological corridor
connecting the Tianshan and Altay mountains.

The Kashan Reserve supports a rich assemblage of protected
species, including Equus przewalskii and Equus hemionus, both
listed as national first-class protected animals, as well as Gazella
subgutturosa, a national second-class protected species. This
combination of ecological functions and rare fauna underscores
the reserve’s exceptional conservation value in northwest China. It
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has been recognized as one of the principal sanctuaries for desert-
adapted wildlife in the region (Xu et al., 2022).

2.2 Data preparation

The NDVI datasets used in this study were obtained from
NASA’s MODIS data repository (https://search.earthdata.nasa.
gov/search). Specifically, we used the MOD13Q1 product, which
provides 250 m resolution, 16-day composite NDVI data and pixel
reliability information, supplemented with land use data (Shao and
Yang, 2023). The dataset covers China from 2001 to 2022. Prior to
analysis, high-quality pixels were reconstructed using comparable
valid single-period images and smoothed using the Savitzky–Golay
(S–G) filtering method to produce a continuous time series.
Subsequently, 16-day data were aggregated into monthly
composites to ensure temporal consistency (Zhou et al., 2024).

Meteorological variables, including temperature and
precipitation, were derived from the “China 1 km Resolution
Monthly Mean Temperature Dataset” (https://data.tpdc.ac.cn/zh-
hans/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf) and “China
1 km resolution Monthly Precipitation Dataset” (https://data.
tpdc.ac.cn/zh-hans/data/faae7605-a0f2-4d18-b28f-5cee413766a2)
provided by the National Tibetan Plateau Science Data Center
(Chen et al., 2024; Wei et al., 2025). These datasets, stored in
NETCDF format, have a spatial resolution of 1,000 m × 1,000 m,
and their accuracy has been validated using observations from
496 meteorological stations across China. Seasonal divisions
followed standard meteorological classifications: spring
(March–May), summer (June–August), autumn (September to

November), winter (December–February), and the vegetation
growth period (April to October) (Wang et al., 2021).

The global anthropogenic impact dataset used in this study
integrates eight variables—nighttime lights, agricultural land,
grazing land, urban infrastructure, road networks, population
density, rail transport, and navigable waterways—to quantify
human pressures on the environment (Mu et al., 2022). Impact
scores range from 0 to 50, where 0–1 indicates no human influence,
1–4 denotes minimal impact, and 4–50 reflects strong
anthropogenic influence. This dataset enables a detailed
assessment of how human activities contribute to landscape
modification and ecological stress.

To address the spatial resolution mismatch between datasets, we
applied bilinear interpolation to resample the 1 km monthly
meteorological data to a 250 m resolution, aligning it with the
NDVI data. Additionally, we aggregated the 16-day NDVI data to
monthly intervals by calculating the average NDVI value over each
month. This approach ensures that both datasets have consistent
spatial and temporal. This preprocessing step ensures reliable
integration and enhances the accuracy of subsequent analyses.

2.3 Methods

2.3.1 Theil-Sen trend analysis
The Theil-Sen median trend analysis serves as a reliable

technique for discerning the patterns within long-term data
sequences (Guo et al., 2020) (Equation 1). When β > 0, it
signifies a rising tendency; when β < 0, it denotes a falling
tendency (Huo et al., 2021).

FIGURE 1
Location and elevation of the study area.
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β � median
NDVIi −NDVIj

i − j
,∀i < j( ) (1)

2.3.2 Mann-Kendall test
The Mann-Kendall test is widely utilized to detect trends within

time-series data (Neeti and Eastman, 2011; Li et al., 2020; Liu et al.,
2020) (Equations 2–5). In this study, it was specifically applied to
evaluate the significance of vegetation trends. When the Z value
attains 1.96, it signifies that the tendency has undergone the
importance test at a level of trust of 95%.

Z �

S − 1������
var S( )√ , S> 0

0, S � 0

S + 1������
var S( )√ , S< 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(2)

S � ∑n−1
i�1

∑n
J�i+1

sign NDVIj −NDVIi( ) (3)

var S( ) � n n − 1( ) 2n + 5( )
18

(4)

sign NDVIj −NDVIi( ) � 1, NDVIj −NDVIi > 0
0, NDVIj −NDVIi � 0
−1, NDVIj −NDVIi < 0

⎧⎪⎨⎪⎩ (5)

2.3.3 Hurst exponent
Reliability in quantifying long-term dependency or persistence

in a time series (Mandelbrot and Wallis, 1969) has been
demonstrated by the Hurst index, assessed by R/S . In particular,
an index above 0.5 indicates a positive and lasting relationship in the
NDVI. AHurst index of 0.5 suggests that NDVI fluctuations follow a
random walk pattern with no correlation to previous values, while a
value less than 0.5 reflects a negative long-term relationship,
implying that vegetation changes tend to reverse over time (Li
et al., 2015). This makes the Hurst index particularly valuable for
assessing the stability and sustainability of vegetation trends in arid
ecosystems.

