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Introduction: This study introduces novel spectral indices specifically designed
for drone-based data to identify and differentiate between varying levels of fire
damage. Their application was demonstrated in an Estonian peatland, where its
effectiveness was compared with that of traditional vegetation indices.
Methods: Four drone surveys were conducted at different post-fire intervals, and
biophysical variables, including surface and soil temperatures, soil moisture, and
aboveground biomass, were measured. The proposed triangular-area indices
(TAI) were derived from reflectance maps obtained using a multispectral sensor.
Damage classes were defined using binary and multi-level classification
approaches, and decision trees were trained and evaluated for accuracy.
Results: The TAI1 index achieved classification accuracies between 80.6% and
90.9%, comparable to those of more complex machine learning techniques. TAI1
exhibited strong correlations with biophysical variables, highlighting its potential
for post-fire assessment. Although TAI1 showed some limitations in
distinguishing moderate damage levels, it demonstrated improved capability in
detecting severely damaged areas.
Discussion: TAI1 can provide ecologically relevant insights, enhance the
interpretation of fire damage, and support rapid, high-resolution assessments
of vegetation health. Further research is required to validate its interchangeability
with other indices across different scales, sensors, and environmental contexts.
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1 Introduction

Wildfires play a fundamental role in carbon dynamics as they cause substantial carbon
fluxes within ecosystems and release large amounts of carbon into the atmosphere
(Ostroukhov et al., 2022). These events may contribute to an increase in air pollution
levels, harm human health, and promote climate change (Manisalidis et al., 2020). In
European countries, the increasing occurrence of wildfires is influenced by various
agricultural burning practices and recreational activities, both of which result in
economic losses and environmental challenges (Fernandez-Anez et al., 2021). Research
indicates global trends towards larger burnt areas and more frequent fire incidents
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(Flannigan et al., 2009). Jolly et al. (2015) demonstrated an 18.7%
expansion in the fire weather season length between 1979 and 2013,
which consequently led to an increase in burnt areas. Furthermore,
bogs, forests, and upland areas are particularly vulnerable to
wildfires, especially because of potential harm to biodiversity,
property, and natural resources in these environments (Palm
et al., 2022; Turetsky et al., 2015).

Changes in vegetation, soil, and fauna resulting from wildfires
serve as indicators of the severity and ecological impact of wildfire-
induced damage (Keeley, 2009). Thus, these indicators are essential
for assessing the evolution of the affected environment after a fire,
especially in terms of vegetation dynamics, seed source availability,
and long-term ecosystem recovery (Fraser et al., 2017). Assessing fire
intensity is crucial for facilitating improvements in fire management
practices and highlighting recovery priorities (Pérez-Rodríguez
et al., 2019). Given that in situ evaluations of fire damage are
often costly, time-consuming, and constrained by limited
accessibility in remote areas (Fornacca et al., 2018; De Simone
et al., 2020), remote sensing has become an efficient alternative
for assessing fire and burn severity (Carvajal-Ramírez et al., 2019).
The use of remote sensing for fire assessment rapidly evolved,
especially during the 2000s (Szpakowski and Jensen, 2019;
Chuvieco et al., 2020). Many of these applications focus on
calculating spectral indices obtained from satellite images to
generate algorithms that could be used to identify and map fire
damage (see Tran et al., 2019; Lasaponara et al., 2018; Nolè et al.,
2022; Leblon et al., 2022; Bastarrika et al., 2024). Developing new
spectral indices is essential for improving the identification of
vegetation damage (Simes et al., 2024). The indices commonly
used for vegetation monitoring rely on the spectral response of
light reflection driven by variances in photosynthetic activity of
plant tissues and can reveal the actual structure and health status of
such tissues (Carvajal-Ramírez et al., 2019; Szpakowski and Jensen,
2019). Moreover, the red-edge (REG) portion of the spectrum was
shown to improve the discrimination of burn severity over a wider
range of canopy densities (Colson et al., 2018; Fernández-Manso
et al., 2016; Delegido et al., 2013; Szpakowski et al., 2023).

The efficiency of satellite products is restricted by the real-time
weather conditions that are present during image collection. The 5-
day interval provided by Sentinel-2 led to improvements in temporal
resolution, but its capabilities for observing land surface and burnt
areas depend on clear skies (Chuvieco et al., 2019). Furthermore,
satellite data may lack the appropriate spatial resolution to allow the
observation of fires on a small scale (Pádua et al., 2020), thus
impairing the analysis and interpretation of fine-scale patterns.
Unoccupied aerial vehicles, commonly known as drones, have
been increasingly utilized in multiple fire management efforts due
to the capabilities of such vehicles to provide data at the centimeter
levels of spatial resolution and offer more adaptable and systematic
acquisition schedules in addition to presenting the potential for
integration withmultiple sensors (Colomina andMolina, 2014; Toth
and Józków, 2016; McKenna et al., 2017; Fernández-Guisuraga et al.,
2018). Recent studies have shown that when drones are compared
with satellites, the drones are more suitable for mapping small-scale
fires with better accuracy (see Simes et al., 2024; Arkin et al., 2023;
Pérez-Rodríguez et al., 2019) and also offer a cost-effective
alternative compared to other platforms (De Swaef et al., 2021;
Hunt Jr et al., 2013).

While several spectral indices have demonstrated efficacy in
classifying fire damage (see Fornacca et al., 2018; Tran et al., 2019;
Carvajal-Ramírez et al., 2019), the necessity to develop indices
focusing on drone-borne sensors that are capable of directly
describing the impacts of fire on vegetation and surface
characteristics, similar to the Normalized Burn Ratio ([NBR]
García and Caselles, 1991), exists. A few variants, such as the
Differenced NBR ([dNBR]; Veraverbeke et al., 2010) and the
Relative differenced NBR ([RdNBR]; Miller and Thode, 2007),
utilize temporal differences between pre- and post-fire conditions
to reduce misclassifications (Carvajal-Ramírez et al., 2019).
However, using satellite images in multi-temporal approaches
requires the availability of pairs of images within a given time
period that allows the contrasting pre- and post-fire surfaces to
be observed. The need for image pairs usually limits this type of
approach in locations or periods with infrequent image availability
(Veraverbeke et al., 2010; Weber et al., 2009). For drones, a multi-
temporal approach can only be applied to prescribed fires (Pérez-
Rodríguez et al., 2019) or used at locations with long-term
monitoring programs (Arroyo-Vargas et al., 2019) at which pre-
fire conditions have been previously monitored. Another limitation
of employing drones for fire assessment is sensor specification,
which is usually designed for monitoring vegetation in
agricultural environments. Visible, near-infrared (NIR) and red-
edge (REG) wavelengths are the most commonly available bands on
these sensors (Deng et al., 2018). Previous studies argue that REG
and NIR data should lead to improvements in the performance of
such indices (Fernández-Manso et al., 2016; Hamilton et al., 2023).
Therefore, employing these bands and identifying patterns and
features from their relationships in the spectral space is essential
for developing target-oriented indices (Salas and Henebry, 2013).

