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This paper presents a literature review of satellite remote sensing approaches for
monitoring northern peatland condition indicators. First, a set of key climate
regulation indicators related to hydrology, vegetation, and terrain changes is
identified and evidenced. Second, satellite remote sensing methods to measure
and monitor each indicator are summarized and assessed. Finally,
recommendations on the utility of open-access satellite data to monitor
peatland condition indicators of northern peatlands in an operational context
are provided. Results of this study demonstrate that a combination of data from
both radar and optical satellites, reinforced by robust ground and aerial
measurements for calibration and validation, is able to track temporal and
spatial changes of the key indicators. Operational monitoring of peatland
condition and change resulting from restoration activities can underpin
carbon crediting mechanisms. Satellite data enables systematic, national-scale
monitoring of peatland restoration over extended timeframes. However,
challenges such as obtaining cloud-free optical imagery remain. Future
satellite missions will allow for further development of remote sensing
methods to improve peatland condition monitoring.
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1 Introduction

Peatlands are wetland ecosystems that form due to long-term accumulation of partially
decomposed organic material under waterlogged conditions. They are highly diverse and
are globally distributed across various climates and landscapes, supporting a rich variety of
plant species and distinct vegetation community compositions (Bonn et al., 2016).
Peatlands can generally be classified as northern or tropical. This paper focuses on
northern peatlands, which are found in temperate, boreal, and subarctic climates, and
are primarily dominated by mosses, sedges, and shrubs (UNEP, 2022). Pristine peatlands
provide key ecosystem services, including supporting unique biodiversity (Bonn et al.,
2016), water regulation, and climate control (Kimmel and Mander, 2010). Although
peatlands only cover approximately 3% (4 million km2) of Earth’s land (Xu et al.,
2018), it is estimated they store up to 30% of global terrestrial carbon, twice as much
as the world’s forests (Yu et al., 2010; UNEP, 2022). Active (i.e., peat-forming) pristine
peatlands serve as long-term carbon stores and net annual carbon sinks (Yu, 2012).
However, anthropogenic activities like drainage, grazing, and forestry have degraded
many peatlands globally, threatening their carbon stores and potentially turning them
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into net carbon sources (Leifeld and Menichetti, 2018; Regan et al.,
2020). An estimated 500,000 km2 of drained peatlands worldwide
release up to 2 Gt CO2 y-1 (Joosten, 2010). Therefore, protecting
healthy peatlands and restoring degraded areas are crucial priorities
for meeting global biodiversity and climate change mitigation targets
(Bain et al., 2011).

Peatlands cover about 12% of the United Kingdom’s (UK) land,
around 30,000 km2 (3 million hectares) (Bain et al., 2011) – with
approximately 80% considered degraded (Evans et al., 2017).
Peatland degradation in the UK is driven by land use pressures
and historic attempts to make peatlands profitable. Activities like
cattle grazing, controlled burning to promote heather growth for
grouse shooting, urbanization, and recreational activities (through
trampling) harm peat-forming vegetation and escalate drainage
(Lunt et al., 2010; Regan et al., 2020). In the late 20th century,
driven by government tax incentives, commercial afforestation led
to the draining and planting of around 9% of the UK’s deep peat
bogs. This practice ended with the abolishment of the incentives in
1988 (Sloan et al., 2018). Additionally, atmospheric pollution and
fertilizer runoff from nearby farms have also contributed to peatland
degradation (JNCC, 2011). Peat is extracted in the UK for
horticulture and fuel, destroying the ecosystem (Joosten and
Clarke, 2002). This has prompted a phase-out plan banning peat
in retail gardening products by the end of 2025 to significantly
reduce peat extraction (Holmes and Bain, 2021).

Degraded peatlands systematically release stored carbon into the
atmosphere; preventing this is a major motivation for peatland
restoration (Lunt et al., 2010). In line with this, the International
Union for Conservation of Nature’s (IUCN) UK Peatland Strategy
2018–2040 aims to have 2 million hectares of peatland in good
condition, under restoration, or sustainably managed by 2040
(IUCN, 2018). To support this goal, numerous projects across
the United Kingdom are actively conducting, funding, and
advising on peatland restoration. One example is the Nature for
Climate Peatland Grant Scheme, a government-funded program on
track to restore 35,000 ha of peatland by the end of 2025 (Field et al.,
2024). There are also voluntary nature market schemes, such as the
United Kingdom Peatland Code launched in 2015, and schemes
funded by other organizations, such as the Moors for the Future
Partnership, founded by the Heritage Lottery Fund in 2003, which
support private and public peatland restoration projects. These
schemes operate independently, led by different organizations
with varied goals, funding sources, and regional priorities. Some
focus primarily on climate change mitigation by maximizing carbon
sequestration, while others prioritize biodiversity or water quality.
Restoration techniques also differ based on the project goals, ranging
from rewetting and reintroducing Sphagnum moss, to blocking
drainage ditches or managing vegetation through grazing or
controlled burning. As a result, differences in scale, monitoring
techniques, restoration criteria, and reporting standards make it
difficult to directly compare their outcomes and assess the collective
impact at a national level.

This variability becomes particularly important in the context of
peatland carbon credits, which monetize the climate benefits of
peatland restoration by selling credits based on emissions reductions
(abatement units), not future carbon sequestration. The carbon
credit payment amount is calculated by estimating how much
carbon would have been released over a period if the area had

not been restored (Moxey et al., 2021; Tribe et al., 2022). Validation
of project outcomes prior to carbon credit payout is essential to
ensure credibility. The IUCN’s Peatland Code is a voluntary
standard offering a standardized, independently validated method
for quantifying emission reductions to provide buyers and
stakeholders with assurance on the carbon credits they purchase
(IUCN, 2023). There are eligibility criteria for projects, such as
minimum peat depth and proof that no new drainage or vegetation
removal has occurred since November 2015, to prevent intentional
degradation. Carbon credit payments to the sellers (usually the
landowners) depend on the initial peatland condition, project
area, and management duration (minimum 30 years), being
proportional to projected emissions reductions (IUCN, 2023). It
is important to note that, regardless of project duration, payments
are made only once and do not account for ongoing maintenance
activities.

While the Code provides a credible foundation for validating
carbon credits, the current monitoring approach detailed by the
IUCN’s Field Protocol (IUCN, 2017) exhibits significant limitations.
Primarily based on manual field surveys, it is resource-intensive and
limits spatial and temporal data collection. Additionally, broad
condition categories may fail to capture the nuanced progress of
peatland recovery. A robust monitoring framework must be
established to continually evaluate the impact of restoration
activities and underpin carbon credits, also allowing for accurate
reporting of greenhouse gas (GHG) sources and sinks. To be
effective, such a framework would need to rely on systematic,
long-term measurements of key peatland condition indicators.
Remote sensing satellites provide substantial advantages over
traditional monitoring methods, offering wide coverage of remote
and inaccessible areas, delivering consistent and objective data over
time, enabling timely detection of changes in peatland condition,
and doing so in a cost-effective manner–thereby improving
monitoring efficiency and supporting adaptive management.
Because of this, there is a growing trend of using remote sensing
satellites to monitor aspects of peatland condition (Guo et al., 2017;
Czapiewski and Szumińska, 2021), which will only accelerate with
continuing advances in satellite data availability and technology.
This paper identifies a set of key indicators of peatland condition
that are relevant for such a monitoring framework and presents a
comprehensive review and synthesis of the feasibility of currently
available open-access remote sensing satellites to measure and
monitor these indicators operationally.

1.1 Literature review method

This literature review analyses, compares, and assesses currently
available satellite remote sensing data for their utility in monitoring
peatland condition indicators. It is distinguished from previous
reviews (Guo et al., 2017; Lees et al., 2018; Minasny et al., 2019;
2023; Czapiewski and Szumińska, 2021; Dronova et al., 2021;
Mirmazloumi et al., 2021; Abdelmajeed et al., 2023; Abdelmajeed
and Juszczak, 2024) in both approach and scope. It takes an
indicator-based approach to assessing the utility of satellite
measurements for monitoring peatland condition, specifically
regarding condition change throughout restoration activities. It
encompasses peer-reviewed articles published between 1 January
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2009 and 1 June 2024 to capture recent developments following the
launch of key open-access satellite missions, conducted over
northern hemisphere peatlands or peatlands which are
comparable (in vegetation or characteristics) to those found in
the United Kingdom. This review focuses on non-commercial
remote sensing satellite missions, as their open-access data is
freely available, regularly updated, and globally consistent–crucial
for developing a scalable, cost-effective, and reliable national
peatland monitoring framework.