2.3.4 Partial correlation analysis
The pixel-by-pixel partial correlation approach is a widely used

method for examining the relationships between vegetation growth
and climatic factors such as mean temperature and cumulative
precipitation (Equations 6–7). The partial correlation coefficient
ranges from −1 to 1, where −1 represents a complete negative
correlation, 1 indicates a perfect positive correlation, and
0 signifies no correlation (Arou and Deyganto, 2024; Zhang
et al., 2024). The statistical significance of these coefficients was
evaluated to identify the strength and direction of the associations.

Based on the magnitude and significance level of the coefficients,
the results were categorized into six distinct types, with each type
representing a unique outcome or pattern identified through the
comprehensive test analysis. These types including extremely
significant negative correlation (ρ < 0 and p < 0.01), significant
negative correlation (ρ < 0 and 0.01 ≤ p < 0.05), non-significant
negative correlation (ρ < 0 and p ≥ 0.05), non-significant positive
correlation (ρ > 0 and p ≥ 0.05), significant positive correlation (ρ >

0 and 0.01 ≤ p < 0.05), and extremely significant positive correlation
(ρ > 0 and p < 0.01) (Yang et al., 2016).

rxy: z � rxy − rxz · ryz���������������
1 − r2xz( ) 1 − r2yz( )√ (6)

rxz: y � rxz − rxy · ryz���������������
1 − r2xy( ) 1 − r2yz( )√ (7)

2.3.5 Lag time
Previous studies have shown that vegetation typically exhibits a

lag of no more than one-quarter when responding to climatic factors
(Wu et al., 2015). In this study, the lag effect was examined by
calculating the partial correlation coefficients between NDVI and
both temperature and precipitation for the current month and the
preceding 1 to 3 months. By comparing these coefficients, the
maximum partial correlation value for each pixel was identified,
representing the strongest response of vegetation to climatic factors
and determining the corresponding lag time (Liu et al., 2022; Li et al.,
2023; Zhang et al., 2025) (Equations 8–11).

RNP � ∑c−k
m�1 Pm − Pm( ) Nm+k −Nm+k( )��������������∑c−k

m�1 Pm − Pm( )2√ ������������������∑c−k
m�1 Nm+k −Nm+k( )2√ (8)

RNT � ∑c−k
m�1 Tm − Tm( ) Nm+k −Nm+k( )�������������������������������∑c−k

m�1 Tm − Tm( )2∑c−k
m�1 Nm+k −Nm+k( )2√ (9)

RPT � ∑c−k
m�1 Tm − Tm( ) Pm+k − Pm+k( )������������������������������∑c−k

m�1 Tm − Tm( )2∑c−k
m�1 Pm+k − Pm+k( )2√ (10)

In the formula, RNP, RNT, and RPT denote the correlation
coefficients between NDVI and precipitation and temperature
and between these two factors, respectively. The sequence length
is m, with Nm, Pm, and Tm representing NDVI, precipitation, and

FIGURE 2
Temporal variation trend of NDVI in the Kashan Reserve during
2001-2022.
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temperature data, respectively. Based on monthly data and prior
research, the lag time k typically does not exceed 3 months. Pm and
Tm represent the averages of precipitation and temperature,
respectively, while Nm+k and Pm+k represent the averages of
NDVI and precipitation for the corresponding lag periods.

2.3.6 Multiple regression residual analysis
Multiple regression residual analysis is employed to evaluate the

relative influence of drivers on NDVI (Evans and Geerken, 2004;
Zhao and Wei, 2024) (Equations 11–12). This approach comprises
three steps: First, a regression model is established using the growing
season NDVI and climate data, with NDVI as the dependent
variable and climate factors as the independent variables, in
order to calculate the model parameters. Secondly, predicted
NDVI values (NDVICC) using the model parameters to reflect
the effects of climate. Finally, calculated the difference between

the observed NDVI and the predicted values (NDVIHA) to quantify
the impact of human activities (Ren et al., 2024).

NDVICC � a × T + b × P + c (11)

NDVIHA � NDVIobs −NDVICC (12)

3 Results

3.1 Dynamics of NDVI

3.1.1 Spatiotemporal dynamics of NDVI
Figure 2 illustrates the temporal variation trend of NDVI within the

Kashan Reserve from 2001 to 2022. During this period, NDVI values

FIGURE 3
Interannual trend of NDVI in the Kashan Reserve during 2001-2022: (a) spatial pattern of NDVI; (b) slope of NDVI; (c) significance of NDVI trends; (d)
spatial variation trends of NDVI.
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fluctuated between 0.076 and 0.102, with an average of 0.087. A distinct
peak was recorded in 2017, when NDVI reached its maximum value of
0.102. Although NDVI values fluctuated over time, the overall trend
showed a slight but non-significant upward pattern, increasing by
approximately 0.0002 per year. This gradual rise suggests mild
vegetation recovery, likely driven by climatic and ecological factors
acting over the long term.

