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Introduction: As China advances its dual carbon targets, the carbon market has
become a key policy instrument. However, climate policy uncertainty (CPU) can
disrupt expectations and amplify risks in carbon trading prices (CTP), creating
challenges for market stability and policy effectiveness.
Methods: To address this issue, this study constructs a weekly China-specific
CPU (CCPU) index using text analysis of domestic newspapers and employs the
Quantile Vector Autoregression–Diebold-Yilmaz (QVAR-DY) framework to
assess its spillover effects on returns and volatility across six regional carbon
markets. The quantile Granger-causality test is also applied to further validate the
direction and significance of spillovers under different market conditions.
Results: The analysis shows that spillovers remain moderate under normal
conditions but intensify considerably under extreme states, particularly at
higher quantiles, as confirmed by the quantile Granger-causality tests. The
most striking finding is that spillovers from CCPU to volatility are consistently
stronger than to returns, indicating that systemic risk contagion is more
pronounced through volatility channels.
Discussion: By integrating a quantile perspective with dynamic spillover analysis,
this study reveals the asymmetric transmission of policy uncertainty in China’s
carbonmarkets and provides new insights for riskmonitoring and policy design in
the low-carbon transition.
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1 Introduction

Climate change poses serious challenges to sustainable development. Rising sea levels
and global warming are already leaving their mark (Flori et al., 2021; Lee et al., 2022).
Governments have responded with measures such as the Paris Agreement, national carbon
reduction targets and regular climate conferences (Chen et al., 2022). Yet when the timing,
scope or stringency of these policies fails to match market expectations, it creates climate
policy uncertainty (CPU) (Gavriilidis, 2021; Schubert and Smulders, 2019). CPU represents
a key form of climate transition risk. Climate risk is generally divided into physical risk,
stemming from direct climate impacts such as extreme weather, and transition risk, arising
from policy, technological (Bolton and Kacperczyk, 2023) and market adjustments in the
low-carbon shift (Fried et al., 2022). Carbon risk constitutes a central dimension of
transition risk, as firms or markets with higher carbon exposure are more vulnerable to
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policy tightening and carbon pricing (Sun et al., 2025). CPU matters
because it captures the unpredictability of climate rules. Uncertainty
about policy direction can trigger sharp price adjustments, cause
spillovers across markets (Chen et al., 2025a) and amplify systemic
risk (Bolton and Kacperczyk, 2021). These effects are especially
visible during major events (Chen et al., 2025b). For example, the US
withdrawal from the Paris Agreement and the introduction of new
vehicle emission standards both pushed up crude oil price volatility
(Wang et al., 2023). Cases like this show that CPU, as a
manifestation of carbon-transition risk, spreads through multiple
channels and often produces nonlinear, state-dependent effects on
carbon trading prices (Yan and Cheung, 2023).

Existing research highlights the critical role of climate policies in
mitigating climate change (Beck et al., 2023; Fan and Todorova,
2017; Weitzel et al., 2023). However, when policy uncertainty
increases, it can weaken their effectiveness and even trigger
carbon market failures (Ren et al., 2023; Wen et al., 2022). For
instance, overemphasis on emission reduction goals may distort
market dynamics, as firms might be locked into irreversible
investments that limit the flexibility of carbon trading prices
(CTP). Fluctuating CTP, in turn, can foster speculation and
create allowances surpluses, which weakens incentives for clean
technology adoption and distorts market supply and demand (Xie
et al., 2022). At the same time, such price instability makes it harder
for policymakers to design credible and consistent regulations,
which further amplifies CPU. Rising CTP also increases the
burden on industries, making it more difficult for governments
to balance emission targets and policy feasibility—again fueling
uncertainty (Tan and Wang, 2017). This bidirectional
feedback—where CPU drives CTP volatility and CTP dynamics
simultaneously reinforce CPU—highlights the need to study their
spillover effects to better understand carbon market stability and
effectiveness.