In this context, there is a clear need for a drone-based index
that enables rapid fire damage assessment using standard spectral
bands and mono-temporal surveys focused on single post-fire
scenes (Veraverbeke et al., 2012; Picotte et al., 2020). Such
developments would enable quicker post-fire evaluations and
produce more interpretable results and valuable information for
decision-makers, thereby optimizing resource allocation (Cruz
et al., 2016; Restas, 2015). This study developed and tested a novel
spectral index that addresses these requirements for mapping fire
damage. Our study demonstrates its application in an Estonian
peatland while comparing its performance with other
traditionally used indices. Additionally, correlations with
biophysical variables, such as surface temperature, soil
moisture, and aboveground biomass (AGB), were examined to
provide ecological validation and demonstrate their usefulness
for post-fire assessments.

2 Methods

2.1 Study sites

The study was conducted at two sites within the Lavassaare
Nature Reserve in Pärnu County, West Estonia (Figure 1). It
included an area affected by a fire on 31 May 2020, which had
spread from a peat extraction field towards Lake Lavassaare and
caused damage to approximately 87 ha of the reserve, of which
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53.4 ha (61% of the total burnt area) were surveyed. In total, the
surveyed area covered by these two sites amounted to 95 ha.

The sites were separated from the peat extraction site by a
peat embankment 10–15 m wide. The terrain in the study sites is
mostly flat with a height variation of approximately 4 m. The peat
layer in the area is reported to be between 0.5 and 1.4 m thick and
is primarily composed of Sphagnum angustifolium (Russ.) C.
Jens., S. magellanicum Bridel., and S. rubellum Wilson. The
height of the water table varies seasonally; during the dry
season, it ranges from 5 to 15 cm below the surface, while in
the rainy and snowmelt seasons, it can be 5–20 cm above ground
level (Paal, 2011).

Vegetation in the area consists primarily of low-moss habitats
with sparse trees and shrubs. A preliminary assessment indicated
that the vegetation primarily includes the following plant species:
Calluna vulgaris (L.) Hull, Rhynchospora alba (L.) Vahl, Andromeda
polifolia L.,Rhododendron tomentosum, Betula nana L., B. pubescens
Ehrh., and Pinus sylvestris L.

According to weather data from the Estonian Meteorological
and Hydrological Institute (Estonian Weather Service, 2021), the
long-term average annual temperature in Pärnu County is 6.3 °C
with fluctuations ranging from −4.5 °C to 18 °C. The average
yearly precipitation is 746 mm, with monthly values varying
between 37 mm and 83 mm. Previous studies of Estonian
wetlands have reported average soil moisture values around
60%–98% (Burnside et al., 2007; Ward et al., 2016).

2.2 Drone surveys

Five drone surveys were carried out over each site: an
exploratory survey on 3 June 2020 over a fraction of the fire-
damaged site (BRN), on 16 July 2020 over both sites, on
25 September 2020 over the undamaged site (used as the
reference), on 2 October 2020 over the site BRN, and on 16 May
2021 over both sites. Thus, data collection occurred 3, 46, 117, 124,
and 350 days after the fire.

A fixed-wing eBee X equipped with a Sensor Optimized for
Drone Applications (S.O.D.A.) camera and a Parrot Sequoia
multispectral sensor were used to conduct the surveys. The
S.O.D.A. camera, which was designed for photogrammetric
analysis, has a resolution of 20 megapixels and specific settings
for exposure and ISO. The Parrot Sequoia captures images at
1.2 megapixels in four spectral bands: green (530–570 nm), red
(640–680 nm), REG (730–740 nm), and NIR (770–810 nm).

Flight planning and post-processing were conducted using
eMotion Release 3.16.0, which ensured autonomous flight
missions with expected spatial resolutions of 3.5 cm/pixel
resolution for S.O.D.A. and 10 cm/pixel for Parrot Sequoia.
Specifically, flights utilizing S.O.D.A. were conducted with the
following parameters: a flying altitude of 154.6 m above ground
level (AGL), 80% lateral overlap, and 90% longitudinal overlap. For
multispectral flights using the Parrot Sequoia, the parameters were
set to a flying altitude of 106.1 m AGL, with 65% lateral overlap and

FIGURE 1
Locations of field survey plots and points for labelling fire damage within the study sites; site BRN = the area damaged by the fire, and REF = the
undamaged area. The background true-color imagery was created using a cloud-free composite from Sentinel-2, covering the period from June to
October 2020.
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80% longitudinal overlap. Flights were designed along parallel lines
with adjustments for wind direction to ensure image capture
consistency. An onboard Global Navigation Satellite System
receiver with Real-Time and Post-Processed Kinematics
capabilities ensured data accuracy. Post-processing was
conducted using differential correction data from the Estonian
Land Board’s virtual reference stations (Metsar et al., 2018) based
on methodologies that have demonstrated improved accuracy over
traditional ground control points (Tomaštík et al., 2019).

2.3 Field surveys of biophysical variables

In each of the last four drone surveys, biophysical variables (such
as Surface Soil Moisture, Surface Soil Temperature, Surface
Temperature, and AGB) were measured within 30 quadrats with
dimensions of 30 × 30 cm2 for a total of 90 measurements. These
data were collected immediately after the drone flights on the same
days. This sampling followed an unsystematic design (Figure 1) due
to site remoteness and difficulties in accessing some regions. For
Surface Soil Moisture and Temperature, three measurements using a
Delta-T WET Sensor within each quadrat were recorded, and the
averages of these records were considered a sample. Specifically for
moisture measurements, the WET sensor calculates the volumetric
water content in the soil, which is the ratio between the weight of
water and the solids in a given mass of soil sample, and therefore
retrieves measurements of soil moisture as a percentage (Burnside
et al., 2007; Berg et al., 2012; Ward et al., 2016). The manufacturer’s
suggested parameters for organic soil were used for the
measurements since they return similar values to using media-
specific calibration (Kargas et al., 2011). Surface Temperature was
measured using a handheld infrared laser thermometer (Fluke 62),
similar to one used by Martínez et al. (2017). The authors suggest
this indicator may also be a surrogate for describing leaf surface
temperature when used in vegetated areas. For each sample, three
measurements were recorded and averaged within a quadrat. The
AGB samples were collected within the quadrat and used to describe
the amount of dry matter of vascular plants expressed as g/m2. The
collected plant material was dried for 48 h at 80 °C in an oven and
weighed with a regular scale (Monreal et al., 2005). Finally, the XYZ
coordinates were recorded within all quadrats using a Trimble
R10 dGPS (Trimble, Sunnyvale, CA, United States of America).