Using the NDVI dataset spanning 2001–2022, we calculated the
NDVI index and analyzed both its spatial trends and significance of
its fluctuations, as depicted in Figure 3. Figure 3a presents spatial
distribution of NDVI values across the reserve. The unique
topography of the Kashan Reserve, coupled with the influence of
Atlantic westerlies, shapes the regional precipitation gradient,
thereby affecting the spatial variability of NDVI. This
demonstrates the combined effect of terrain and climate in
determining vegetation patterns. Vegetation cover decreased
primarily in the northern regions, while it increased in the
southern parts, with NDVI change rates ranging from −0.003 to
0.004 (Figure 3b). Between 2001 and 2022, 68.11% of the reserve
experienced an increase in vegetation, significantly exceeding the
31.8% of areas showing a decline. The reserve contained zones where
NDVI significantly increased (11.40%), slightly increased (56.71%),
or remained stable (0.40%) (Table 1). Areas showing substantial

vegetation improvement were mainly located in the southern
Figure 3d. These findings indicate that the southern section of
the Kashan Reserve has shown relatively stable and positive
vegetation dynamics over the past two decades.

3.1.2 Sustainability of NDVI
Figure 4 provides an assessment of sustainability and trend

dynamics within the Kashan Reserve from 2001 to 2022. The mean
Hurst index value was 0.40, indicating low persistence and weak
sustainability in vegetation growth trends. This suggests that the
NDVI pattern may not maintain its current trajectory in the future.

TABLE 1 Analysis of NDVI trends using statistical methods.

Variation of NDVI (per year) |Z| Tendency features Region percentage

>0 ≥1.96 Significantly increased 11.40

>0 <1.96 Slightly increased 56.71

=0 <1.96 Stable 0.04

<0 <1.96 Slightly decreased 31.56

<0 ≥1.96 Severely decreased 0.28

FIGURE 4
Future vegetation dynamics in the Kashan Reserve: (a) Hurst index of NDVI and (b) future sustainability of NDVI.

TABLE 2 NDVI potential developments in vegetation cover in the Kashan
Reserve.

Future trend in NDVI Percentage of area occupied (%)

Continuous increase 8.92

Increase followed by decrease 59.16

Decrease followed by increase 28.97

Continuous decrease 2.90

Unpredictable 0.04
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Therefore, enhanced conservation and restoration measures are
necessary to mitigate potential vegetation degradation. Approximately
11.73% of the pixels exhibited a Hurst exponent greater than 0.5, while
88.26% were below 0.5, indicating that negative (reversing) trends are
more dominant than positive persistence (Figure 4a).

One objective is to explore potential future paths of NDVI (Jiang
et al., 2015). The anticipated variations in NDVI within the Kashan
Reserve are predominantly characterized by a transition from an
ascending to a descending trend, impacting 59.16% of the reserve’s
area (Table 2). The spatial distribution of these predicted changes is highly
heterogeneous (Figure 4b). This projection emphasizes the importance of
proactive ecological management and continuous monitoring to prevent
vegetation decline and ensure ecosystem resilience.

3.2 Dynamics of climatic factors

3.2.1 Annual dynamics of climatic factors
Figure 5a depicts the temperature gradient across the Kashan

Reserve, showing a decrease from southwest to northeast. The

southwestern part, where most human settlements are located, is
relatively warmer. This pattern results from the region’s
geographical position and the influence of westerly winds, which
also create a precipitation gradient decreasing from west to east
(Figure 5c). Over the study period, temperature increased at an
average annual rate of 0.0342 °C (Figure 5b), whereas precipitation
decreased at a rate of 0.6451 mm per year (Figure 5d). These
observations are consistent with previous findings on climate
change in Xinjiang from 2000 to 2022 (Zhang et al., 2024). Such
divergent temperature and precipitation trends indicate growing
climatic stress that may influence vegetation sustainability in
the region.