So far, most studies have focused on the European Union
Emissions Trading System (EU ETS) (Fan et al., 2017; Su et al.,
2024; Ye et al., 2021). Much less is known about developing
countries. As the world’s largest carbon emitter, China’s climate
policies and carbon market are particularly significant. Since
2013, eight ETS pilots have been established in cities such as
Beijing, Shanghai, Hubei and Guangdong. By the end of 2022,
these pilots had traded 398 million tons of allowances, with a total
value exceeding RMB 10.64 billion. Since the launch of its
national ETS in 2021, China has also become the world’s
largest carbon market. Although the pilots remain
administratively independent, they are tied together through
economic linkages and regional disparities (Liu X et al., 2022;
Munnings et al., 2016). For example, during the 2015 stock
market crash, the CTP in Shanghai fell first and then spread
to other pilots (Ji et al., 2018; Wen et al., 2020). A similar chain
reaction occurred in 2018 during the Sino-US trade dispute (Yin
et al., 2021). These experiences highlight the need to better
understand how carbon price movements in one pilot can spill
over to others under heightened uncertainty. Uncovering these
spillover patterns is essential for evaluating whether local pilots
operate in isolation as “information islands” or function as
effective “testing grounds” for China’s national market. The
findings can directly support the optimization of China’s
carbon market and provide valuable lessons for other

developing countries to build resilient carbon markets
(Dissanayake et al., 2020).

Against this backdrop, this study takes up by examining the
spillover effects between CPU and CTP in China’s ETS pilots.
Specifically, we ask: How does CPU influence CTP across
different pilots? Which markets serve as the main sources of
risk? How do shocks spread, and are spillovers
asymmetric—particularly under extreme conditions? To answer
these questions, we first construct a weekly China-specific CPU
(CCPU) index using text analysis of domestic newspaper data. We
then employ quantile Granger-causality tests, which show that the
relationship between CCPU and CTP dynamics is distribution-
dependent and much stronger in the tails than around the mean.
Based on these results, we apply a quantile vector autoregression
model combined with the Diebold–Yilmaz spillover index (QVAR-
DY) to capture the transmission of shocks across CCPU and CTP
dynamics of six regional ETS pilots. We further distinguish between
high, medium, and low uncertainty regimes and analyse spillovers
from both returns and volatility. The results show that spillovers are
pronounced in the tails, and that volatility spillovers are more
contagious, underscoring the systemic risks associated with
policy shocks.

Our work makes three key contributions to the literature. First,
we introduce a weekly, China-specific CPU index, which offers a
more locally relevant and higher-frequency measure than the widely
used monthly US index (Gavriilidis, 2021; Bai et al., 2023; Tedeschi
et al., 2024). This improvement enables more accurate and timely
analysis of China’s carbon trading markets. Second, while prior
studies mainly examined the direct, one-way impact of policy
uncertainty on carbon markets (e.g., Song et al., 2018; Wen et al.,
2022) or used mean-based frameworks (Guo and Feng, 2021; Chen
et al., 2024), we move beyond this by analysing quantile-dependent
spillover effects. Extending the Diebold-Yilmaz framework (Diebold
and Kamil, 2012; Diebold and Yilmaz, 2014) into a quantile setting,
our QVAR-DY approach captures bidirectional, heterogeneous and
nonlinear transmission mechanisms, which become especially
pronounced under extreme conditions. Third, we adopt a dual
perspective on returns and volatility, whereas most existing
studies rely on a single dimension. This two-dimensional lens
reveals how CCPU affects not only price movements but also
systemic risk, providing more nuanced evidence to inform
policies that balance price discovery with market stability.

The paper is structured as follows: Section 2 reviews the
literature, Section 3 examines the theoretical mechanisms
between CPU and CTP, Section 4 introduces the QVAR-DY
framework, Section 5 describes the data and CCPU index,
Section 6 presents main results, robust test and further
discussions, and Section 7 concludes with findings and policy
recommendations.

2 Literature review

The carbon ETS, widely implemented in the US and EU, has
become a key market-based strategy for reducing CO2 emissions
(Anke et al., 2020; Oestreich and Ilias, 2015). China’s ETS pilots
started later but have expanded rapidly, driven by rising climate risks
and the urgent need to reduce carbon emissions (Hu et al., 2020).
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Research on ETSmarkets has grown steadily, covering not only their
development, mechanisms and effectiveness (Tang et al., 2016;
Zhang et al., 2020), but also the main drivers that shape them.
These drivers are usually grouped into two categories: influences
from related markets (Dong and Yang, 2024; Guo and Feng, 2021)
and the effects of policy changes (Wang et al., 2023).