2 Peatland condition

2.1 Peatland condition indicators

Throughout this paper, the term indicator is used to refer to a
measurable variable that reflects or represents a specific aspect of
peatland condition. In this context a metric that can be used to
designate the condition of a peatland. Existing research identifies
the usefulness of indicators as proxies for peatland “condition” or
“health” (Lees et al., 2018; Artz et al., 2023). There is no clear
consensus on these terms as they vary according to the functional
definition of condition, such as biodiversity, climate regulation,
and water regulation. This paper focuses on climate regulation
and thus defines condition indicators as factors influencing
carbon loss, accumulation, and storage in peatlands. Together,
these indicators help classify peatland condition along a
continuum from fully degraded to near-natural, allowing for
an improvement on the limiting condition categories currently
used in the Peatland Code and in UK GHG emission inventories
(Brown et al., 2023; IUCN, 2023). In accordance with the IUCN
UK Peatland Strategy, this paper considers near-natural
condition as the optimal state for United Kingdom peatlands
and the most practical target for restoration projects (IUCN,
2018). NatureScot’s Peatland ACTION project (NatureScot,
2016), defines near-natural condition peatlands as having the
following key features:

• Sphagnum dominated,
• Dominance of peat-forming moss and sedge species,
• No known fires (either prescribed or wild) within livingmemory,
• Evidence of grazing and trampling is rare or absent,
• Little or no bare peat surface,
• Heather (Calluna vulgaris) is not dominant,
• Pool systems may be present (areas of inundation on the site)
in the wetter north and west of the UK,

• The surface will be undulating with Sphagnum hummocks
and hollows.

Collectively, these features are used to identify and assess the
condition of peatlands; hence, corresponding key peatland condition
indicators can be defined.

The climate regulation indicators of peatland condition that
need to be measured to determine restoration activity success can be
grouped into three functional categories: 1) Hydrology: Water Table
Depth and Soil Moisture; 2) Vegetation: Bare Peat, Vegetation Type,
and Plant Health; 3) Terrain Changes: Surface Motion, Surface
Degradation, and Fire Incidence.

2.2 Peatland restoration and condition
monitoring

Ecological restoration is defined as “the process of assisting the
recovery of an ecosystem that has been degraded, damaged, or
destroyed” (SER, 2004). Restoration is a progressive and long-term
process seeking to incrementally improve ecosystem condition over
time. In peatlands, full recovery may take up to 20 years of sustained
restoration management; however, improvements in condition
often begin shortly after interventions are implemented (Lucchese
et al., 2010; Lunt et al., 2010). Repeatable, regular, and automated
monitoring enables tracking of these improvements throughout the
restoration process. A variety of established techniques are used in
peatland restoration, including drain and gully blocking, removal of
woodland and scrub, revegetation with key peatland species such as
Sphagnum, and cessation of burning practices (Lunt et al., 2010;
Alderson et al., 2019). Despite these efforts, full recovery of
biodiversity, hydrology, and peat soil structure is not always
achievable (Loisel and Gallego-Sala, 2022). Factors such as land-
use pressures, grazing, and agricultural run-off can limit the
effectiveness of peatland restoration. To resolve land use
conflicts, a catchment-based approach to the restoration of
peatlands should be employed. The catchment approach manages
land and water across the entire river catchment (and ownership
boundaries) as a connected system. For peatlands, this means
considering how their condition both affects and is influenced by
wider processes such as water flow, erosion, land use, and
biodiversity, leading to more effective and permanent outcomes
and increased return on investment (Menberu et al., 2018).

National-scale attempts at classifying the condition of UK
peatlands include a range of region-specific and UK-wide
initiatives. In Scotland, NatureScot’s Peatland ACTION program
uses a structured framework for assessing peatland condition, while
England applies the Common Standards Monitoring approach
alongside tools such as remote sensing. In Wales, the Phase
1 Habitat Survey provides baseline ecological data, which is used
to inform peatland assessments. Additionally, the United Kingdom
Government’s Sustainable Farming Incentive scheme includes
specific guidance for assessing moorland condition, aiming to
support consistent monitoring and restoration efforts. While not
all moorland is peatland, many United Kingdommoorlands contain
extensive areas of upland peat soils, making this guidance highly
relevant to peatland monitoring and management. Despite regional
methodological differences, these national-scale initiatives
collectively contribute to a more harmonized, landscape-scale
understanding of peatland health and restoration needs, reflecting
a growing consensus on the importance of consistent condition
classifications to guide restoration, inform land-use decisions, and
support national climate change mitigation targets.

The IUCN’s Peatland Code Field Protocol (IUCN, 2017)
provides a standardized method for assessing baseline peatland
condition and tracking changes for carbon credit projects.
Initially, aerial imagery (such as Google Earth) is used to create a
map of assessment units and identify peatland features (e.g.,
drainage ditches, hagg/gully systems) as well as non-peatland
features (e.g., rocks, forests, watercourses). This map is used to
calculate the area of each assessment unit and as the basis for the
initial and ongoing field surveys. Fixed monitoring plots are
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established at the baseline survey and revisited after 5 years, and
every 10 years after that for the agreed duration of the project.
Surveys assess key indicators such as vegetation composition (e.g.,
Sphagnum cover), peat surface condition (e.g., bare peat or erosion),
and hydrological features (e.g., water table depth and pooling)
through site visits. The site’s condition is then classified into one
of seven condition categories, from near-natural to severely
degraded, allowing for change monitoring and adaptive
management. The protocol also highlights the use, where
available, of georeferenced data and photographic records to
ensure long-term consistency.

The Peatland Code currently relies on time and labor-intensive
site visits to conduct surveys. Remote sensing is being pursued as
part of the solution to the mapping and monitoring needs of
restoration projects (JNCC, 2011; Trippier et al., 2020;
Abdelmajeed and Juszczak, 2024). Sensors mounted on
Uncrewed Aerial Vehicles (UAV) are becoming an increasingly
popular data collection approach, ensuring cost-effective,
widespread geographic coverage, especially in challenging and
hard-to-access locations. Initiatives such as the Yorkshire Peat
Partnership and Peatland ACTION have demonstrated the
effectiveness of UAVs in mapping vegetation, hydrological
features, and degradation indicators. Advances in UAV
technology and lower costs now allow landowners, with basic
training and regulatory awareness, to use UAVs for monitoring
peatland condition. Aerial photographs can serve as evidence under
the Peatland Code. NatureScot provides guidance on the use of
optical and Light Detection and Ranging (LiDAR) UAVs for
peatland monitoring, helping landowners and organizations
effectively collect and use this data (NatureScot, 2022). A key
limitation of UAVs for monitoring peatland condition is the
restricted spatial and temporal coverage they can achieve.

In contrast, sensors mounted on crewed aircraft can capture
high-resolution data over much larger areas in a single survey. Both
LiDAR and optical monitoring have been successfully conducted
using aircraft. Increasingly, national and regional programs rely on
aerial photography and LiDAR data from aircraft to assess peatland
extent, condition, and restoration outcomes. Organizations such as
Bluesky International supply these datasets for large-scale initiatives,
including projects funded under Peatland ACTION and the UK’s
Nature for Climate Peatland Grant Scheme. Aerial LiDAR surveys
are particularly valuable for producing digital terrain models,
mapping terrain features (e.g., drainage ditches and hagg/gully
systems), and detecting surface changes over time. Moreover, the
Peatland Code encourages the use of aerial photography to define
baseline conditions and support long-term verification. However,
the high cost of aerial surveys remains a key barrier to their
widespread use.

While aircraft provide broader coverage than UAVs, satellite-
based remote sensing offers even greater spatial and temporal reach,
making it an invaluable tool (Czapiewski and Szumińska, 2021;
Abdelmajeed and Juszczak, 2024). Synthetic Aperture Radar (SAR)
and optical remote sensing satellite data are both highlighted in this
paper for their roles in supporting long-term, regular, and national-
scale monitoring of peatlands. A key advantage of both data types is
their ability to provide consistent, repeatable observations over large
areas, which is essential for tracking gradual environmental changes.
SAR is particularly beneficial due to its capacity to operate regardless

of weather or illumination conditions, as it can penetrate cloud cover
and collect data with every satellite overpass. This makes it especially
valuable in persistently cloudy regions such as the United Kingdom,
where optical data acquisition is often limited by cloud obscuration.
Meanwhile optical sensors utility is reduced by frequent cloud cover,
which can create significant gaps in time series data. Both
commercial and open-access satellite systems are now widely
used for peatland mapping and monitoring. Commercial satellites
can offer higher spatial resolution data with more frequent revisit
times, but the cost, licensing restrictions, and limited accessibility of
this data can be prohibitive. Open-access satellite data enables
frequent and consistent local-to-national-scale mapping without
the cost and access restrictions of commercial sources, making it
well-suited for integration into peatland monitoring efforts. The
following sections outline the current capabilities of open-access
remote sensing satellites for identifying andmonitoring the peatland
condition indicators discussed.