2.4 Drone image processing

Distinct workflows for processing the drone images were
implemented using the software Pix4D Mapper v. 4.3.27 (Pix4D,
Lausanne, Switzerland). To process the S.O.D.A dataset and
generate the true-color orthomosaics, we set a full tie-point
image scale for initial processing, high point density, a minimum
of three tie-points per processed image, and point densification
based on half of the image scale. The high-density option for this
task was chosen to minimize the occurrence of occlusions in scene
reconstruction (Dandois et al., 2015; Fraser and Congalton, 2018).
To process the Parrot Sequoia images and generate reflectance maps,
we set a full tie-point image scale, a target for 10,000 key points and
geometrical verification of matches for initial processing, an optimal

point density, a minimum of three tie-points per processed image,
and radiometric correction was performed using an Airinov white-
balance target recorded before each multispectral flight.

2.5 Development of the triangular-area
indices (TAI) and calculation of
spectral indices

The spectral indices were calculated based on data from
reflectance maps generated from the radiometrically corrected
Parrot Sequoia imagery. Each monochromatic band allows
describing distinct features related to vegetation structural and
physiological alterations caused by fire. For example, the red and
green bands are affected by changes in photosynthetic activity after
fire events (Rogan and Yool, 2001). The REG band exhibits high
sensitivity to changes in vegetation structure and pigment
concentration (Imran et al., 2020), effectively capturing the
physiological responses of vegetation to stress induced by fire
events (Eitel et al., 2011). Lastly, the NIR band reflects changes
in leaf cellular structure and water content (Fernández-Manso et al.,
2016; Imran et al., 2020), which is particularly meaningful for
determining severely burned areas and estimating biomass
consumption (Hamilton et al., 2023). In addition, their combined
use allows the index to capture a broader range of fire damage effects
than single-band or two-band indices. Bi-dimensional relationships
between spectral bands enable the correction for the effects of
illumination and soil properties, thereby increasing sensitivity to
specific parameters (Sripada et al., 2006). For instance, the red–NIR
dimension describes plant fractional cover under varying soil
conditions and vegetation densities (Veraverbeke et al., 2012),
while the difference between NIR and green bands has shown
higher sensitivity to chlorophyll than single-band indices (Sripada
et al., 2006). For this reason, these bands were considered for the TAI
formulation due to their complementary sensitivities to fire-induced
changes in vegetation physiology and structure.

The triangular-area indices (TAI) proposed in this study should
be useful for exploring the variability of the area enclosed between
three given coordinates in the spectral signature, capturing the
geometric relationships between reflectance values that reflect
distinct physiological responses to fire. Thus, this method allows
for integrating multiple vegetation traits into a single metric and
hence the identification of patterns or features from the shape of the
reflectance curve that are not identifiable from other types of spectral
indices (Salas and Henebry, 2013). The TAI was chosen as it allows
for more information inclusion than those indices using normalized
difference or soil-line adjustments while simplifying its
interpretability (Xing et al., 2019; Salas and Henebry, 2013),
which is particularly relevant in post-fire environments, where
vegetation responses are complex and heterogeneous. From this
perspective, the proposed TAIs are similar to the Transformed
Triangular Vegetation Index (TTVI) developed by Xing et al.
(2019). In Xing and colleagues’ investigation, the TTVI focused
on estimating leaf area index (LAI) in wheat crops using information
based on the infrared and red-edge reflectance from Sentinel-2,
which aimed to minimize the influence of confounding factors in
their application. Therefore, the use of TAIs is expected to enhance
the interpretability of fire damage by linking spectral geometry to
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ecological processes, supporting a more meaningful classification
and assessment of fire damage.

The four combinations of TAI are displayed in Table 1, which
lists all the spectral indices used in this study. This set of used indices
was selected after considering previous applications and their
relevance in describing biophysical gradients (Joiner et al., 2018;
Mutanga and Skidmore, 2004; Villoslada et al., 2022; Vincini and
Frazzi, 2011). These products were generated at a spatial resolution
of 15 cm. In such a way, we used both reflectance maps of the
spectral bands (namely, ρRED, ρNIR, ρGREEN, and ρREG) and the
spectral indices as explanatory variables for the classification of
fire-damage levels.

2.6 Collation of the fire-damage dataset

Through visual interpretation of the true color orthomosaics,
100 points were randomly assigned per site and then labelled within
damage classes for each surveyed date. The sampling design aimed

to place these points consistently across surveys to monitor temporal
changes in fire damage. As a result, the proportions of damage
classes changed over time, reflecting the natural progression of post-
fire recovery. This design choice prioritized ecological realism and
temporal consistency rather than artificial class balancing. However,
we acknowledge that a more balanced distribution across classes
would enhance the generalizability of our findings (Collins
et al., 2020).

The assignment of damage labels was performed based on two
distinct approaches: a binary classification (Tran et al., 2020) and a
multi-level classification (McKenna et al., 2017; Simes et al., 2024).
The binary classification discriminated between ‘unburnt’ and
‘burnt’, and the multi-level approach included the following
damage classes: ‘unburnt’, ‘partially damaged’ (i.e., burned but
without ash or charcoal cover) and ‘consumed’ (i.e., with ash or
charcoal cover). Figure 2 displays examples of the classes that were
assigned based on these approaches.

Nevertheless, it is worth highlighting that due to the partial
mapping of the site BRN at the survey on 3 June 2020, only 57 points

TABLE 1 List of spectral indices used as input variables. ρNIR refers to the reflectance value in the near-infrared band, ρRED to the reflectance value in the red
band, ρGREEN to the reflectance value in the green band, and ρREG to the reflectance value in the red-edge band.