In terms of the influences from relevant markets, the volatility of
energy markets plays a major role in ETS. The dominance of
traditional energy sources, especially coal, strongly affects the
supply-demand balance for carbon allowances and, in turn,
shapes CTP (Wang et al., 2024). Studies on the US and EU ETS
(Kim and Koo, 2010; Zhu et al., 2019) highlight coal prices as a key
driver, and similar evidence is found in China. Zhang et al. (2017)
and Zeng et al. (2017) show that coal price fluctuations can push up
CTP in the Beijing pilot. Other energy sources also matter: price
changes in crude oil, natural gas (Tan et al., 2020) and renewable
energy (Ha et al., 2024) have been shown to influence ETS markets.
Beyond energy, financial market volatility also affects CTP. Since
stock markets reflect broader economic activity linked tied to energy
demand and CO2 emissions, they can transmit shocks to the carbon
market (Jiménez-Rodríguez, 2019; Koch et al., 2014). Moreover, Jin
et al. (2020) identify the green bond index as a tool to reduce risks in
carbon futures, while Su et al. (2023) find that it can have a negative
impact during bear markets. In short, carbon prices are closely
linked with movements in both energy and financial markets, which
directly shape the dynamics of ETS.

In terms of policy changes, uncertainty is a critical factor shaping
both carbon emissions and trading, often exerting a stronger
influence than market dynamics above, since ETS is
fundamentally policy-driven. In China’s emerging ETS pilots,
trading behaviour is highly sensitive to regulatory design and
policy signals (Fan and Todorova, 2017). Policy shifts can trigger
volatility in CTP (Song et al., 2018), while major events or
amendments may disrupt price transmission and alter
correlations with other markets. Policy uncertainty is commonly
divided into EPU and CPU. Research on EPU is extensive (Tiwari
et al., 2021; Wang et al., 2022). For example, Benlemlih and Yavaş
(2024) provide cross-country evidence, including for China, that
higher EPU increases firms’ CO2 emissions. In China’s context, Li
et al. (2022) and Wang et al. (2024) show that EPU has asymmetric
effects on CTP in ETS pilots. However, as climate policies gain
greater prominence, their role is becoming increasingly important.
Zeng et al. (2022) demonstrate that CPU surpasses EPU in
predicting CTP volatility during high-risk scenarios, underscoring
the central role of climate policy in reducing emissions. Other
studies also highlight the effects of CPU: Gavriilidis (2021) and
Guesmi et al. (2023) show that CPU negatively affects CO2

emissions in the US, while Li and Lin (2013) find that climate
policies can drive economic restructuring in China, leading to
reductions in both emissions and carbon intensity.

Policy uncertainty not only affect the overall stability of ETS but
also directly influences CTP. As the key mechanism balancing
allowance supply and demand, CTP are highly sensitive to
climate policy, especially emissions-related announcements (Song
et al., 2018; Wen et al., 2022). This sensitivity is confirmed by the
finding in Ozturk et al. (2022) that climate policy is a major
determinant of CTP volatility. Specific events provide further
evidence: Dai et al. (2018) argue that the US withdrawal from

the Paris Agreement would raise China’s carbon prices, while Xie
et al. (2022) show that incorporating climate-related textual
variables could enhance carbon price predictions in China.