3.2.2 Seasonal dynamics of climatic factors
From 2001 to 2022, the Kashan Reserve exhibited pronounced

spatiotemporal variations in temperature, precipitation, and NDVI
across different seasons. In spring, rising temperatures coincided
with declining precipitation but were accompanied by an increase in
NDVI, indicating that vegetation growth during this season is
primarily temperature-sensitive (Figure 6a). In contrast, summer

FIGURE 5
Spatial and temporal distribution: (a) temperature spatial distribution; (b) temperature temporal trend; (c) precipitation spatial distribution; (d)
precipitation temporal trend.
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exhibited both rising temperatures and falling precipitation, which
together caused a marked decline in NDVI. This suggests that high
temperatures and drought conditions impose dual stress on
vegetation, leading to reduced NDVI values during this season
(Figure 6b). In autumn, NDVI declined despite increasing
precipitation and falling temperatures (Figure 6c). This
phenomenon likely reflects the late-stage growth phase of
vegetation, during which physiological and energy limitations
restrict plant growth, preventing substantial increases and
contributing to the observed decline in NDVI (Figure 6c).
Throughout the growing season, an increase in temperature and
a decrease in precipitation led to an increase in NDVI. This suggests
that the vegetation exhibits a high level of drought tolerance and is
capable of sustaining growth through adaptive water-use strategies
(Figure 6d). This adaptive behavior highlights the resilience of
desert–grassland vegetation under water-limited conditions.

Figures 7a–d, reveal the spatial distribution of seasonal NDVI
variations within the Kashan Reserve. The significance of these
NDVI trends is further highlighted in Figures 7e–h. The most
notable increase in springtime NDVI is localized to the southern
region, which accounted for 52.70% of the total area. Conversely,
NDVI decreased during summer across 79.89% of the reserve. In
autumn and throughout the growing season, NDVI showed
modest reductions, covering 72.34% and 56.44% of the area,
respectively (Table 3). Figures 7i–l depict the spatial
heterogeneity in temperature distribution. While, Figures
7m–p notably shows that the topographic slope of the reserve
decreases from east to west, closely aligning with seasonal
precipitation distribution. This tight coupling between
topography, precipitation, and vegetation response
underscores the complex interactions that shape ecological
patterns within the Kashan Reserve.

FIGURE 6
Trends of temperature, precipitation, and NDVI for (a) spring, (b) summer, (c) autumn, and (d) the growing season in the Kashan Reserve during
2001-2022.
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FIGURE 7
The trends of NDVI, temperature, and precipitation: (a–d) NDVI trends; (e–h) the significance of NDVI trends; (i–p) temperature and
precipitation trends.

TABLE 3 The seasonal significance of NDVI trends in the Kashan Reserve.

Trend type Variations in NDVI Percentage (%)

Spring Summer Autumn Growing season

2 Significantly increased 5.79 1.04 0.79 3.12

1 Slightly increased 46.91 18.88 26.98 40.12

0 Stable 0.28 0.17 0.19 0.09

−1 Slightly decreased 46.71 76.79 72.34 56.44

−2 Significantly decreased 0.30 3.10 0.93 0.22
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3.3 Partial correlation analysis between
NDVI and drivers

3.3.1 Exploring the impact of climate factors
on NDVI

This research explored the correlation between NDVI,
temperature, and precipitation in the Kashan Reserve. As
shown in Table 4, the annual NDVI showed a significant
positive relationship with temperature (81.01%) and a
significant negative correlation with precipitation (59.59%).
These results indicate that temperature plays a more
prominent role than precipitation in influencing vegetation
dynamics on an annual scale.

Seasonally, NDVI showed positive correlations with
temperature during spring, summer, and autumn, accounting
for 98.39%, 75.37%, and 92.35% of the total area, respectively. In
spring, correlation coefficients between temperature and NDVI
ranged from −0.991 to 0.950, with most areas showing a non-
significant positive relationship (Figures 8a,f). During summer,
the correlation varied from −0.991 to 0.994, again dominated by
non-significant positive associations (Figures 8b,g). In autumn,
correlations ranged from −0.986 to 0.974, maintaining a
generally weak positive pattern (Figures 8c,h). However,
during the growing season, NDVI and temperature exhibited a
range from −0.701 to 0.590, characterized mainly by significant
negative relation (Figures 8d,i).

NDVI was positively correlated with precipitation in spring
and summer, accounting for 93.98% and 90.16% of the total area,
respectively. Conversely, NDVI was negatively correlated with
precipitation during autumn (52.19%) and the growing season
(98.41%). In spring, NDVI–precipitation correlations ranged
from −0.773 to 0.742, primarily showing non-significant
positive relation (Figures 8k,p). In summer, correlations
spanned −0.528 to 0.789, with most regions exhibiting
significant positive relationships (Figures 8l,q). In autumn, the
values ranged from −0.791 to 0.590, indicating predominantly

significant negative correlations (Figures 8m,r). During the
growing season, NDVI varied between −0.771 and 0.399 in
relation to precipitation, showing an overall significant
negative relation (Figures 8n,s).