3 Hydrological indicators

Hydrological conditions have overriding control over the health,
biogeochemical processes, and GHG exchanges of a peatland (Evans
et al., 2021; Labadz et al., 2010). Shallow water table depth (WTD)
(i.e., a high-water table) and saturated soils are a crucial
characteristic of near-natural peatlands. The waterlogged
conditions lead to the partial decomposition of organic material
and drive the plant communities present, notably the cornerstone
Sphagnum moss species, promoting peat formation and
accumulation (JNCC, 2011). Many peatlands are in a degraded
condition as they have been drained. The reinstatement of a high-
water table and wet soil, a process known as rewetting, is often the
first andmost crucial stage of the restoration process (Lucchese et al.,
2010; Andersen et al., 2017; Minayeva et al., 2017; Lees et al., 2019).
Rewetting is often achieved by blocking the artificial drainage
ditches (Section 5.2) (Holden et al., 2004). Monitoring the
success of rewetting throughout the restoration process is crucial,
as all subsequent steps depend on maintaining wet conditions, and
ditch blocking can easily fail. Another hydrological characteristic
that is indicative of peatland condition is the presence of pools or
surface inundation (Holden et al., 2018). If peat becomes severely
degraded and loses its natural absorbency, large-scale surface
inundation can occur during periods of heavy or prolonged
rainfall. In such cases, water collects on the surface and remains
until the peat eventually dries out again, indicating a compromised
hydrological function (Holden et al., 2018). While surface pools can
also occur on near-natural peatlands, these are typically smaller in
scale and more common in the wetter northern and western regions
of the United Kingdom (NatureScot, 2016). The bulk of the
literature monitoring peatland hydrology measures either water
table depth or soil moisture; hence, these are the two
hydrological indicators addressed in this review.

3.1 Water table depth

WTD is defined as the vertical distance between the soil surface
and the top of the water table, commonly defined as the level at
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which the pore-water pressure equals atmospheric pressure (Baird
and Low, 2022). Because peat has a high specific yield (the
proportion of water that drains freely under gravity relative to its
total volume), near-saturated conditions can occur above the water
table within the capillary fringe (Price et al., 2002; Bourgault
et al., 2017).

Near-natural peatlands have a more stable and shallow water
table depth (Lees et al., 2021a), whereas degraded peatlands have, as
a result of drainage, an increased WTD that can often be unstable.
Deeper WTD increases the thickness of the aerated layer in the
peatland, accelerating decomposition rates of vegetation, hence
increasing CO2 emissions and preventing further peat
accumulation (Tiemeyer et al., 2016). In situ methods measure
the distance between bedrock and the top of the water table,
i.e., not relative to the soil surface. This is commonly done using

monitoring wells or dip-wells. These are point measurements which,
while invaluable, cannot provide spatially explicit WTD
information.

3.2 Soil moisture

Soil moisture refers to the percentage of water content in the
unsaturated zone of the soil layers. WTD drives the soil moisture in
the aerated/unsaturated peat layer through capillary action;
therefore, a shallow WTD generally means high soil moisture
(Dettmann and Bechtold, 2016). This makes these indicators
intrinsically linked; hence, they can be used to estimate one
another. High soil moisture is a characteristic of a near-natural
peatland, whilst surface soils that are drier with lower soil moisture

TABLE 1 Summary of satellite sensors and methods for remote sensing of hydrological indicators. Italics show future open-access sensors.

Sensor Method Indicator Benefits Limitations References

C-band SAR

Envisat
ERS-2
Radarsat-1
Sentinel-1

Sentinel-1 NG
Harmony

Backscatter Soil Moisture
and WTD

• Sensitive to water content
• Penetrates through clouds
• Frequent revisit time
• Long time frame of data
available

• Effective for change detection

• Affected by surface topography,
vegetation, and surface water

• Saturation of signal after
precipitation events

• Limited penetration depth into soil
• Less effective when vegetation is
denser (summer)

• Less effective for deeper WTDs
(WTD > ~0.5 m)

Asmuß et al. (2019), Bechtold et
al. (2018), Kasischke et al. (2009),

Kim et al. (2017), Lees et al.
(2021a), Toca et al. (2023)

L-band SAR

ALOS-1&2

NISAR
ROSE-L

Backscatter Soil Moisture
and WTD

• Sensitive to water content
• Penetrates through clouds
• Penetrates through denser
vegetation than C-band

• Less affected than C-band by
seasonal vegetation change

• Limited data is available
• Infrequent revisit times
• Lower spatial resolution than C-
band

Torbick et al. (2012),
Kim et al. (2017),
Sterratt et al. (2023)

High
Resolution
Optical

Sentinel-2
Landsat

Sentinel-2 NG
Landsat Next
CHIME

OPTRAM WTD • Vegetation can act as a
hydrological condition proxy

• Can be used for densely
vegetated peatland areas

• Long-term data availability and
continuity

• Optical imagery availability limited
by clouds

• Found to be unsuitable for deeper
WTDs (WTD 0–1 m, depending on
site)

• Limited testing for different
vegetation types

Burdun et al. (2020), (2023)

Moderate
Resolution
Optical

MODIS

OPTRAM
NDVI

WTD • Vegetation can act as a
hydrological condition proxy

• Long-term data available

• Optical imagery is limited by clouds
• Spatial resolution is too low for
effective restoration monitoring

• Limited testing for different
vegetation types

Šimanauskienė et al. (2019),
Burdun et al. (2020)

Combined SAR
and Optical

Sentinel-1
Sentinel-2
Landsat
MODIS

Sentinel-1 NG
Harmony
NISAR
ROSE-L
Sentinel-2 NG
Landsat Next
CHIME

Vegetation/
moisture indices
and backscatter

Soil Moisture
and WTD

• Increases accuracy in WTD
retrievals

• Changes in backscatter are
more confidently attributed to
WTD changes if vegetation is
also tracked

• Allows for a more complete
view of the site, optical can
track long-term vegetation
changes

• Penetrates through clouds

• Variable results and limited testing
for a range of vegetation species

• Variability in the success of this
method due to indices chosen –

needs more testing
• Optical imagery is limited by clouds
• Requires modelling expertise

Dabrowska-Zielinska et al. (2018),
Krzepek et al. (2022), Räsänen et
al. (2022), Isoaho et al. (2024)
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are an indicator of damage, likely as a consequence of drainage and
vegetation loss, which drives further degradation (Dabrowska-
Zielinska et al., 2018). Another visible sign that soils are too dry
is large-scale surface water inundation (see above). Similarly to
WTD, in situ methods to monitor soil moisture involve point
measurements (with soil moisture sensors), which can also lead
to unrepresentative estimates as a result of point measurement
interpolation (Millard et al., 2018).

3.3 Satellite methods for monitoring
hydrological indicators

A summary of satellite-based methods to monitor hydrological
indicators of northern peatlands is presented in Table 1. In
peatlands, soil moisture is tightly coupled with WTD, hence, soil
moisture and WTD are used interchangeably throughout
this section.

The most prevalent and promising method for monitoring the
WTD of northern hemisphere peatlands is using SAR backscatter.
Backscatter (σ0) is sensitive to the dielectric constant (permittivity)
of the target, making it ideal to track the large differences between
the dielectric constants of water and soil particles (Asmuß et al.,
2019; Bechtold et al., 2018; Torbick et al., 2012). Water has a very
high dielectric constant; therefore, wetter soil surfaces produce a
stronger SAR response than drier soils (Millard et al., 2018). Both
C-band and L-band SAR, as well as a combination of SAR and
optical data, have shown potential to monitor the hydrological
condition of peatlands (Torbick et al., 2012; Kim et al., 2017;
Asmuß et al., 2019).