Although previous studies have explored how climate policy
adjustment affect CTP, they often lack a systematic analysis of CPU
and its deeper link with carbon prices. For instance, Hoque and
Batabyal (2022) show that CPU exerts a negative influence on EU
carbon prices at higher quantiles, while Su et al. (2024) find a
positive long-term correlation at similar quantiles. In China, the
effect of CPU on carbon markets appear even uncertain. Yan and
Cheung (2023) report an ambiguous relationship between CPU and
China’s carbon price, without considering quantile-specific
effects—a critical factor emphasized by Wang et al. (2022)—or
the spillover dynamics across ETS pilots. Related research has
pointed to these gaps: Li and Wang (2022) detect significant
volatility spillovers when carbon prices are high, and Guo and
Feng (2021) note that spillover effects differ between returns and
volatility. However, existing studies rarely integrate these
perspectives to capture the nonlinear and distribution-dependent
nature of CPU’s influence, nor do they systematically examine
spillovers across China’s multiple ETS pilots, which are closely
linked to distinct local economic conditions. To fill this gap, this
study applies a QVAR-DY framework to investigate between CCPU
and CTP—both returns and volatility—across six major pilots,
thereby offering a more integrated understanding of CCPU’s role
in China’s carbon markets.

3 Theoretical mechanism

CPU mainly arises from the frequency and instability of
policy adjustments, as well as the misalignment with market
expectations (Li et al., 2023). Its impact on CTP can be
understood through three channels: the macroeconomic
environment, market functioning and corporate behaviour. At
the macroeconomic level, rising CPU often leads to tighter
environmental regulation and changes in the supply of carbon
allowances, directly amplifying CTP volatility. At the same time,
higher uncertainty is usually associated with restricted credit
conditions, which limit production and reduce demand for
allowances, thereby curbing price growth (Wang et al., 2023).
In terms of market functioning, heightened CPU undermines
efficiency and stability (Meng et al., 2023). Frequent policy shifts
weaken price discovery and distort capital allocation, while
higher risk premia and financial frictions raise the chances of
default and investment failure (Dong and Yu, 2024a; Dong and
Yu, 2024b). Together, these forces magnify fluctuations in carbon
prices. At the corporate level, CPU has a more complex and dual
effect. On the one hand, where green financial tools and
governance mechanisms help ease financing constraints and
reduce risk, CPU may work through the innovation channel to
stimulate green technological progress and entrepreneurship (Xu
et al., 2025; He et al., 2025). This, in turn, encourages firms to
adopt cleaner technologies and renewable energy (Golub et al.,
2018), changing the balance between emissions and abatement
investment (Bouri, Iqbal, and Klein, 2022). On the other hand,
higher CPU raises operational risk, especially for high-emission
firms (Zhang et al., 2025). Uncertainty aggravates financing
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frictions and information asymmetry, making long-term green
R&D and low-carbon investment riskier (Su et al., 2024). As a
result, firms often adopt a “wait-and-see” strategy (Hoang, 2022),
delaying abatement and technological upgrading, which increases
allowance demand and drives up CTP. Finally, CPU also affects
prices indirectly through energy consumption patterns. When
uncertainty coincides with extreme weather events (Ren et al.,
2023), surges in electricity and heating demand, if not met by
clean energy, intensify reliance on fossil fuels. This leads to higher
emissions and adds further upward pressure on prices (Shang
et al., 2022; Wen et al., 2022).

Carbon markets, enterprises and governments are integral
to achieving sustainable development goals and remain closely
interconnected (Wang et al., 2023). The ETS serves as a key
policy instrument for reducing emissions, while CTP, as an
indicator of market dynamics, has a strong influence on CPU.
First, fluctuations in carbon prices directly affect the economic
viability of climate policies (Liu S et al., 2022). Rising CTP raise
the marginal abatement costs of high-emission firms, compress
profit margins, reduce tax revenues, and may even slow
economic growth, thereby casting doubt on policy feasibility
(Vellachami et al., 2023). Secondly, CTP volatility creates
challenges for governments by destabilising policy
implementation. When prices are high, firms may question
emission reduction targets and push for more lenient rules.
Volatility also fuels conflicts of interest between traditional
energy sectors and policymakers, which can obstruct policy

progress (Liu J et al., 2023). Finally, CTP volatility disrupts
industrial restructuring and long-term investment. It erodes
investor confidence in clean energy, generates uncertainty
around capital allocation, and fosters speculation (Wei et al.,
2017). Together, these effects undermine stable policy
implementation and hinder the transition to a low-
carbon economy.