The study demonstrated that temperature is the predominant
climatic factor influencing NDVI during the growing season and on
an annual basis, while precipitation exerted greater influence in
summer, autumn, and during the overall growing period. These
findings suggest that vegetation in the Kashan Reserve is more
sensitive to temperature fluctuations under limited water
availability, whereas precipitation becomes critical during peak
growth stages when moisture stress intensifies.

3.3.2 Exploring the impact of human activity
on NDVI

Analysis of anthropogenic impact data from 2001 to
2020 revealed that areas with minimal human disturbance are
more extensive than those with no human influence, while
regions with significant disturbance occupy the smallest
proportion. This pattern likely reflects the cumulative effects of
human activities such as mining, road construction, and industrial
park development. These activities are not confined to the periphery
of the reserve but are dispersed across its core, buffer, and
experimental zones, resulting in widespread low-to-moderate
anthropogenic pressure.

Figure 9a illustrates that the interannual anthropogenic impact
trend ranges from −0.059 to 0.066. A decreasing trend in human
disturbance was observed across 63.85% of the reserve, while only
36.14% showed an increasing trend. This overall decline suggests
that conservation measures and management efforts within the
reserve have been largely effective. Figure 9b shows that areas of
low human impact (48.46%) are primarily distributed in desert
regions, while zones of substantial human activity (5.83%) are
concentrated near Wucaiwan town, Provincial Highway S11, and
National Highway G216. Correlation analysis between annual
NDVI and anthropogenic impact data revealed coefficients

TABLE 4 Significance of temperature, precipitation, and NDVI.

Importance of partial correlation between climatic
factors and NDVI

Spring Summer Autumn Growing season Year

Temperature and NDVI 1 Extremely significant positive correlation 6.45 0.22 0.33 0.03 13.67

2 Significant positive correlation 18.57 0.26 1.36 0.00 81.01

3 Nonsignificant positive correlation 73.37 74.89 90.66 2.50 2.27

4 Nonsignificant negative correlation 0.06 0.06 0.03 0.13 0.13

5 Significant negative correlation 1.46 24.50 7.49 88.05 2.90

6 Extremely significant negative correlation 0.08 0.08 0.12 9.30 0.00

Precipitation and NDVI 1 Extremely significant positive correlation 0.15 3.01 0.00 0.00 0.00

2 Significant positive correlation 4.78 86.61 0.03 0.00 0.11

3 Nonsignificant positive correlation 89.05 0.54 47.78 1.58 38.85

4 Nonsignificant negative correlation 0.07 0.06 0.03 0.13 0.41

5 Significant negative correlation 5.84 9.76 51.54 91.93 59.59

6 Extremely significant negative correlation 0.11 0.00 0.62 6.35 1.03
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ranging from −0.698 to 0.927. Positive correlations were mainly
clustered around Wucaiwan (Figure 10a), indicating that human-
modified areas may experience localized vegetation improvements,
possibly due to irrigation or restoration efforts. However, only
4.39% of the area exhibited statistically significant correlations,
predominantly near towns and transport corridors with frequent
human activity (Figure 10b). These results suggest that while
human activities have altered vegetation patterns locally, their
overall influence on NDVI dynamics remains secondary to
climatic factors.

3.3.3 Lag effect of NDVI on climate factors
Figure 11a shows that the maximum partial correlation

coefficients between NDVI and temperature are lower in the
northern and southwestern parts of the reserve and higher in the
southern and northwestern regions. Areas with maximum partial
correlation coefficients below −0.2 constitute the largest proportion
(75.57%). As illustrated in Figure 11b, 93.23% of the reserve
exhibited a lagged response to temperature changes. The most
prominent lag period was 2 months, covering 48.31% of the area,
primarily in the central region. Areas showing a 3-month lag were

FIGURE 8
The figures show the correlation and significance among NDVI, temperature, and precipitation across spring, summer, autumn, the growing season,
and the interannual during 2001-2022. (a–e) NDVI response to temperature; (f–j) significance between NDVI and temperature; (k–o) NDVI response to
precipitation; (p–t) significance between NDVI and precipitation.
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located mainly in the western and eastern regions (33.22%), where
elevation differences are more pronounced. The extended lag in the
higher-elevation east corresponds with slower soil temperature
responses and delayed vegetation greening, reflecting the
topographic influence on thermal dynamics.

Figure 11c shows that only 0.57% of areas have a maximum
partial correlation coefficient of less than zero, while 99.05% have
coefficients ranging from 0 to 0.4. This suggests that while vegetation
does exhibit a delayed response to precipitation changes, the overall
effect is modest, implying a relatively high level of drought
adaptation. Besides precipitation, other factors—particularly
temperature and human activity—appear to play a more
dominant role in vegetation variability. Figure 11d further shows
that 84.65% of vegetated areas exhibited a lagged response to
precipitation of one to 3 months, with the majority (57.47%)

located in the northwestern and central regions, displaying a
1-month lag.