The European Space Agency’s (ESA) Sentinel-1 missions (1A
launched in 2014 and 1B launched in 2016) have made C-band SAR
data widely accessible. Building on previous C-band SAR missions
like ESA’s ENVISAT-ASAR (ENVIironmental monitoring SATellite
- Advanced Synthetic Aperture Radar, operational 1 March 2002 to
8 April 2012 with a 35-day repeat cycle, and a spatial resolution
~30 m or ~150 m, depending on imaging mode), ESA’s ERS-2
(European Remote-Sensing Satellite-2, operational 21 April 1995 to
September 2011 with a 35-day repeat cycle, and a spatial resolution
of ~26 m), and Canada’s Radarsat-1 (operational 4 November
1995 to 29 March 2013 with a 24-day repeat cycle, and a spatial
resolution ~25 m), which provided data for the proof of concept for
the approach, Sentinel-1 has significantly advanced the method. Its
finer spatial resolution (approximately 5 × 5 m, 5 × 20 m, and 20 ×
40 m depending on imaging mode), higher radiometric accuracy,
and more frequent revisit time (6 days) have allowed for an
enhanced usability of this method. However, there are a few
issues that limit the application of SAR backscatter as a proxy for
peatland hydrology. Rainfall events and surface water can
significantly affect the backscatter signal. Further research is
needed to explore and account for these effects to successfully
monitor WTD (Kasischke et al., 2009; Lees et al., 2021a).
Similarly, over forested, near-natural, and drained areas (with
WTD deeper than ~0.5 m), further information such as the type
and abundance of vegetation present is required before any
hydrological assessment can be conducted, as it can be unclear
what is shaping the signal reaching the satellite sensor (Kim et al.,
2017). Restoration of peatlands is a long, ongoing process, SAR has

been shown to have many benefits for monitoring hydrology
(Section 2.2). ESA’s current and future (Next-Generation or NG)
Sentinel-1 missions, along with previous SAR missions and future
generations, such as ESA’s Harmony A and B (Earth Explorer 10A
and 10B) planned for launch in 2029, will provide abundant SAR
data over the required decades-long timescales.

L-band SAR backscatter data, collected from the PALSAR
(Phased Array L-band Synthetic Aperture Radar) instrument on
board Japan Aerospace Exploration Agency (JAXA) ALOS
(Advanced Land Observing Satellite) and ALOS-2 satellites, has
also been used for monitoring peatland hydrology (Torbick et al.,
2012; Kim et al., 2017; Sterratt et al., 2023). ALOS-1 was
operational 24 January 2006 to 12 May 2011, had a 46-day
repeat cycle, and a spatial resolution of 10 m–100 m depending
on imaging mode, and ALOS-2 launched 24 May 2014 and is
currently operational, it has a 14-day repeat cycle, and a spatial
resolution of 3 m (in Ultrafine mode) to 100 m depending on
imaging mode. L-band is currently less useful than C-band for
monitoring peatland WTD dynamics; this is partly due to data
availability (fewer operational satellites with open access data), but
also due to the coarser spatial resolution (Aoki et al., 2021). L-band
data is also affected by non-WTD characteristics such as surface
roughness, topography, vegetation, and recent rainfall events
(Sterratt et al., 2023). Without further study to determine and
correct for these, L-band data has limited relevance for large-scale
peatland WTD monitoring. To minimize the effects of
topographical features on PALSAR backscatter, Torbick et al.
(2012) integrated a Digital Elevation Model (DEM) derived by
LiDAR to effectively map the hydrological characteristics of a
Swedish mire; however, the lack of available high-resolution DEM
data of UK peatland sites limits this method. L-band is still
promising for long-term monitoring, as the backscatter signals
generally maintain higher temporal coherence (i.e., higher
consistency of radar signals across multiple acquisitions) than
other SAR bands, especially when considering vegetated areas
(Aoki et al., 2021).

The recently launched NISAR (NASA (National Aeronautics
and Space Administration) - ISRO (Indian Space Research
Organization) SAR) mission, which has a repeat cycle of
12 days and a spatial resolution of 3–48 m depending on
imaging mode, and ESA’s ROSE-L (Radar Observing System for
Europe in L-band) mission (planned to launch in 2028) will
provide L-band data coverage over United Kingdom peatlands,
giving the opportunity to further research its use for peatland
WTD monitoring. NISAR will also have an S-band SAR
instrument onboard, designed to penetrate through light
vegetation, which may also have application for peatland
hydrological monitoring. Pre-launch research on NISAR has
demonstrated the feasibility of retrieving high-resolution soil
moisture products at 200 m using a multi-scale algorithm (Lal
et al., 2024; 2025). These studies also provide analytical approaches
to quantify uncertainties from input data and algorithm
parameters, reinforcing the robustness of the method. Such
advances are highly relevant for peatland hydrology, where soil
moisture dynamics are closely linked to WTD, and integrating
these validated products into multi-sensor frameworks offers
significant potential to improve monitoring across diverse
conditions.
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SAR data primarily responds to near-surface water content and
the backscatter signal is governed by the dielectric contrast between
water and dry matter. As established above in near-saturated
conditions, fully saturated soils can occur above the water table
due to strong capillary action and the high specific yield of peat soils.
This can lead to inaccurate WTD measurements from SAR data as
the backscatter may indicate the WTD is at the surface, when in fact
the soils are fully saturated. This decoupling is a limitation of the
ability of SAR to directly infer WTD, consequently, empirical
models that link SAR backscatter to WTD can be dependent
upon site, condition, and season.

Optical data has also been used tomonitor peatland hydrological
conditions using vegetation activity as a proxy. The OPTRAM
(OPtical TRApezoid Model) method (Burdun et al., 2020; 2023)
represents one of the few existing approaches utilizing Sentinel-2
multispectral data, but this approach has undergone limited testing.
Sentinel-2A was launched on 23 June 2015, and Sentinel-2B was
launched on 1 March 2017, the multispectral instrument onboard
captures 13 spectral bands, with four bands at 10 m resolution, six
bands at 20 m resolution, and three bands at 60 m resolution, and
the mission has a 5-day repeat cycle. Papers using OPTRAM
highlight hyperspectral data as a key area for future research, as
its high spectral resolution enables the detection of vegetation
responses to water stress through subtle changes pigment
composition, water content, and other biochemical properties
(Burdun et al., 2023). Šimanauskienė et al. (2019) found strong
positive correlations between peatland WTD (measured in situ) and
satellite-derived Normalized Difference Vegetation Index (NDVI),
concluding that NDVI could be an appropriate indicator for
peatland hydrology. However, the study was restricted to near-
natural peatlands dominated by Sphagnum, leaving a gap in
understanding how the method performs for degraded peatlands
with altered vegetation and surface conditions.

Finally, a promising pathway for monitoring the hydrological
condition of peatlands is the combination of optical and radar data.
There is evidence that incorporating optical-based vegetation
information can help limit some of the issues associated with
vegetation structure impacting the SAR backscatter signal
(Dabrowska-Zielinska et al., 2018; Krzepek et al., 2022; Räsänen
et al., 2022; Isoaho et al., 2024). Dabrowska-Zielinska et al. (2018)
looked at the effects of vegetation on backscatter, using NDVI
derived from optical imagery. The authors demonstrated the
relationship between NDVI and SAR backscatter indices, such
as those derived from the difference in SAR polarization states
(vertical transmit and horizontal receive vs. vertical transmit and
vertical receive), under an extreme range of soil moisture
conditions and different vegetation abundances. This allowed
for improved soil moisture retrievals (10 vol% accuracy),
showing the benefits of this combined approach. As for WTD,
Isoaho et al. (2024) and Räsänen et al. (2022) successfully used
optical satellite imagery and C-band SAR to track temporal
changes. Krzepek et al. (2022) studied the correlation between
WTD and the remote sensing data backscatter as well as
Normalized Difference Water Index (NDWI), but found a wide
range of correlations, both positive and negative, frommoderate to
low values. Overall, this multi-sensor approach needs to be
extended to sites of different dominant vegetation types before
widespread implementation.

4 Vegetation indicators

Peat is formed by the partial decay of plant material under
waterlogged conditions; hence, for a peatland to be in good
condition and accumulating peat, healthy peat-forming
vegetation needs to be present. In addition, the type of vegetation
present can also provide information on site characteristics. For
example, Sphagnummosses can only be present where the soil is wet
enough to support it (Harris et al., 2006).

4.1 Bare peat

Bare peat, the exposed surface of peat soil where vegetation has
been lost due to extraction, erosion, drying, or overgrazing, is a
visual indicator of poor peatland condition (Trippier et al., 2020).
Without vegetation, peat cannot accumulate and, because nothing is
holding it in place, bare peat is not permanently fixed. This leaves it
vulnerable to erosion, further degradation, and hence carbon loss
(NatureScot, 2016; IUCN, 2017; Trippier et al., 2020). Near-natural
peatland will have minimal bare peat, whereas an actively eroding
peatland will be characterized by extensive areas of bare peat within
hagg/gully systems (haggs are isolated mounds of vegetated peat
between gullies) (NatureScot, 2016). For condition monitoring, in
situ surveys rely on visual inspections of the area for the extent,
location, and characteristics of bare peat. Within the IUCN’s
Peatland Code Field Protocol (Section 2.2), areas of bare peat are
recommended to be monitored through aerial photographs, which
have limited acquisition abilities and can be very costly (IUCN,
2017). Bare peat areas can assume the form of interconnected small
patches, larger expanses, and hagg/gully systems. During the
restoration process, the initial stage is usually to prevent erosion
and fix the bare peat in place by reintroducing vegetation. This is
achieved by covering the area with cut heather “brash”, creating the
necessary stable conditions to sow seeds of fast-growing grasses and
dwarf shrubs. These create root systems that further fix the peat.
Once stabilized, the cornerstone Sphagnum moss species are
introduced. As restoration progresses, the bare peat area should
decline; remote sensing has the potential to be an effective tool for
monitoring this change over time.