Spectral index Equation References

Chlorophyll Vegetation Index (CVI) (ρNIR × ρRED/ρGREEN) Vincini and Frazzi (2011)

DATT4 ρRED/(ρGREEN × ρREG) Datt (1998)

Difference Vegetation Index (DVI) ρNIR – 0.96916 × ρRED Richardson and Everitt (1992)

Green Difference Index (GDI) ρNIR – ρRED + ρGREEN Gianelle and Vescovo (2007)

Green Difference Vegetation Index (GDVI) ρNIR – ρGREEN Sripada et al. (2006)

Green Normalized Difference Vegetation Index (GNDVI) (ρNIR – ρGREEN)/(ρNIR + ρGREEN) Gitelson et al. (1996)

Green Ratio Vegetation Index (GRVI) ρNIR/ρGREEN Sripada et al. (2006)

Green–Red Difference Index (GRDI) (ρGREEN – ρRED)/(ρGREEN + ρRED) Gianelle and Vescovo (2007)

Green–Red Ratio (GRRI) ρGREEN/ρRED Torres-Sánchez et al. (2013)

Modified Green–Red Vegetation Index (MGRVI) (ρGREEN2 – ρRED2)/(ρGREEN2 + ρRED2) Bendig et al. (2015)

Modified Simple Ratio (MSR) (ρNIR/ρRED – 1)/(ρNIR/ρRED + 1)0.5 Haboudane et al. (2004)

Modified Soil Adjusted Vegetation Index (MSAVI) 0.5 × (2 × ρNIR + 1 – ((2 × ρNIR + 1)2–8 × (ρNIR – ρRED)))0.5 Qi et al. (1994)

Normalized Difference Vegetation Index (NDVI) (ρNIR – ρRED)/(ρNIR + ρRED) Rouse et al. (1974)

Optimized Soil Adjusted Vegetation Index (OSAVI) 1.16 × (ρNIR – ρRED)/(ρNIR + ρRED + 0.16) Main et al. (2011)

Red-edge greenness vegetation index (REGVI) (ρREG – ρGREEN)/(ρREG + ρGREEN) Sims and Gamon (2002)

Red-edge simple ratio (SRRE) ρNIR/ρREG Gitelson and Merzlyak (1994)

Red-edge vegetation stress index (RVSI) ((ρRED – ρNIR)/2) – ρREG Delegido et al. (2013)

Soil Adjusted Vegetation Index (SAVI) 1.5 × (ρNIR – ρRED)/(ρNIR + ρRED + 0.5) Huete (1988)

Simple ratio (SR) ΡNIR/ρRED Jordan (1969)

Two-band Enhanced Vegetation Index (EVI2) 2.5 × (ρNIR – ρRED)/(ρNIR + 2.4 × ρRED + 1) Jiang et al. (2008)

Triangular Area Index 1 (TAI1) (550 × (ρRED - ρNIR) + 660 × (ρNIR - ρGREEN) + 790 × (ρGREEN - ρRED))/2 Proposed in this study

Triangular Area Index 2 (TAI2) (660 × (ρREG - ρNIR) + 735 × (ρNIR - ρRED) + 790 × (ρRED - ρREG))/2 Proposed in this study

Triangular Area Index 3 (TAI3) (550 × (ρRED - ρREG) + 660 × (ρREG - ρGREEN) + 735 × (ρGREEN - ρRED))/2 Proposed in this study

Triangular Area Index 4 (TAI4) (735 × (ρGREEN - ρNIR) + 550 × (ρNIR - ρREG) + 790 × (ρREG - ρGREEN))/2 Proposed in this study
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were labelled. In this way, 657 samples were generated for the four
survey dates. The values of the indices and reflectance were extracted
within a 900-cm2 buffer around the recorded geolocations to match
the data from the field survey. Last, the dataset was split into training
and validation samples, for which 70% of the points were used for
model training and 30% for validation analysis.

2.7 Data analysis

Decision Trees using single indices or bands were generated
using the training dataset. Subsequently, the splitting thresholds for
each index were applied to classify the validation dataset and
compared through confusion matrices. To assess the classification
accuracy, the commonly used metrics for overall accuracy, Kappa
coefficient, and F1-score (i.e., the harmonic mean of precision and
recall) from ‘caret’ (Kuhn, 2008) and ‘MLmetrics’ (Yan, 2015)
packages, respectively, were selected and calculated in R. To
evaluate per-class accuracies and detect potential
misclassifications between classes, sensitivity (namely, the rate of
true positives) and specificity (namely, the true negative rate in a
confusion matrix; Nhu et al., 2020) were also calculated. The overall
accuracy represents the proportion of samples that are correctly
classified relative to the total number of samples in the test set. The
Kappa coefficient measures the degree of agreement between the
predicted classifications and the true values, highlighting the
difference between actual agreement and agreement that could
occur by chance. Sensitivity quantifies the proportion of actual
positive cases that are correctly identified by the model.
Specificity evaluates the accuracy of the model in predicting
negative cases, which is defined as the ratio of true negative
predictions to the total number of actual negatives in the dataset.
The F1-score offers a balanced measure of a model’s predictive
performance by considering both the proportion of correct
predictions among all predictions for a specific class
(i.e., precision) and the proportion of correct predictions out of
all actual positive instances of each class individually (i.e., recall).
The F1-score is particularly valuable when class distributions are
imbalanced (Jeni et al., 2013). Class accuracy indicates the number
of correctly classified instances for each distinct class, thus allowing
for a more refined assessment of the algorithm’s performance across

different categories. Finally, Spearman’s correlation coefficient (r)
was calculated to assess the relationship between the spectral indices
and the biophysical variables.

3 Results

3.1 Description of the dataset and the
construction of the TAIs

The training dataset for the binary classification contained
55.8% ‘burnt’ and 44.2% ‘unburnt’ vegetation. For validation,
38.6% of the labelled points were considered ‘burnt’, and 61.4%
were considered ‘unburnt’. The training dataset for the multi-level
approach included 31.3% of ‘consumed’, 24.4% of ‘partially
damaged’, and 44.3% of ‘unburnt’ vegetation. The validation
dataset contained 15.9%, 17.8%, and 66.3% of ‘consumed’,
‘partially damaged’, and ‘unburnt’ vegetation, respectively.