These findings highlight the importance of considering the
effects of climate change. Incorporating such delayed effects into
ecological management strategies is essential for improving
conservation planning, forecasting vegetation dynamics, and
enhancing the resilience of the Kashan Reserve’s ecosystem.

3.4 Analysis of drivers of NDVI

3.4.1 Factors driving NDVI dynamics
Figure 12 shows that, under the combined influence of climate

change and human activities, approximately 55.69% of the
vegetation in the Kashan Reserve has improved, primarily in

FIGURE 9
(a) The interannual trend of human activity; (b) the spread of human activity over time.

FIGURE 10
Analysis of the relationship between NDVI and human activity: (a) correlational analysis and (b) evaluation of impact significance.
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the southern part of the reserve. About 13.21% of the observed
vegetation increase is attributed solely to climatic factors. These
areas are located near the southern Altay region, which receives
relatively higher precipitation, thereby providing favorable
conditions for vegetation growth. In contrast, improvements
in vegetation caused exclusively by human activities account
for only 0.93% of the total area, mainly distributed along the
reserve’s periphery. However, approximately 2.30% of the reserve
has experienced vegetation degradation due to the combined
effects of climate change and human activities, particularly in the
central and northeastern regions. Vegetation decline driven
solely by climate change constitutes about 0.17% of the total
area, whereas degradation caused solely by human activities has
affected around 27.07% of the region. This degradation is most

pronounced in the northern sector, where extensive mining
operations occurred prior to 2016. These activities disrupted
surface vegetation, increased soil erosion, and accelerated
ecological degradation, leaving lasting environmental impacts
that underscore the vulnerability of the region’s fragile
ecosystems.

3.4.2 Contributions of driving factors to NDVI
Figure 13a shows that climate change has generally had a

positive effect on NDVI within the Kashan Reserve, affecting
around 69.42% of the area. This impact is particularly
pronounced in the southwestern and eastern regions. Notably,
areas where climate change contributes more than 80% to NDVI
account for 17.50% and are mainly located in the north of the

FIGURE 11
Maximumpartial correlation coefficient, and lag time amongNDVI, temperature, and precipitation in the Kashan Reserve during 2001–2022: (a) The
maximum partial correlation coefficients between NDVI and temperature. (b) The lag time between NDVI and temperature. (c) the maximum partial
correlation coefficients between NDVI and precipitation. (d) the lag time between NDVI and precipitation.
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reserve. Conversely, areas where climate change has had a negative
impact on NDVI account for 30.58% and are mainly concentrated in
the north. In these regions, the proportion of areas where climate
change contributed between −20% and 0% to NDVI is relatively
large, at around 29.77%. Overall, NDVI driven by climatic factors is
primarily concentrated in the southern section of the reserve. This
spatial pattern results from a combination of topographic
gradients—higher elevations in the east and lower in the
west—and localized engineering measures that create distinct
microclimates, thereby enhancing spatial heterogeneity in
vegetation response.

Figure 13b shows that human activities positively influenced
NDVI in 56.63% of the Kashan Reserve, primarily in the south.
Notably, areas where human activities contributed 60–80% to
vegetation improvement covered approximately 23.35% of the
total area. These improvements can be attributed to higher local
temperatures and precipitation, as well as the implementation of
ecological restoration initiatives, such as afforestation, grassland
protection, and restricted grazing policies, that have
substantially enhanced vegetation coverage within and around
the reserve.

4 Discussion

4.1 Analysis and interpretation of NDVI
spatiotemporal dynamics

This study observed an overall upward trend in NDVI across the
Kashan Reserve, aligning with vegetation evolution patterns
reported for the broader Xinjiang (Liu et al., 2024; Zhang et al.,
2024; Lu et al., 2025; Ma et al., 2025). The NDVI exhibited a modest
yet consistent increase, with a growth rate of 0.0002 per year and a
peak value in 2017. This improvement can be attributed to a series of
ecological management initiatives implemented by local
governments and conservation authorities in Fuyun County,
Jimusar County, and the Kashan Reserve. In particular, all forms
of industrial development and construction—including mining, oil
extraction, and tourism projects—were suspended within the
reserve. These measures have significantly contributed to
ecological recovery and vegetation restoration.

Spatially, NDVI in the Kashan Reserve exhibits a distinct
gradient, with higher values in the west and lower values in the
east. This spatial heterogeneity results from the combined effects of

FIGURE 12
Drivers of NDVI change in the Kashan Reserve during 2001-2022.
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terrain, temperature, and precipitation. The western part,
characterized by relatively higher precipitation and warmer
temperatures, offers more favorable conditions for vegetation
growth, leading to higher NDVI values. Conversely, the eastern
region, where precipitation is lower and temperatures are cooler,
supports less vegetation cover, resulting in lower NDVI values. This
west–east gradient highlights the strong control exerted by
environmental factors on vegetation distribution and provides a
scientific basis for targeted ecological planning and management
strategies in the reserve.