A summary of satellite-based methods for monitoring of bare
peat is presented in Table 2. Current satellite-based approaches to
monitor bare peat are based on vegetation indices, mainly derived
from Short-wave Infrared (SWIR) and Near Infrared (NIR) spectral
information, to distinguish between the various vegetated classes.
High spatial resolution satellites such as Landsat (30 m) and
Sentinel-2 (10 m) are suitable for bare peat mapping, using
NDVI to differentiate between bare and vegetated areas (Torabi
Haghighi et al., 2018; Sirin et al., 2020), Landsat is the longest
running earth observation satellite program with the first satellite
being launched 23 July 1972 and Landsat 8 and 9 still currently
operational. Difficulties arise when discriminating between bare peat
and burned peat areas, but can be mitigated with knowledge of fire
occurrences (Sirin et al., 2020). Sentinel-2 is suitable for ongoing
bare peat monitoring, with the added benefit of the long mission
timeline, extending into the 2030s with the Sentinel-2 NG, further
supporting the long-term tracking aligned with peatland restoration
efforts. It is worth noting the Joint Nature Conservation Committee
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(JNCC) report by Trippier et al. (2020), who present a framework for
mapping bare peat using a range of remote sensing data. The authors
used aerial photography and very high-resolution commercial
optical data from Pleiades-1 (2 m spatial resolution) to identify
spectral differences between vegetated and non-vegetated peat.
Thresholds derived from this analysis were then applied to 10 m
Sentinel-2 data, enabling the upscaling of the classification to
produce high-resolution national bare peat maps.

4.2 Vegetation

Peat formation requires both waterlogged conditions and the
presence of peat-forming vegetation, primarily Sphagnummoss and
some sedges such as cotton grass. Sphagnum is a cornerstone species,
responsible for most of the carbon accumulation and for
maintaining the wet, acidic conditions of near-natural peatlands
(Lindsay, 2010; Laine et al., 2021). It relies on high WTD to survive
and is extremely sensitive to changes in the water table, as it gets
water through capillary action (Harris et al., 2006; Lees et al., 2020;
Stuart et al., 2022). Therefore, Sphagnum mosses are important
indicators of peatland surface and near-surface moisture variation.

In situ methods for determining plant communities involve habitat
surveys using classifications such as the JNCC National Vegetation
Classification (Rodwell, 2006), which are time-consuming and
impractical to achieve on a national scale.

The identification of plant communities, diversity, and
abundances can be used to assess peatland condition. The
presence of tree species such as birch and pine, heather (C.
vulgaris) or rhododendron, and purple moor grass (Molinia
caerulea) indicates that conditions on the site are too dry to be
considered healthy (Bonnett et al., 2009). Near-natural peatlands
will be dominated by Sphagnum in hummock and hollow
formations with little heather, whereas degraded peatlands will
have extensive heather or purple moor grass (NatureScot, 2016).
Vegetation will change in many ways throughout the restoration
process, and it is dependent on the starting condition of the area. For
example, plant communities like heather and grasses used for the
fixation of bare peat are a necessary first step in the initial phase of
the restoration, but are not indicative of a healthy peatland. Once the
peat is fixed, gradual revegetation with Sphagnum moss
communities and removal of heather can take place.

Further to this, information on plant health provides vital
information on a site’s ecological function. Plant health can be

TABLE 2 Summary of satellite sensors and methods for remote sensing of vegetation indicators.

Sensor Method Indicator Benefits Limitations References

High Resolution
Optical
Multispectral

Sentinel-2
Landsat

Hyperspectral

CHIME

NDVI
NIR&SWIR bands

Bare Peat • Differentiation of bare peat
from vegetated areas

• Long-term data availability and
continuity

• Bare peat pixels can be confused
with burned areas

• Bare peat patches can be fragmented
to fine scales, for which higher
resolution data is needed

Torabi Haghighi et al.
(2018), Sirin et al. (2020)

Moisture indicators
to distinguish
Sphagnum

Vegetation type • Sphagnum can be distinguished
spectrally from vascular plants

• Long-term data availability and
continuity

• Optical imagery is limited by clouds
• Vegetation composition scale is
finer than 10 m spatial resolution

Pang et al. (2020)

Timeseries analysis Phenology • Key phenological parameters
can be detected spectrally

• Finer spectral resolution with
more vegetation-specific
wavelengths

• High spatial resolution allows
small-scale vegetation change
detection

• Mixed vegetation composition can
yield inconclusive results

• Optical imagery is limited by clouds
• Less frequent revisit times

Arroyo-Mora et al.
(2018), Linkosalmi et al.
(2022)

GPP modelling Photosynthetic
activity/ ecosystem
respiration

• Can spectrally determine the
ecosystem respiration of
peatland vegetation

• Finer spectral resolution with
more vegetation-specific
wavelengths

• Optical imagery is limited by clouds
• Lack of ground-truthing data
available

• More consideration of other factors
(soil, meteorological events) needed

Kalacska et al. (2018),
Junttila et al. (2021),
Bartold (2024)

Moderate
Resolution
Optical

MODIS

FLEX

Timeseries analysis Phenology • Key phenological parameters
(start/end of growing season)
can be detected spectrally

• Very frequent revisit times –
more likely to get suitable
imagery

• Mixed vegetation can yield
inconclusive results, especially for
coarser spatial resolution

• Lower spectral sensitivity to
vegetation wavelengths

• Optical imagery is limited by clouds

Pang et al. (2021)

GPP modelling Photosynthetic
activity

• Higher revisit time – more
likely to get data at the points
needed

• Long-term data available

• Lack of ground-truthing data
available

• Limited testing done, more peatland
types need to be tested

• Overestimation of the GPP

Lees et al. (2019)
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inferred through monitoring the phenology (seasonality) or above-
ground Gross Primary Productivity (GPP) of the vegetation. GPP
can be used to estimate the rate of peat and carbon accumulation and
associated GHG fluxes (Frolking et al., 1998; Junttila et al., 2021),
whilst phenology monitoring is important to characterize the
“active” phase period (when plants grow and sequester carbon),
and may also aid in identifying which plant types are present.

A summary of satellite-based methods for monitoring of
peatland vegetation is presented in Table 2. There are limited
studies that specifically look at discriminating between different
vegetation types over peatlands using open-source satellite data.
Pang et al. (2020) utilized Sentinel-2 data to successfully identify
Sphagnum in a peatland in China. This was achieved using the high-
water content of the moss, which aids in distinguishing it from other
plants in the NIR and SWIR regions of the reflectance spectrum,
particularly in the water absorption bands at 980 nm and 1,150 nm.
Whilst no other vegetation species are specifically mentioned,
vascular plants are named, so it is likely that this method would
enable discrimination between Sphagnum and heather and purple-
moor grass. Pang et al. (2020) noted that further testing of the
method is needed and recommended using sensors with greater
infrared capability, such as Sentinel-2. They also suggested relying
on vegetation indices that incorporate NIR and SWIR bands, such as
the Moisture Stress Index (MSI) and the Normalized Difference
Infrared Index (NDII), to improve detection accuracy.

This aligns with findings from other studies showing strong
potential for hyperspectral data to distinguish between vegetation
categories, though, to date, this has only been demonstrated using in
situmeasurements, UAV-based sensors, or airborne platforms (Cole
et al., 2014a; Erudel et al., 2017; McPartland et al., 2019). Both
Agenzia Spaziale Italiana’s (ASI) PRISMA (PRecursore IperSpettrale
della Missione Applicativa) launched on 22 March 2019, and
Germany’s EnMAP (Environmental Mapping and Analysis
Program), launched 1 April 2022, satellites offer hyperspectral
data at a 30 m spatial resolution, making them suitable for
exploring peatland vegetation monitoring, however, as they
operate with a tasking acquisition model, meaning they collect
data only when specifically requested to observe a given area, the
data availability is restricted. For peatland applications, spectral
resolution is more critical than spatial resolution, as identifying key
vegetation groups, such as Sphagnum species, sedges, and shrubs,
requires narrowband spectral detail, particularly in the visible to
shortwave infrared range. While higher spatial resolution aids in
detecting fine-scale features, hyperspectral data provide greater
diagnostic power for vegetation species classification. Therefore,
despite their coarser spatial resolution, PRISMA and EnMAP are
generally preferable to multispectral sensors like Sentinel-2’s
multispectral imager when the aim is to monitor vegetation
composition or functional change. The limited, on-demand
coverage has constrained their current use in peatland research.
ESA’s CHIME (Copernicus Hyperspectral Imaging Mission for the
Environment) mission is a notable upcoming (planned launch 2028)
hyperspectral satellite for this application. CHIMEwill have a spatial
resolution of 30 m and over 200 spectral bands in the wavelength
range 400–2,500 nm, making it suitable for discrimination of
vegetation types and other vegetation health indicators.