It was observed that the visible bands (ρRED and ρGREEN) were the
most useful for distinguishing ‘consumed’ from ‘partially damaged’
vegetation (Figure 3). On the other hand, ρNIR and ρREG were better
for distinguishing ‘consumed’ from ‘unburnt’ classes when compared
with the visible bands. However, the overlapping variability of these
bands suggests that they are likely to present limitations in
differentiating between ‘partially damaged’ and ‘consumed’
vegetation.

Figure 4 illustrates the triangular area formed by the average of
each damage level using different bands. It appears that using two
bands in the visible range can highlight the differences between
them. In contrast, the inclusion of both NIR and REG bands seems
to separate ‘burnt’ from ‘unburnt’ classes, but there was little
difference between areas for each damage level.

Considering the limitations on differentiating between damage
levels, the spectral indices allowed better separation of the damage
levels when compared with the individual reflectance bands. In this
perspective, the binary classification provided better separation
among classes (Figure 5). For the multi-level approach, indices
including NIR (such as normalized difference vegetation index
[NDVI], optimized soil adjusted vegetation index [OSAVI], and
enhanced vegetation index [EVI2]) were likely to have an improved
differentiation capability when compared with others (Figure 6). In

FIGURE 2
Examples of vegetation condition in the true-color orthomosaics for the assignment of fire-damage classes using: (A) the binary approach and (B)
the multi-level approach.
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both approaches, the TAI seemed to lead to a reduction in variability
among damage classes, especially for ‘consumed’ vegetation.

3.2 Performance of the decision tree
classifiers

The accuracy metrics of the Decision Trees using single variables
were calculated from the confusionmatrices. Table 2 displays the top
six Decision Trees with the highest overall accuracy for the binary
approach. NDVI and simple ratio (SR) had the best overall
accuracies as they correctly assigned 93.6% of the validation data.
The best TAI was TAI1 with an accuracy of 90.9%. Figure 7 shows
the decision rules and splitting thresholds applied in each of the best
classifiers for the binary classification. In addition, the capability of
TAI1 to distinguish fire damage classes was slightly lower than
conventional vegetation indices, such as NDVI, SR, and modified
simple ratio (MSR). For example, TAI1 achieved a sensitivity of
0.846 and specificity of 0.948 in the overall binary classification.
These values are marginally lower than those observed for NDVI
and MSR, which consistently achieved sensitivity and specificity
above 0.926 and 0.943, respectively.

Similarly, the application of the same indices showed good
performance when differentiating between multiple levels of fire
damage (Table 3). OSAVI and TAI1 had the best values for overall
accuracy. These indices could differentiate between the three fire-
damage classes with an accuracy of 80.6%. While OSAVI was more
efficient in detecting ‘partially damaged’ vegetation, TAI1 was more
accurate at detecting ‘consumed’ and differentiating it from other levels.
The results also demonstrated the suitability of TAI1 in classifying
specific fire damage classes. For ‘consumed’ vegetation,
TAI1 demonstrated high sensitivity (0.871) and F1-score (0.771) and
outperformed OSAVI, SAVI, and MSR in sensitivity, suggesting it has
strong potential for identifying damage at this level. However, TAI1 had
poor capability to differentiate ‘partially damaged’ vegetation from the
other classes. Despite this limitation, TAI1 consistently achieved
comparable performance indicators across the fire damage classes
compared to conventional indices. Figure 8 shows the decision rules
and splitting thresholds applied in each of the best classifiers.

By comparing both tables, it can be observed that the algorithms
for the binary classification retrieved slightly higher accuracy
metrics. In addition, the proposed TAI1 was found to have one
of the best performances among the tested indices for both
classification approaches of fire damage. Supplementary Tables
S1, S2 provide the complete performance summary of the
Decision Tree classifiers for the binary and multi-level
classification approaches, respectively.

3.3 Correlation with biophysical variables

Among the biophysical variables measured at the monitoring
sites, aboveground biomass, land surface, and soil temperatures were
found to correlate with TAI1 values. The strongest correlation (r =
0.51) was observed for AGB. Surface and Soil Temperatures
negatively correlated with TAI1 (r values of −0.28 and −0.21,
respectively). Soil Moisture showed no statistically significant
correlation with the best-performance TAI. Figure 9 displays the
scatterplots of the relationship between these variables and TAI1.
TAI3 also yielded moderate correlation coefficients, with the
biophysical variables with correlations ranging between −0.27
(with Surface Temperature) and 0.56 (with AGB). Furthermore,
GRDI, MGRVI, and GRRI had the strongest correlations with AGB
(r = 0.64), yet were slightly weaker in comparison to the correlation
with TAI1. Surface and Soil Temperatures had the strongest
correlations (−0.28 and −0.20, respectively) with DVI and
MSAVI. The CVI and TAI4 showed the strongest correlations
with Soil Moisture (0.14 and −0.14, respectively). Supplementary
Table S3 presents the complete list of correlation coefficients for the
biophysical variables based on the validation dataset.

4 Discussion

4.1 Comparison with past applications

The performance of Decision Trees combined with TAI1 for
detecting burnt areas and differentiating between fire damage

FIGURE 3
Average reflectance values for each optical band within the fire-damage classes. (A) binary and (B)multi-level approaches. Error bars represent the
standard deviation within each class.
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levels was comparable to other applications using more complex
machine learning techniques. In this regard, previous
applications (see Beltrán-Marcos et al., 2021; Brook et al.,
2022; Fraser et al., 2017; Pla et al., 2017; Simes et al., 2024;

Woo et al., 2021) obtained accuracies between 44.0% and 99.9%,
while the classifications using TAI1 yielded accuracies ranging
between 80.6% and 90.9% using different classification
approaches.

FIGURE 4
Visual representation of the Triangular-Area Indices (TAI) concerning the fire-damage classes based on the binary and multi-level approaches. (A)
TAI1, (B) TAI2, (C) TAI3 and (D) TAI4 when applying the binary classification of fire-damage. (E) TAI1, (F) TAI2, (G) TAI3 and (H) TAI4 when applying the
multi-level classification of fire-damage.
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To illustrate the detection of burnt areas using binary
classification approaches, the outstanding accuracy of 99.9%
obtained by Fraser et al. (2017) was achieved using a
thresholding algorithm on the values of a visible-based index
(Excess Greenness Index) to separate affected from unaffected
areas. Cruz et al. (2016) and Simes et al. (2024) also
demonstrated the superiority of this type of index compared
to multispectral ones for binary classifications. In these
examples, the clear differences between burnt and unburnt
surfaces allowed this approach to achieve high accuracy.
Thus, using indicators that discriminate brighter from darker
surfaces was efficient for separating such surfaces. Therefore,
these findings suggest that simpler sensors are likely more
suitable for performing this kind of task in contrast to those
requiring complex datasets.