The Hurst exponent analysis indicated that reverse persistence in
vegetation change (tendency toward decline) is stronger than positive
persistence (tendency toward continued improvement). When
integrated with Sen’s slope analysis, this finding suggests a potential
future transition from an upward to a downward NDVI trend. These
results are consistent with the findings of Chen et al. and Ma et al.,
which also reported weakening vegetation stability in parts of Xinjiang
(Chen et al., 2023; Ma et al., 2025). Therefore, proactive measures to
enhance vegetation resilience and maintain ecosystem stability are
essential for the sustainable development of the Kashan Reserve.

4.2 NDVI change driven by climate change
and human activities

From 2001 to 2022, the Kashan Reserve experienced a gradual rise
in temperature accompanied by a decline in precipitation. These
findings are consistent with previous studies on climate change in
Xinjiang (Zhang et al., 2024; Lu et al., 2025; Ma et al., 2025). The
influence of climate variability on vegetation dynamics has long been
acknowledged, and numerous studies have examined the relationship
between climatic factors and vegetation changes across the Xinjiang

(Zhu et al., 2023; Dou et al., 2025). This study explored the combined
effects of climate change and human activities on NDVI variations
within the Kashan Reserve. As shown in Figure 8 and Table 4,
temperature emerged as the dominant climatic factor affecting
NDVI on both the annual and growing-season scales, while
precipitation exerted a stronger influence during the annual,
summer, autumn, and growing seasons. Zhang et al. (2024) reported
that precipitation is positively correlated with NDVI in spring, summer,
and the growing season, but negatively correlated in autumn.
Temperature was also positively correlated with NDVI, with the
strongest effect observed in spring. Similarly, Lu et al. found that
temperature is the main climatic driver of NDVI variation in spring
and autumn, whereas precipitation plays a leading role in summer and
winter (Lu et al., 2025). In this study, temperature showed a positive
correlation with NDVI during spring, summer, and autumn, while
precipitation showed a positive but non-significant correlation in
spring. The discrepancies between these findings likely stem from
differences in study area and scale. The Kashan Reserve, situated on
the eastern edge of the Junggar Basin, experiences more pronounced
seasonal climatic contrasts and heightened sensitivity to precipitation,
resulting in more diverse vegetation responses.

At the interannual scale, NDVI demonstrated a significant
positive correlation with temperature (81.01%) and a significant
negative correlation with precipitation (59.59%). In contrast,
previous studies (Zhang et al., 2024; Lu et al., 2025) found
positive correlations for both factors. This divergence can be
attributed to the dominance of desert vegetation within the
Kashan Reserve, which has a limited capacity for retaining soil
moisture. As temperatures rise, the increased rate of surface
evaporation reduces the availability of soil water, thereby
weakening the relationship between precipitation and
vegetation growth.

FIGURE 13
Contribution rate of (a) CC and (b) HA to NDVI.
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As Xinjiang’s economy develops, human activities are playing an
increasingly significant role in its ecosystems, with an undeniable
impact on vegetation growth. The study utilized the residual analysis
approach to differentiate the impacts of climate and human activity
on NDVI. The findings indicate that NDVI variations in the Kashan
Reserve are driven by both natural and anthropogenic factors. The
combined effect of climate change and human activities accounts for
55.69% of the total vegetation variation. Human-induced vegetation
degradation occupies the largest proportion, covering 27.07% of the
reserve, while the overall vegetation trend remains positive,
signifying gradual improvement. Climatic factors contributed
68.79% to NDVI variation, while human activities contributed
56%. Moreover, 31.72% of the reserve area experienced more
than 60% NDVI contribution from human activities. These
findings align with those of Liu et al. and Lu et al., who
concluded that human activities have exerted an overall positive
effect on vegetation restoration in Xinjiang (Liu et al., 2018; Lu et al.,
2025). This improvement is largely attributable to government-led
ecological initiatives, including vegetation restoration projects,
habitat conservation, and grazing control policies that promote
ecological recovery and enhance wildlife habitats.

Despite the extreme environmental pressures of drought, high
temperatures, and frequent sandstorms, the Kashan Reserve remains
a biodiversity hotspot, supporting a rich variety of rare and endemic
species. The survival and reproduction of these species depend on
specialized ecological processes and efficient water regulation
mechanisms. Desert vegetation in this region has evolved distinct
physiological adaptations for water uptake and utilization, enabling
it to maximize the use of scarce rainfall. These ecological responses
provide important insights into the functioning and resilience of
vegetation in arid ecosystems.