An understanding of how vegetation spectral responses vary
throughout the phenological cycle is imperative to be able to

interpret remotely sensed data correctly (Cole et al., 2014b), not
only as a direct indicator of plant health, but also to disentangle
effects such as attenuation of SAR backscatter in vegetation (Section
3.3) from the condition change associated with restoration (Cole
et al., 2014b). Phenology has been shown to be able to be monitored
using high and medium-spatial resolution satellites (Sentinel-2,
NASA and the United States Geological Survey’s Landsat,
and NASA’s MODIS (Moderate Resolution Imaging
Spectroradiometer)); however, there are unavoidable limitations
(Section 2.2). Pang et al. (2021) used the moderate resolution
MODIS, which provides data at three spatial resolutions 250 m,
500 m, and 1 km, launched 18 December 1999 for Terra and 4 May
2002 for Aqua and has a repeat cycle of 16 days, Enhanced
Vegetation Index (EVI) product to map key phenological
parameters, but determined that a higher temporal resolution
than MODIS datasets is required for characterizing peatland
phenological cycles.

Chlorophyll fluorescence can be used as an indicator of a plant’s
photosynthetic activity and growth. The chlorophyll fluorescence
parameter (Fv/Fm) represents the maximum quantum yield of
photosystem II and is a ratio commonly used to assess the
efficiency of photosynthesis in plants (Meroni et al., 2009;
Bartold, 2024). Bartold, (2024) used Sentinel-2 imagery to map
Fv/Fm, demonstrating its potential to monitor the fluorescence of
chlorophyll across peatlands for plant health information.

GPP, the total carbon fixed by vegetation photosynthesis, is the
largest component of the global carbon cycle and is tightly related to
many ecosystem functions, including ecosystem and soil respiration,
vegetation growth, and water loss through transpiration. In
peatlands, satellite-based estimation of GPP typically relies on
variables such as vegetation indices (e.g., NDVI, EVI), land
surface temperature, and incident radiation, which serve as
proxies for plant activity and environmental conditions.
Specifically, methods like the light use efficiency model, which
considers factors like Photosynthetically Active Radiation (PAR),
absorbed PAR, and conversion efficiency, can be used to estimate
GPP (Monteith, 1972). Junttila et al. (2021) developed three
empirical models to estimate Net Ecosystem Exchange (NEE),
GPP, and Ecosystem Respiration (ER) based on vegetation
indices from Sentinel-2 imagery and land surface temperature
from MODIS data. Their findings demonstrated the feasibility of
upscaling GPP and ER estimates over northern peatlands in
combination with thermal data. Kalacska et al. (2018) modelled
NEE from Landsat 5 and 8 imagery and although estimates derived
from airborne hyperspectral imagery showed a stronger correlation
with eddy covariance tower measurements, the satellite-based
approach still demonstrated potential for broader-scale
monitoring. These results suggest that for NEE, remote sensing
data can be useful, but its implementation in satellite platforms is
restricted to finer spectral, spatial, and radiometric resolutions, not
achieved with Landsat or Sentinel 2 imagery. Lees et al. (2019)
modelled GPP using a temperature and greenness (TG) model
derived from MODIS data vegetation indices. Initially, they
tested the MOD17A2H GPP product but found that this
overestimated GPP compared with in situ eddy covariance
measurements and, due to the model’s overall poor performance,
deemed it unsuitable. The TG model, however, was found to have
better agreement with the eddy covariance data, with potential
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application for wider modelling of GPP over peatlands, once the
model has been calibrated across different northern peatlands.
Sentinel-3 (3A launched 13 February 2016, and 3B launched
25 April 2018, and a revisit time of ~2 days) data should be
investigated for input into TG models as it has a high-accuracy
land surface temperature product and shares the same spatial
resolution as MODIS (1 km).

Despite the lack of studies that fulfil the criteria for review in this
paper, it is important to consider the possibilities of Solar-Induced
Fluorescence (SIF), which is another way to measure chlorophyll
fluorescence. SIF is excess energy emitted by chlorophyll after
sunlight absorption, directly linked to photosynthetic activity
(Antala et al., 2024), making it useful for monitoring peatland
vegetation health, productivity, and carbon dynamics. Antala
et al. (2024), Bandopadhyay et al. (2019), and Rastogi et al.
(2022) performed studies on peatlands at ground level with
hyperspectral airborne data, outlining the benefits of using SIF.
ESA’s FLEX (Fluorescence Explorer), scheduled for launch in 2026,
is designed to produce global maps of vegetation fluorescence,
potentially enabling the monitoring of SIF over peatlands.
However, its relatively coarse spatial resolution of 300 m likely
limits its suitability for detailed peatland applications. Regarding the
currently applied indices, such as the widely used Fv/Fm, for
monitoring the photosynthetic activity of peatland vegetation,
Sentinel-2 was identified as having good capabilities. However,
before this can be implemented, more research is needed to
calibrate indices and perform validation based on ground data.

5 Terrain change indicators

Indicators not directly associated with ecological processes have
also been shown to be useful to assess the condition of peatlands,
especially in tracking the disturbances that can impact the ecological
succession that characterizes a restoration process.

5.1 Surface motion

Peatlands are dynamic landscapes. Healthy peatlands exhibit
two forms of vertical surface motion: a short-term seasonal effect
known as “bog-breathing” where the peat expands and contracts in
response to changes in the volumes of water and gas (Kennedy and
Price, 2005; Marshall et al., 2022; Morton and Heinemeyer, 2019);
and the long-term effect of a net uplift in the peatland due to peat
accumulation (and hence carbon sequestration) (Alshammari et al.,
2020). In degraded peatlands, the long-term (multi-annual to
decadal) surface motion is attributable to subsidence due to
drainage, compression, disturbances (such as fire), and peat
decay, indicating carbon loss and poor condition (Kennedy and
Price, 2005; Alshammari et al., 2018), and the short-term bog
breathing effect will not be present. In the United Kingdom, sites
in good condition, dominated by Sphagnum, display long-term
stability or growth, and a seasonal cycle with maximum uplift
and subsidence in August–November and April–June,
respectively (Alshammari et al., 2020). Drier and partially
drained sites dominated by shrubs display long-term subsidence
with maximum uplift and subsidence in July–October and

February–June, respectively. (Alshammari et al., 2020). In situ
data on surface motion are spatially and temporally sparse.
Ground data for capturing the “bog level” is based on
measurements using a metal rod embedded in the substrate (the
presence of rust on the rod indicates the lowest depth to which the
water table regularly falls) for precise levelling (Marshall et al., 2022).
Field measurements are limited in terms of spatial
representativeness and are not suitable for large-scale monitoring.
As such, remote sensing-based approaches are being explored to
monitor surface motion for peatland condition monitoring
(Alshammari et al., 2018; Bradley et al., 2022; Khodaei et al., 2023).

A summary of satellite-based methods for monitoring of
peatland surface motion is presented in Table 3. Surface motion
monitoring is conducted using C-Band SAR data with
Interferometric SAR (InSAR) methods. InSAR uses two or more
SAR images of the same area, taken at different times. By comparing
the phase differences between these images, changes in the distance
between the satellite and the surface, which indicate ground
deformation, can be determined. Fiaschi et al. (2019) used the
Permanent Scatter InSAR (PS-InSAR) processing approach to
create an InSAR time series of ground motion with Sentinel-1
data and found it enabled the detection of millimeter-scale
ground motion over small areas (103–106 m2), making it suitable
for use in monitoring peatland subsidence or uplift. However,
Alshammari et al. (2018) found that PS-InSAR can have limited
application over peat, as it worked better in areas of high coherence
(i.e., hard, non-vegetated surfaces). Khodaei et al. (2023)
implemented the Stanford Method for Persistent Scatterers
(StaMPS) and Multi-Temporal InSAR (MTI) to study a highly
vegetated peatland site over 3.5 years. They found that the
technique could effectively detect vertical displacements of
~40 mm y−1 and hence has the potential to monitor peatland
surface motion.