Regarding multi-level approaches, Simes et al. (2024)
combined seven RGB and multispectral indices to detect and

classify burnt areas and their corresponding severities based on
support vector machine and random forest (RF) algorithms.
While the RF models achieved a 96.6% overall accuracy for
the burnt area classification, the models using only
red–green–blue data encountered limitations while attempting
to differentiate between damage classes. Similar
misclassifications in certain severity levels were also observed
in Pérez-Rodríguez et al. (2019) and Brook et al. (2022),
especially in moderate damage classes. It has been reported
that vegetation with this level of damage exhibits spectral
characteristics that closely resemble those of bare soil (Pádua
et al., 2020), especially when associated with agricultural harvests
(van Dijk et al., 2021).

The results of the present study achieved up to 80.6% overall
accuracy. When specifically considering other indices, Shin et al.
(2019) applied a thresholding approach to NDVI values and
achieved an overall accuracy of 71% to differentiate between

FIGURE 5
Examples of box-plots of the distribution of vegetation indices for the fire-damage classes based on the binary approach. (A) NDVI, (B) SRRE, (C)
DATT4, (D) CVI, (E) OSAVI, (F) REGVI, (G) GRDI, (H) EVI2, (I) TAI1, (J) TAI2, (K) TAI3, and (L) TAI4.
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multiple levels of fire severity in specific components of vegetation.
Compared to this example, the application of thresholds on both
NDVI and TAI1 yielded better differentiation between fire damage.

In contrast, Pérez-Rodríguez et al. (2019) could only achieve a
statistically significant separation of damage classes when using
the values of the difference between the reflectance in the NIR

FIGURE 6
Examples of box-plots of the distribution of vegetation indices for the fire-damage classes based on themulti-level approach. (A)NDVI, (B) SRRE, (C)
DATT4, (D) CVI, (E) OSAVI, (F) REGVI, (G) GRDI, (H) EVI2, (I) TAI1, (J) TAI2, (K) TAI3, and (L) TAI4.

TABLE 2 Summary of the performance metrics of the six best Decision Tree classifiers for the binary classification of fire-damage based on the validation
dataset. Sensitivity, Specificity, and F1-score refer to the class ‘burnt’, which was defined as the positive class in the classifier.

Indices Overall accuracy Kappa Sensitivity Specificity F1-score Class accuracy

NDVI 0.936 0.866 0.926 0.943 0.918 0.934

SR 0.936 0.866 0.926 0.943 0.918 0.934

MSR 0.936 0.866 0.926 0.943 0.918 0.934

OSAVI 0.931 0.854 0.888 0.958 0.909 0.923

TAI1 0.909 0.805 0.846 0.948 0.877 0.897

SAVI 0.905 0.798 0.840 0.946 0.873 0.893

OSAVI, optimized soil adjusted vegetation index; TAI1, triangular area index 1; MSR, modified simple ratio; NDVI, normalized difference vegetation index; SR, simple ratio; SAVI, soil adjusted

vegetation index.
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and red wavelengths; the NDVI only allowed for differentiating
between fire damage in binary classification approaches. These
findings regarding the application of the TAI indices suggest that

this type of index is suitable for both methodologies of fire-damage
classification by allowing both the detection of burned areas and the
discrimination of damage levels.

FIGURE 7
Illustration of the six best Decision Tree Classifiers and their respective confusion matrices for the binary classification of fire-related damage.
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4.2 Potential contributions of TAI1 and other
triangular-area indices

Given the capability of the TAIs to differentiate between
damage classes caused by fire, these indices slightly
underperformed when compared with the conventional ones
after application in binary classification approaches (Table 2).
The results, especially in those presented in Table 3, highlight the
potential of using TAI1 for targeted applications, particularly in
multi-level classification approaches contingent on
improvements in its capability to differentiate between
moderately affected vegetation, particularly the ‘partially
damaged’ class defined in the current study. The conventional
indices showed better performance for detecting this level of
damage. The confusion between severity classes has been a
recurring challenge in studies assessing fire effects (see
McKenna et al., 2017; Carvajal-Ramírez et al., 2019; Pérez-
Rodríguez et al., 2019; Simes et al., 2024) and may be caused
by multiple factors (Morgan et al., 2014). Despite this confusion,
it is worth mentioning that TAI1’s strengths lie in its capability to
detect and classify ‘consumed’ vegetation. For this damage class,
the higher sensitivity and F1-score, in addition to the reduced
variability observed in Figures 6I, indicate an improved capacity
to detect the most severely affected locations, which is especially
important for post-fire assessments and recoveries (Viana-Soto
et al., 2017). This capability may contribute to the detection of
severely burnt areas, which is beneficial for supporting
prioritization of areas for reforestation, erosion control,
biodiversity conservation and enhancement of their efficacy
(Vallejo et al., 2012).

In addition, the results demonstrate that TAI1 correlated
with most biophysical variables and had some of the strongest
coefficients considering the other spectral indices under
assessment. In general, TAIs effectively captured features
related to the effects wildfires may have on the environment,
as demonstrated by the correlation analysis. Similarly, other
studies have also linked spectral indices to fire-related
biophysical variables (see Beltrán-Marcos et al., 2021; Talucci
et al., 2020; Fraser et al., 2017). For example, Fraser et al. (2017)
investigated the usefulness of drone-derived mapping techniques
for assessing biophysical indicators of burn severity. The authors
demonstrate their ability to estimate the proportions of charred
surfaces and residual green vegetation by utilizing the NBR and
its variant forms. These indices had an explanatory power of at
least 69% of the indicators’ variability. The NBR mostly relies on
the short-term spectral responses due to biomass amounts and
moisture variations in leaves that were caused by fire (Chuvieco
et al., 2020). However, clouds, water, and specific land covers may
present similar behaviors in the spectral bands employed by this
index and promote an increase in the rate of false positives
(Alcaras et al., 2022).