4.3 Temporal lag effects on NDVI dynamics

The response of vegetation to climate change is not immediate
but often exhibits a temporal lag. The present study identified a
significant lag effect of climatic factors on vegetation dynamics. The
lag period for temperature was predominantly 2 months, reflecting
the gradual nature of thermal adaptation. Following an increase in
temperature, vegetation requires time to adjust its physiological and
metabolic processes to the new environmental conditions. In
contrast, the lag period for precipitation was primarily 1 month,
a pattern attributed to the desert landscape of the Kashan Reserve,
where high soil permeability allows rainfall to infiltrate rapidly and
become available to plants shortly after precipitation events. Wang
et al. found that vegetation responds to climate changes with an
average lag of 1.4 months across Xinjiang (Wang et al., 2023),
consistent with the findings of this study.

4.4 Limitations and future works

The findings of our research have significant implications for
the sustainable and coordinated development of desert
ecosystems. In this study, we employed bilinear interpolation
to resample various raster datasets to a uniform resolution, a
method well-suited for continuous data requiring smooth

transitions, such as temperature and precipitation maps.
However, there are several limitations that warrant
consideration. MOD13Q1 provides extensive vegetation cover
data, it is subject to certain limitations, especially under cloud
cover and atmospheric interference. To address this issue, the
maximum value compositing method was applied to synthesize
monthly NDVI data for the Kashan Reserve from 2001 to 2022,
selecting pixels with the highest NDVI values within each time
window to minimize cloud and atmospheric effects and improve
data quality. Despite atmospheric correction of the
MOD13Q1 data, residual atmospheric disturbances such as
haze and clouds may still affect accuracy and introduce
potential errors (Gao et al., 2020; Shen et al., 2022). The
diverse soil types within the Junggar Basin, along with
substantial variations in soil color and moisture content, can
interfere with NDVI signals, introducing uncertainty in the
estimation of vegetation cover (Tian et al., 2016).
Furthermore, because vegetation responses to drought are
often delayed, NDVI primarily reflects vegetation conditions
over a certain period and may not provide immediate
warnings of impending drought (Kumar et al., 2021). These
limitations restrict the ability to fully capture dynamic
changes in vegetation and ecosystem functions within the
Kashan Reserve. In future work, research will aim to establish
a more comprehensive index system to better describe and
monitor ecosystem changes (Sun et al., 2025). This expanded
framework will integrate NDVI with other key ecological
indicators, such as soil moisture, sand index, surface
temperature, and evapotranspiration, to enhance the accuracy
of vegetation monitoring and to support early warning systems
for ecological risks. Ecosystem services have become a central
focus in ecological research, offering critical scientific
foundations for conservation and sustainable development
(Gong et al., 2025). Despite their importance, studies adopting
small-scale, long-term, and multidimensional approaches remain
limited, and this research gap will be a primary focus of future
investigations.

When analyzing human activity using nighttime light data,
accuracy is significantly influenced by the scale and morphology
of settlements (Huang et al., 2025). The Kashan Reserve is
characterized by small-scale, block-like settlements. Such
settlements, often situated within densely utilized areas, are
prone to overestimation of human activity because nighttime
light sensors may capture illumination from surrounding
regions, inflating activity measurements. Settlement
morphology further affects the results, as block-shaped
settlements on flat terrain can experience light saturation and
background interference. Therefore, when using nighttime light
data to analyze human activities, it is crucial to account for both
settlement scale and morphological characteristics to ensure
reliable interpretation of human influence.

5 Conclusion

This study examined how NDVI in the Kashan Reserve of
Xinjiang responds to climate change and human activities, with
the principal discoveries being:
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1. NDVI demonstrated an upward trend characterized by
fluctuations, increasing at a rate of 0.0002 per year. Spatially,
NDVI followed a west-high and east-low distribution pattern,
shaped by topography, climate, and human activities.

2. The effects of temperature and precipitation on NDVI
exhibited significant spatial and temporal heterogeneity.
Temperature was the primary factor influencing NDVI
during annual and growing -season periods, while
precipitation primarily affected NDVI during annual,
summer, autumn, and growing -season periods.

3. Human activities such as mining, oil extraction, and tourism
significantly impacted NDVI. After the implementation of
ecological restoration initiatives in 2016, NDVI peaked in
2017 and has since stabilized, indicating that these measures
have been highly effective in preventing further deterioration,
delivering a solid scientific basis for the reserve’s future
management strategies.

4. The future NDVI trend is projected to shift from an increasing
to a decreasing trajectory, signaling new challenges and
uncertainties for vegetation development. Temperature
showed a 2-month lag effect on NDVI, while precipitation
exhibited a 1-month lag.

5. The results revealed that 55.69% of the Kashan Reserve
experienced increases in growing-season NDVI driven by
the combined effects of climate change and human activities.
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