Four of the reviewed studies used the Advanced Pixel System
using the Intermittent Small Baseline Subset (APSIS) method
(Alshammari et al., 2018; 2020; Bradley et al., 2022; Marshall
et al., 2022). The APSIS method eliminates the need for
consistent phase stability required by most other InSAR
techniques, enabling more measurements in vegetated areas
where traditional methods often struggle due to incoherence
(Alshammari et al., 2020; Bradley et al., 2022). In addition,
Alshammari et al. (2020) and Bradley et al. (2022) were able to
discriminate between the changes that occur due to the bog’s
breathing (seasonal) cycle and the changes between near-natural
and drained peatlands, showing good potential for national-scale
monitoring of surface motion.

There is still a lack of clarity about how surface motion gradually
changes throughout the restoration process. It is therefore important
to conduct further research to characterize the different stages of
surface motion throughout restoration before it can be fully
implemented. While the consensus is that Sentinel-1 C-band SAR
is suitable for monitoring peatland surface motion, its ability to
detect very small-scale vertical displacements, such as annual peat
accumulation, remains a key consideration. Although Sentinel-1
offers high temporal resolution, its vertical sensitivity may be limited
when detecting millimeter-scale variation. As such this must be
underpinned with field measurements for algorithm calibration and
result validation. In addition, to ensure its widespread applicability,
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other monitoring sites with different conditions and across different
areas of the UK need to be tested.

5.2 Surface degradation features

Extensive drainage of the UK’s peatlands was done using
artificial ditches, with the commercial intent to use the land for
agriculture or afforestation. As identified in the IUCN’s Peatland
Code Field Protocol (IUCN, 2017), drainage ditches represent the
main degradation feature, taking the form of active artificial drains
(grips) and degradation features (hagg/gully systems). Drainage
system gullies are channels cut through the peatland; the continual
flow of water through them can result in the formation of hagg/
gully features, which indicates significant degradation. Peatland
condition categories are determined by the distance to these
drainage features. Any peatland area within 30 m of a drainage
ditch is categorized as drained according to the Peatland Code’s
guidance (NatureScot, 2016; IUCN, 2017). Near-natural peatlands
will not have any hagg/gully systems or drainage ditches present on
the site (NatureScot, 2016).

In the United Kingdom, the lack of records on drainage systems
means that creating accurate maps of peatland drainage ditches is
the first step required to be able to begin the restoration process.
Remote sensing has the potential to be an effective tool for mapping
the location of these drainage systems and may also be used to
monitor change in the drainage ditch activity, i.e., if they become less
detectable over time as they have filled in, or filled up with water, and
become vegetated, indicating that restoration work has been
successful.

A summary of satellite-based methods for monitoring surface
degradation features is presented in Table 3. There are currently no
published papers on the mapping of drainage features that meet the
criteria of this review. However, worth noting are the studies by
Aitkenhead et al. (2016) and Artz et al. (2017) who used fine
resolution satellite imagery from Landsat 8 and moderate
resolution satellite imagery from MODIS to map drainage ditches
in Scotland with somewhat limited success, concluding that more
ground data was needed for the fitting of more robust models.
Results have shown that airborne LiDAR and/or aerial imagery can
be used to map drainage systems with an accuracy of 70%–94%
(Carless et al., 2019; Robb et al., 2023). The commercial, very high-
resolution satellite Geoeye-1 has also been used to map drainage
ditches in Ireland (Connolly and Holden, 2017), showing the
potential of this method. Another case study worthy of note,
despite the fact it does not use satellite data, is the study by
Habib et al. (2024). This study used 0.25 m spatial resolution
BlueSky International Limited aerial imagery to map the spatial
extend of artificial drains on raised bogs across Ireland. The overall
accuracy of the model used in this study was 80%, based on an
independent testing dataset. This is an area of ongoing research and
as more very high spatial resolution data satellite data becomes
available, research should be done into assessing and implementing
this method over the United Kingdom.

LiDAR data is adequate to potentially map drainage systems;
however, this is dependent on factors such as point density, and the
availability of LiDAR is still limited in many parts of the UK and
beyond (Robb et al., 2023). Future LiDAR satellite missions could
further explore its applicability for drainage feature mapping;
however, no suitable missions are currently planned. LiDAR

TABLE 3 Summary of satellite sensors and methods for remote sensing of terrain change indicators.

Sensor Method Indicator Benefits Limitations References

C-band SAR

Sentinel-1

Sentinel-1 NG
Harmony

InSAR Surface
Motion

• Suitable spatial resolution
• Frequent revisit times, not affected
by cloud coverage

• Long and regular time series of
data available

• Vertical resolution suitable for
monitoring bog-breathing

• Limited ground validation work
done

• SAR signals can attenuate in
vegetation and due to other
surface properties, introducing
uncertainty

• Vertical resolution not suitable for
monitoring single-year
accumulation/displacement

• More testing is needed over a
range of peatland conditions

Alshammari et al. (2018), 2020;
Fiaschi et al. (2019), Bradley et al.
(2022), Marshall et al. (2022),
Hrysiewicz et al. (2023), Khodaei et
al. (2023)

High Resolution
Optical

Sentinel-2
Landsat

Sentinel-2 NG
Landsat Next
CHIME

Vegetation
Indices

Burned Area • National-scale coverage and a
suitable spatial resolution for
burned area mapping

• Burned area can be distinguished
spectrally

• Confusion with bare peat pixels
• Limited optical imagery due to
clouds and revisit times means
burn scars may be obscured by
regrowth before detection

Sirin et al. (2020), Lees et al. (2021b),
Sirin and Medvedeva (2022),
Spracklen and Spracklen (2023)

C-band SAR

Envisat
ERS-2

Sentinel-1 NG
Harmony

Backscatter and
InSAR

Burned Area • Attenuates in vegetation, hence
can be used to show a reduction in
vegetation after a fire

• Penetrates through clouds
• National-scale coverage and a
suitable spatial resolution for
burned area mapping

• Affected by surface topography,
vegetation, and surface water

Millin-Chalabi et al. (2014)
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capabilities onboard the International Space Station (ISS), currently
the Global Ecosystem Dynamics Investigation (GEDI) and in the
future Multi-footprint Observation LiDAR and Imager (MOLI),
would be suitable for testing for this application, however due to the
ISS’s orbit data is only collected between 51.6° North to 51.6° South
hence missing out most of the UK. Given the limitations of satellite-
based LiDAR, exploring the use of UAV and aircraft-mounted
LiDAR for drainage feature mapping is essential. To make this
technology operationally viable, extensive testing is needed to
evaluate different LiDAR systems, optimize data collection
methods, and develop automated workflows for processing large
datasets, with a focus on integrating these tools into peatland
restoration projects where precise knowledge of ditch locations is
essential. The UK’s Environment Agency National LiDAR
Programme provides an open-access database of elevation data at
1 m spatial resolution for all of England, this could be used for
validation if suitable satellite data did become available.

5.3 Fire Incidence

UK peatlands experience two types of fires, prescribed burning
for management and wildfires. Frequent or severe fires can remove
the moss layer and significantly alter or remove the vegetation on a

peatland, and intense fires can also penetrate and consume the peat,
leading to further erosion, peat, and carbon loss (NatureScot, 2016).
Under restoration, prescribed burning practices are stopped and, for
susceptible peatlands, work is undertaken to reduce the risk and
severity of wildfires. This is done through conservation actions (e.g.,
drain blocking for rewetting) and educating the public about fire
prevention (Titterton and Hunt, 2021). It is not only important to
map the occurrence of burned areas on peatlands to measure
restoration success and account for carbon emissions from both
above-ground vegetation and underground peat burning, but also to
detect and map active fires to enable timely intervention and prevent
further damage. Burned area mapping is currently done in the field
by walking along the burned area perimeter with a GPS. However,
this approach is not practical over large scales or fragmented areas
due to its labor-intensive nature. Remote sensing is being looked at
as a large-scale peatland burning monitoring solution (Lees et al.,
2021b; Sirin and Medvedeva, 2022).

A summary of satellite-based methods for monitoring fire
incidents is presented in Table 3. Four of the studies reviewed
make use of vegetation indices derived from optical imagery to
detect burned areas of peatland. Sentinel-2 (10 m) and Landsat 5/7/8
(30 m) imagery have been utilized to both detect burned area and
monitor vegetation recovery. However, the lack of cloud-free
imagery around the burn season (October to April) resulted in

TABLE 4 Matrix summarizing remote sensing satellite data suitability to monitor each peatland condition indicator based on the literature review, future
satellites are shown in Italics.