Thus, drones offer spatial resolution imagery at the
centimeter level, allowing the detection of fine-scale
heterogeneity in fire damage that might be overlooked by
coarser satellite data. This improvement is especially valuable
in environments where fire effects can vary over short distances
(Simes et al., 2024). Furthermore, these platforms offer improved
flexibility and on-demand data acquisition, thereby overcomingT
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one of the main limitations of satellite data, namely, the need for
prompt observation (Afira and Wijayanto, 2022). Compared to
satellite-based applications, drones can support mono-temporal
assessments with very-high spatial resolution, reducing the

dependency on prior surveys (Veraverbeke et al., 2012).
Although several studies have demonstrated that indices
derived from the differences between pre- and post-fire
reflectance exhibit enhanced performance compared to mono-

FIGURE 8
Illustration of the six best Decision Tree Classifiers and their respective confusion matrices for the multi-level classification of fire-related damage.
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temporal indices (see Carvajal-Ramírez et al., 2019; Fraser et al.,
2017) and the improvement offered by their capacity to reduce
variability from confounding factors (Veraverbeke et al., 2010;
2011), it is important to note, however, that the decision to use
either a mono- or multi-temporal approach is dependent on the
availability of satellite scenes, the timing of post-fire assessments,
and the specific objectives of the survey (Royet al., 2002; Fraser
et al., 2017). In this context, Fraser et al. (2017) discussed that
mono-temporal indices effectively characterize environmental
properties at a specific moment in time, while multi-temporal
indices are more suitable for capturing changes induced by fire on
these properties. Consequently, the application of mono-
temporal approaches relies on the establishment and
optimization of their correlation with other indicators of fire-
induced environmental alterations, which would allow for
promptly differentiating between burned and unburned
locations (Mpakairi et al., 2020). Therefore, the application of
spectral indices in mono-temporal approaches appears to be a
suitable alternative for rapid assessments of fire damage on
vegetation, and their interpretation may be enhanced when
integrated into multi-temporal frameworks.

These findings are especially relevant considering the
potential of an ecological meaning for the index, which

enhances the interpretability of fire damage. Ecologically
validated spectral indices derived from drone-acquired data
may contribute to rapid and high-resolution assessments of
vegetation health and pattern, thus promoting a
comprehensive understanding of the impact of fires on
ecosystems (Arroyo-Vargas et al., 2019). These data are
expected to support the monitoring of post-fire vegetation
recovery (Nolè et al., 2022; Talucci et al., 2020) in addition to
facilitating improvements in models for fire behavior and
impacts (McNamara and Mell, 2022). Thus, TAI1 can
contribute to condition and degradation monitoring efforts by
providing ecologically relevant information and enhancing the
interpretation of fire damage beyond simple detection.

4.3 Limitations and challenges

The poor capability to separate ‘partially damaged’ and
‘unburnt’ vegetation may be explained by physiological
responses due to water stress, which often cannot be
dissociated from fire-induced impacts on vegetation (Hislop
et al., 2023). As a result, the spectral response of these two
classes of damage likely overlaps, making it difficult to

FIGURE 9
Scatterplots of TAI1 and the biophysical indicators (A) aboveground biomass, (B) surface temperature, (C) soil temperature, and (D) soil moisture.
Linear trends and confidence intervals are displayed in the plots.
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distinguish between drought stress caused by climate variations
and the effects of fire. One aspect that may assist in differentiating
between sources of drought stress in this situation could be a
better understanding of the time lag and duration of
physiological responses, which are usually less immediate and
shorter in duration in weather-induced drought stress (Ahmed
et al., 2017; Ji et al., 2021). Furthermore, Carvajal-Ramírez et al.
(2019) identified significant challenges when differentiating
between medium and high-severity classifications, in contrast
to the confusion between low and medium severity responses.
This difficulty may correspond to the ‘partially damaged’ and
‘consumed’ classes that are delineated in the current study. These
divergent findings indicate that additional efforts should focus on
understanding the factors and mechanisms causing this
confusion in intermediate severity classes.

Assessments using mono-temporal indices face several
limitations, particularly concerning the temporal window
accessible for observation through remote sensing tools. For
instance, Fraser et al. (2017) highlighted that ash cover on
burnt surfaces can be rapidly removed by wind and
precipitation; this process underscores the need for timely
surveys immediately following fire events, a finding that is
corroborated by Pádua et al. (2020). Consequently, these
inconsistencies suggest the need to establish an optimal post-
fire temporal window for conducting drone surveys to enhance
the characterization of fire damage levels. Additionally,
Veraverbeke et al. (2010) discussed the importance of
accounting for the temporal dimension in fire severity
assessments by considering factors such as phenological
changes and vegetation recovery in the evaluation. In this
context, the dataset utilized in the present study addresses the
temporal aspect of fire damage effectively, as it encompasses
observations made on multiple post-fire dates (3, 46-, 117-, 124-,
and 350-day). To date, such comprehensive temporal coverage of
fire damage conditions using drones has not been undertaken
previously. Thus, the findings of the present study integrate
potential changes in environmental conditions and the varying
phenological stages of vegetation into the analysis, thereby
offering more nuanced data for the development of indices
tailored to quantify fire damage over time.

Class imbalance in the validation dataset may have negatively
impacted the model’s ability to distinguish between ‘partially
damaged’ and ‘unburnt’ vegetation. The validation dataset
contained a higher proportion of ‘unburnt’ samples, which likely
biased the classifier in favor of the dominant class. This imbalance
can reduce both the sensitivity and precision for minority classes,
particularly for ‘partially damaged’ vegetation, thus increasing the
risk of misclassification errors. To mitigate this issue, the F1-score
was included in the analysis (Jeni et al., 2013). In addition, although
the training dataset was relatively more balanced, the varying
proportions observed, driven by natural ecological recovery
across different surveys, introduced natural variability, which was
intentionally preserved to reflect realistic post-fire conditions. While
this design reflects realistic post-fire conditions, it emphasizes the
need for caution when interpreting classification performance,
particularly regarding intermediate damage levels. Future research
may benefit from employing stratified sampling or resampling
techniques to address the challenges posed by class imbalance.

Such methodologies could enhance the robustness and predictive
performance of multi-level classification models (Boschetti
et al., 2016).