In addition, China’s ETS began with regional pilots before
expanding into a national system. These pilots differ widely due to
regional and market characteristics (Guo and Feng, 2021). For
instance, Shenzhen and Shanghai, as highly urbanised and
industrialised cities, benefit from dense populations,
concentrated production and consumption, and mature
market environments, which shape their responsiveness and
sensitivity to external shocks (Wu et al., 2014). During the
initial COVID-19 outbreak in 2020, the economic slowdown
caused a sharp fall in Hubei’ CTP, leading to a trading
suspension and triggering volatility in other regional markets
(Chen et al., 2021). Differences in carbon demand, trading
schemes and market liquidity further heighten the risk of
spillovers across pilots.

Building on these mechanisms illustrated in Figure 1, CPU can
amplify carbon price volatility and influence firms’ investment and
abatement behaviour. The heterogeneity of China’s ETS pilots—in
terms of demand, trading rules and liquidity—makes such effects
more likely to spread across regions. Past shocks, such as the
COVID-19 outbreak in Hubei, further suggest that these

FIGURE 1
Interaction mechanism between CPU and CTP. The conceptual framework is inspired by Su et al. (2024) but extends their analysis by additionally
considering the reverse impact of CTP on CPU. Furthermore, this study explores CPU’s influence on CTP through macroeconomic factors, market
functioning and firm behaviour, differing from the three direct transmission channels identified by Su et al. (2024).
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spillovers become particularly strong under extreme conditions.
Based on this reasoning, we propose the following Hypothesis 1:

Spillover effects exist between CPU and CTP across China’s
pilots, and these effects are particularly pronounced under extreme
conditions.

4 Connectedness approach of
QVAR model

The spillover index proposed by Diebold and Yilmaz (2009) is
one of the most widely used approaches for examining dynamic risk
transmission across markets. As a statistical measure, it captures
how the returns or volatilities of onemarket are influenced by shocks
from others, thereby reflecting the degree of connectedness among
markets or variables. In this study, we adopt the QVAR-DY
framework recently developed by Ando et al. (2022) to
investigate the spillovers between CCPU and CTP under extreme
market conditions. Unlike the conventional mean-based framework
(Guo and Feng, 2021), the quantile-based approach provides richer
insights into tail dependencies and better accounts for the nonlinear
and asymmetric nature of risk spillovers. This allows for greater
explanatory power in extreme scenarios. We now turn to the details
of the model construction.

For anN-dimensional p-order QVARmodel, it can be expressed
as follows:

yt � c τ( ) +∑
p

i�1
Bi τ( )yt−i + et τ( ), (1)

where yt is an endogenous n-vector and τ falls within [0,1],
representing the quantile of interest. c(τ) is n × 1− dimensional
intercept term vector, and Bi(τ), i � 1, . . . , p, is an n × n lagging
coefficient matrix; et(τ) is n × 1− dimensional error term vector
with an n × n dimensional variance-covariance matrix denoted as
Σ(τ).

Using Wold’s theorem, we can express Equation 1 as a vector
moving average process, as shown in Equation 2:

yt � μ τ( ) +∑
p

s�0
As τ( )et−s τ( ), (2)

where the detailed settings are defined in Equations 3, 4:

μ τ( ) � In − B1 τ( ) − ... − Bp τ( )( )−1c τ( ), (3)

As τ( ) �
0, s< 0
In, s � 0
B1 τ( )As−1 τ( ) + ... + Bp τ( )As−p τ( ), s> 0,

⎧⎪⎨
⎪⎩ (4)

where μ(τ) denotes an n-vector conditional mean, and et−s(τ)
represents the unrelated error term vectors. The H-step-ahead
generalized forecast error variance decomposition shows the impact
of a shock in variable j on variable i, as calculated in Equation 5:

Ψg
ij τ( ) � σ τ( )−1ii ∑H−1

h�0 δ′iAh τ( )Σ τ( )δj( )2
ΣH−1
h�0 δ′iAh τ( )Σ τ( )Ah τ( )′δi( ) , (5)

where σ(τ)ii refers to the ith diagonal element of Σ(τ)matrix, and δi
represents a zero vector with a value of one in the ith position. We

further quantify the impact of the shock of variable j on variable i by
normalising it as shown in Equation 6:

~Φg

ij τ( ) � Ψg
ij τ( )

∑N
j�1Ψ

g
ij τ( ), (6)

where ∑N
j�1 ~Φ

g
ij(τ) � 1 and ∑N

i,j�1 ~Φ
g
ij(τ) � N.