Peatland
condition
indicator

SAR Multispectral Hyperspectral LiDAR

C-band

Sentinel-1
ERS-1&2
Envisat
Radarsat-1
Harmony
Sentinel-
1 NG

L-Band

ALOS 1&2
NISAR
ROSE-L

High
Resolution

Sentinel-2
Landsat
Sentinel-2
NG
Landsat Next

Moderate
Resolution

MODIS
Sentinel-3

Moderate
and Low
Resolution

FLEX

High and
Very High
Resolution

CHIME

LiDAR

No current or
upcoming
missions

Soil moisture

Water table depth

Bare peat

Plant type

Plant health
(Phenology)

Plant health (GPP,
NEE, ER, SIF)

Surface motion

Degradation
features

Fire incidence

Key:

Dark green: operational, with proven suitability, availability at appropriate resolution, and successful, widespread application across various peatland conditions.

Mid green: promising potential, with high likelihood of future implementation pending further research, method development, and additional calibration data such as field surveys or aerial

imagery across more peatland condition types.

Light green: shows potential but requires significant research and validation. Key improvements include algorithm development, calibration with ground-truth data, and extensive testing across

diverse peatland conditions.

Orange: future potential; data from planned or recently launched satellites may enable monitoring, but it is not yet ready for operational use.
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known burn patches not being captured. A further challenge is the
inability to discriminate spectrally between bare peat and burned
area. To overcome this limitation Sirin and Medvedeva, (2022) used
hotspot data retrieved from MODIS imagery to improve the
classification of burned peatlands but found that, due to low
intensity of radiance emitted by peatland fires and frequent cloud
coverage, hotspot datasets are characterized by omission errors.
Millin-Chalabi et al. (2014) investigated the potential of SAR
intensity and InSAR coherence to detect peatland fire scars, and
while they outlined that this approach would need further work to
disentangle the effects of fire size, topography, and less generalized
land-cover classes on SAR intensity and InSAR coherence, they
showed good initial results of SAR intensity detecting burned peat.
One of the most important things to note from the use of SAR data
to detect fire scars is the potential for this method to be combined
with optical methods to distinguish between bare and burned
peat areas.

Burned areamapping can be achieved using the standard NIR and
SWIR multi-sensor spectral bands. Due to its suitable spatial
resolution, Sentinel-2 can be used for this application, but with
limitations (Section 2.2). This limited cloud-free data can
significantly impact burn scar detectability due to the short-lived
spectral signal of burned vegetation. Additional spectral information,
such as that provided by hyperspectral sensors, could potentially
improve burned area detectability. In particular, sensors with bands
around 1,200 nm can target absorption features linked to fire-affected
vegetation, whichmay help extend the detection window (McMorrow
et al., 2005). In addition, the optical data could be combined with SAR
data to further improve on the current burned area classification
algorithms, by complementing the loss of vegetation with information
on terrain changes (Millin-Chalabi et al., 2014). Continual land cover
mapping could also be incorporated, as it offers a temporal context for
distinguishing burned areas from bare peat in peatlands. While bare
peat shows stable spectral and backscatter signatures, burned areas are
marked by sudden changes from vegetated to bare states; hence,
tracking these transitions can help identify fire events. These different
temporal dynamics between bare peat and burned peat are critical for
discrimination between the two. To enable this discrimination, an
integrated workflow combining optical data formonitoring vegetation
loss, SAR coherence data for monitoring structural change, and
hotspot data to confirm thermal anomalies could be developed;
hence, this is an avenue requiring further research.

6 Conclusion

A robust framework for monitoring peatland condition is
essential for ensuring restoration projects across the
United Kingdom are effective, credible, and aligned with
environmental and socio-economic goals. Regular, standardized
monitoring enables benchmarking and tracks progress over time,
allowing for assessment of the restoration effort. It allows early
detection of problems and quick intervention to avoid restoration
failure and prevent further degradation. Amonitoring framework will
also underpin national targets for net zero and peatland restoration,
by providing the evidence base for voluntary carbon and biodiversity
initiatives to demonstrate outcomes and provide accountability to
build trust among stakeholders. Ultimately, restoring peatlands to a

good condition has a multitude of benefits including capturing and
storing carbon, regulation of local hydrology, supporting rare
biodiversity, and a reduction in land degradation (such as less risk
of wildfires occurring), which is why a robust monitoring framework
is essential to track progress, ensure restoration is effective, and
safeguard these long-term environmental and climate benefits.

Open-access remote sensing satellites offer the advantage of
providing systematic spatially explicit data, on a large scale, at an
adequate temporal frequency, over difficult-to-access terrain. This
review has evaluated the current and upcoming capabilities of these
missions to monitor peatland restoration across key ecological and
environmental indicators. The results of this are presented in Table 4
and summarized below. It has been demonstrated that, while no
single satellite platform can comprehensively capture all aspects of
peatland condition, combining multiple sensor types significantly
enhances monitoring capabilities.

Hydrological indicators (water table depth and soilmoisture) can be
effectively monitored using C-band SAR backscatter data, such as from
Sentinel-1, which offers frequent revisit times (6 days), cloud
penetration, and suitable spatial resolution. This approach enables
spatially explicit upscaling of in situ WTD measurements but cannot
be used alone; ground stations remain essential for algorithm calibration
and validation. Site-specific factors like surface inundation, vegetation
type, and seasonal variation must be considered when developing
retrieval models. Upcoming L-band missions like NISAR and
ROSE-L should be investigated to further enhance monitoring
capabilities with frequent, all-weather imaging, as L-band SAR has
different penetration through vegetation properties. Regular short-term
monitoring (weekly to monthly) is crucial to capture dynamic
hydrological fluctuations critical for peatland restoration.

Bare peat presence is best detected using medium to fine spatial
resolution multispectral satellites like Sentinel-2 and Landsat, which
provide spectral bands sensitive to exposed soil. Seasonal to annual
monitoring is recommended, as changes typically occur over
months and help assess restoration progress and erosion risk.
This approach is currently ready for implementation across the
UK; however, the main drawback is confusion with burnt peat,
which should be resolved with temporal analysis.

Vegetation indicators, including type and health, benefit from
multispectral and will benefit from hyperspectral sensors.
Identifying spectral signatures of key peatland species (e.g.,
Sphagnum, heather) and matching them to satellite bands
requires further research for operational monitoring. Airborne
studies on plant health can guide future satellite applications once
hyperspectral missions, notably CHIME, are available. Vegetation
activity is already well-monitored using Sentinel-2 and Landsat
data; however, upcoming hyperspectral missions and the planned
FLEX mission offer the potential to further improve monitoring
capabilities. Monthly observations during the growing season are
recommended to track recovery and stress, alongside annual
assessments for long-term ecosystem trends. However, the
effectiveness of optical satellite monitoring over northern
peatlands is inherently limited by the availability of cloud-free
overpass days, which can restrict data acquisition during
critical periods.

Surface motion, including subsidence or uplift related to water
table changes or degradation, is measurable with InSAR techniques
using Sentinel-1. However, ground-based validation remains essential
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to ensure algorithm accuracy, and understanding surface motion
dynamics throughout restoration stages requires further field
research. Monitoring on a seasonal to annual basis is appropriate
to detect gradual ground deformation processes relevant to peatland
stability. Long-term (5 years+) monitoring of surface motion should
also be done to monitor long-term carbon accumulation.

Degradation features (drainage ditches) cannot currently be
detected using satellite remote sensing due to their small size and
low contrast with the surrounding landscape, which exceeds the
resolution and sensitivity of existing sensors. Instead, field
measurements and UAV or airborne LiDAR and hyperspectral
surveys are required. LiDAR mapping should be conducted at
the start of restoration projects to identify drains that need
blocking and repeated if WTD monitoring indicates unsuccessful
reestablishment, enabling timely intervention.

Fire occurrences demand rapid, short-term (weekly or even daily)
detection capabilities, which optical satellites with thermal bands (e.g.,
Sentinel-3, MODIS) provide. Timely identification is crucial for
assessing immediate fire impacts and guiding emergency response
and post-fire restoration. National-scale peatland burned area
mapping can be achieved using spectral change detection
techniques in the form of vegetation indices that can be derived
from medium-resolution optical satellites, such as Sentinel-2. Areas
undergoing restoration should be monitored for fire occurrence and
vegetation recovery.

Overall, data retrieved by the European Copernicus satellite
missions, Sentinel-1 and Sentinel-2, have been shown to be the
most and most successfully used for monitoring northern peatland
condition. Future efforts should prioritize the integration of satellite
data with UAV and ground-based observations for calibration and
validation, improving accuracy and operational feasibility. In
addition, future research should focus on the integration of optical
and SAR satellite data to better capture both surface and structural
peatland characteristics under varying environmental conditions. As
new open-access satellitemissions with enhanced spatial, spectral, and
temporal capabilities launch, the potential for comprehensive, cost-
effective peatland monitoring will continue to grow, supporting
informed restoration and conservation management.
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