4.4 Practical implications and future
directions

The results demonstrated that the proposed TAI1 had similar
or higher performance than traditionally employed spectral
indices for detecting burnt areas and differentiating between
fire damage levels. Determining thresholds using Decision
Trees allowed for enhancing the differentiation between the
identified classes in the models derived from the training data.
This approach facilitated a more refined characterization of
damage categories addressing specific local conditions
(McKenna et al., 2017). This technique was chosen for
assessing the proposed indices due to the enhanced
interpretability that it offers. Shin et al. (2019) have
corroborated that utilizing NDVI thresholding for the
classification of fire severity yields superior results when
compared to conventional supervised classification methods.
Nonetheless, additional efforts are necessary to test and
validate the established thresholds to enable their
generalization across different regions, seasons, environmental
contexts, and data sources (Barbosa et al., 1998; Farhadi et al.,
2022; Roy et al., 2002). In this regard, the current research
specifically retrieved empirical thresholds suitable for
distinguishing burnt areas and levels of fire damage in a
peatland utilizing drone-based data. Specifically, this study
contributes to the development of a transferable framework
for monitoring and assessment efforts, thereby enhancing the
efficiency of resource allocation and methodological consistency
for researchers and practitioners operating in diverse locations
and contexts.

While machine learning and other techniques of supervised
classification require a substantial level of input for their
implementation, their use can be optimized by exploring
automated procedures for tuning parameters to enhance their
performance. There are several automated methods for the
selection of the optimal parameterization (e.g., Lee et al., 2022;
Li et al., 2022; Simes et al., 2024), mostly using frameworks for
implementing grid searches of the optimal parameters based on
cross-validation. However, this type of procedure is usually time-
consuming and may not yield transferable or generalizable
frameworks (Bischl et al., 2023; Probst et al., 2019), focusing
mainly on maximizing model fit to the available data. Therefore,
the decision between employing a more explicit methodology and
opting for one that prioritizes higher accuracy will largely depend
on the specific objectives of the research. Moreover, multiple
approaches could be explored for minimizing the confusion of
fire damage classes and hence the inclusion of false-positive
delineations into assessments. In this context, Hislop et al.
(2023) proposed a method for distinguishing phenological
changes from physiological responses caused by droughts and
fires using deviations from baseline NBR values to overcome the
limitations regarding the confusion between damage levels.
Another alternative for improving the delineation of burned
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areas using a binary approach would be using burned-pixel seeds,
as described by Roteta et al. (2019). This procedure leverages the
distinct spectral signal of the ‘consumed’ vegetation to reduce
commission errors in the delineation using a binary approach.
Thus, this approach could diminish the inclusion of false positive
results caused by the similarity of the spectral signal between
stressed vegetation and burnt surfaces. Finally, combining
multiple indices for identifying burnt surfaces may improve
the detection of burned surfaces, leveraging the strengths of
individual indices for the classification and improving the
overall accuracy while keeping the framework simple to
implement and interpret (Brown et al., 2018; Colson et al.,
2018; Carvajal-Ramírez et al., 2019; Fan et al., 2024).

In summary, further research and evaluations are necessary
to address the variations in scales, sensors, and environmental
contexts to confirm the interchangeability potential of TAI1 for
mapping fire damage. Such validation would clarify the extent to
which these indices can characterize biophysical responses
resulting from fire events and the potential for generalizing
the classification thresholds established in this study.
Alternatively, it may be necessary to determine site-specific
values tailored to distinct regions and periods (Shin et al.,
2019). Moreover, it is crucial to highlight the potential of
utilizing satellite data to evaluate the efficacy of the TAI
indices. For instance, Pádua et al. (2020) demonstrated that
drone and satellite imagery provided comparable levels of
accuracy in monitoring burned areas within the same
geographic region. This finding suggests that TAI1 could be
effectively applied for identifying fire-affected landscapes over
larger geographic scales. The spatial and temporal resolution
offered by satellites may mitigate several limitations associated
with drone-based assessments, including confusion between
different damage classes and environmental features, in
addition to the lack of comparative analysis with pre-fire
conditions (Pérez-Rodríguez et al., 2019; Arroyo-Vargas et al.,
2019; Pontes-Lopes et al., 2022). Thus, the relevance of TAIs
could be demonstrated at broader spatiotemporal scales and
could be integrated as a complementary indicator in fire
damage assessments using this type of data.

5 Conclusion

This study evaluated the potential of novel TAI for assessing fire
damage levels in vegetation. The findings demonstrate that TAIs led
to an improvement in the differentiation of fire damage levels,
particularly in the binary classification approach. Compared to
raw reflectance values, spectral indices produced an enhancement
in discrimination performance, with indices incorporating NIR
(NDVI, OSAVI, and EVI2) showing superior results. The best-
performing decision tree classifiers achieved high accuracy, as NDVI
and SR achieved 93.6% accuracy in binary classification, while
TAI1 performed consistently well in both binary and multi-level
classification schemes. For multi-level classification, OSAVI and
TAI1 yielded the highest accuracies (80.6%), with TAI1 excelling in
detecting ‘consumed’ vegetation. However, it showed reduced
capability in identifying ‘partially damaged’ vegetation. Despite
this limitation, TAI1 achieved comparable performance to

conventional indices, reinforcing its suitability for fire damage
assessment. Moreover, correlation analysis revealed that
TAI1 was significantly associated with biophysical variables,
particularly AGB (r = 0.51), while surface and soil temperatures
exhibited negative correlations. These findings highlight its potential
for retrieving more refined characterizations of fire damage,
particularly for identifying the most severely affected areas. Its
reliability in detecting ‘consumed’ vegetation indicates its
potential as a valuable tool for prioritizing post-fire recovery
actions, such as erosion control and reforestation efforts. Overall,
the results indicate that integrating traditional vegetation indices
with novel TAIs can enhance fire damage classification, supporting
post-fire monitoring efforts and ecological assessments. Its
application using drone data improves the spatial resolution of
fire damage assessments, facilitating the detection of short-term
vegetation changes and supporting adaptive management strategies,
which is relevant for accurately mapping fire severity in
heterogeneous landscapes. These platforms also offer the
potential for more frequent data collection, enhancing the
temporal resolution of monitoring efforts, particularly for
monitoring post-fire vegetation recovery dynamics, enabling the
detection of short-term changes and informing adaptive
management strategies. Continued refinement of these indices,
particularly in improving their capacity to differentiate between
intermediate damage levels (e.g., ‘partially damaged’ vegetation), is
essential for improving their effectiveness and applicability in
practical contexts. Further research is necessary to assess the
interchangeability of TAI1 across various scales, sensors, and
environmental contexts, as this research will provide insight into
the generalizability of the indices and their potential applicability
across diverse geographic regions. Additionally, exploring satellite
data to extend the spatial applicability of TAI1 could significantly
enhance the practical utility of these indices and address some of the
inherent limitations associated with drone-based assessments.
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