The Quantile Total Connectedness (QTC) index measures the
total spillover in the system, as defined in Equation 7:

QTCg τ( ) � ∑i,j�1,i ≠ j
~Φg

ij τ( )
N

. (7)

The spillover that variable i transmits to variable j is termed as
Quantile Total Directional Connectedness (QTDC) “TO others”:

QTDCg
i → j τ( ) � ∑N

j�1,i ≠ j
~Φg

ji τ( )
∑N

j�1 ~Φ
g

ji τ( ) . (8)

Similarly, the QTDC “FROM others”, the spillovers that variable
i receives from variable j, is quantified as follows:

QTDCg
i ← j τ( ) � ∑N

j�1,i ≠ j
~Φg

ij τ( )
∑N

i�1 ~Φ
g

ij τ( ) . (9)

By Subtracting the two aforementioned measures (Equations 8,
9) from each other, we derive the Quantile Net Total Directional
Connectedness (QNTC), as shown in Equation 10, which is
interpreted as the net influence that variable i exerts within
the network:

QNTCg
i τ( ) � QTDCg

i → j τ( ) − QTDCg
i ← j τ( ). (10)

A positive QNTC indicates that variable i is a net emitter of
shocks to the system, while a negative QNTC suggests that variable i
primarily receives shocks from the system.

5 Data and descriptive analysis

The dataset consists of the CCPU index along with the returns
and volatility of CTP. The sample spans from 4 April 2014 to 30 June
2023, yielding a total of 483 observations.

5.1 Construction and analysis of CCPU index

Most existing studies examine climate uncertainty in the US
(Ardia et al. 2023; Engle et al., 2020), with little attention to the
China’s context. To address this gap, we construct a CCPU index
using text from three Chinese newspapers: Economic Daily,
Guangming Daily and China Environment News. The first two
provide broad policy coverage, while the latter focuses on climate
and environmental issues. Following Gavriilidis (2021), the index
is calculated using the bag-of-words method1 and normalized to
an average baseline of 100 to improve interpretability and allow
temporal and cross-metric comparisons. Descriptive statistics are

1 A specific list of keywords is available in the supplement.
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reported in Table 1. Results from the augmented Dickey-Fuller
(ADF) test confirm the stationarity of the index, supporting
its use in vector autoregression (VAR) analysis. The
index shows substantial volatility, ranging from 9.267 to

320.503, highlighting the need to focus on the effects of its
extreme values.

Figure 2 shows the rise and fluctuation of the CCPU, reflecting
growing attention to climate action both in China and globally.

TABLE 1 Statistics description.

Variables Mean Variance Min Max JB ADF Q(10) Q2(10)

CCPU 102.704 2,446.382 9.267 320.503 77.454*** −8.712*** 830.211*** 583.271***

Returns

SZR −0.056 408.615 −101.304 172.992 5,575.309*** −27.690*** 34.881*** 48.225***

BJR 0.183 121.658 −60.670 36.689 396.767*** −17.561*** 13.961*** 56.121***

SHR 0.088 61.552 −39.167 33.908 513.548*** −18.487*** 28.233*** 138.016***

TJR 0.013 23.871 −27.229 23.676 2,457.004*** −12.839*** 30.241*** 106.077***

GDR 0.058 106.532 −49.693 48.764 548.242*** −17.742*** 34.590*** 93.015***

HBR 0.157 22.423 −37.175 21.580 3,467.848*** −20.945*** 9.726* 62.366***

Volatility

SZV 4.833 6.403 1.300 15.962 631.371*** −3.840*** 1916.515*** 1856.743***

BJV 8.394 42.252 0.854 25.607 69.611*** −4.145*** 2,272.603*** 2,122.756***

SHV 3.087 3.780 0.588 10.695 304.722*** −5.387*** 1816.506*** 1,697.046***

TJV 1.676 2.242 0.019 6.840 82.018*** −4.664*** 1975.137*** 1862.818***

GDV 3.080 8.610 0.668 14.703 932.432*** −3.071** 2,183.702*** 1981.401***

HBV 1.882 2.530 0.275 7.538 288.488*** −4.176*** 1960.419*** 1814.511***

Significance levels are denoted as *** for 1%, ** for 5% and * for 10%.

FIGURE 2
Trend of CCPU index.
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Using a Markov Switching model (Hamilton, 1989), we identify three
phases: a low-fluctuation period (April 2014-June 2018), a stage of
moderate increases and fluctuations (July 2018-April 2019), and a phase
of sharp rises and significant volatility (May 2020-June 2023).

In the first phase, the index stayed lowwith temporary spikes around
major events. Notable increases were recorded during the 2014 Paris
Climate Conference, the Sino-US Joint Statement on Climate Change,
and early 2015 UN and global climate meetings. Volatility continued in
2016 as China pledged to peak carbon emissions by 2030 and
participated in COP21. In 2017, the index jumped following the US
withdrawal from the Paris Agreement and new climate cooperation
initiatives by the EU, Canada and China. The second phase was marked
by extreme weather and policy shifts, driving more pronounced
fluctuations. In 2018, China’s climate policy report highlighted
stronger commitments to environmental governance. In 2019, record
heatwaves and Typhoon Lekima push the index higher, while renewed
global debates triggered by the US withdrawal from the Paris Agreement
sent the CCPU to a peak. The final phase reflects a period of intensified
global climate cooperation. China’s 2020 pledge at the Climate Ambition
Summit—to peak emissions by 2030 and reach carbon neutrality by
2060—drove the index to record levels. Subsequent reaffirmations at the
2022 Davos Agenda and COP27, combined with the global energy crises
and more extreme weather events, further underscored the urgency of
strong climate policies and international cooperation.

We compare our CCPU with the UCPU constructed by Gavriilidis
(2021), using data aggregated to a monthly scale (Figure 3). The two
indices display similar patterns, with noticeable co-movements around
major climate events such as the 2014 Sino-US joint statement and the
entry into force of the Paris Agreement in 2016. Peaks at the

2021 Climate Ambition Summit and COP26 show a stronger
response in the UCPU, while another spike occurred in March
2023 following the release of the IPCC’s Climate Change 2023 report.
The correlation coefficient of 0.64 suggests a high degree of
synchronization in climate policy focus between China and the US.

5.2 Returns and volatility of CTP

To maintain analytical consistency, we focus on six ETS
pilots—Shenzhen, Beijing, Tianjin, Guangdong, Hubei and
Shanghai—excluding Fujian and Sichuan because of their recent
launch and Chongqing due to limited data. Since daily transaction
prices are incomplete, we use weekly averages to calculate returns
and volatility. Returns are defined as the logarithmic percentage
change between consecutive weekly prices and are denoted as SZRt,
BJRt, SHRt, GDRt, TJRt and HBRt for Shenzhen, Beijing, Shanghai,
Guangdong, Tianjin and Hubei, respectively. Volatility is measured
by a 20-week moving standard deviation for each market,
represented as SZVt, BJVt, SHVt, GDVt, TJVt and HBVt.

Figure 4 presents the dynamics of CTP returns and volatility.
Sharp swings in returns are closely associated with surges in
volatility, a pattern typical of financial markets. Regional
differences are evident: Shenzhen shows more pronounced
fluctuations, while Tianjin and Hubei remain relatively stable.
Overall, returns oscillate around zero, whereas volatility tends to
cluster over time. Despite some irregularities, strong
synchronization appears during high-volatility periods, such as in
2022, when both returns and volatility spiked.

FIGURE 3
Comparison of CCPU and UCPU.
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Statistical results in Table 1 show that both returns and volatility
are non-normally distributed, as the Jarque-Bera (JB) test rejects the
null hypothesis. The ADF test confirms that both series are
stationary, supporting their suitability for VAR modelling.

6 Empirical results and discussions

6.1 Spillovers between CCPU and returns

Before looking at the spillover analysis, we start with the
standard mean-level Granger-causality test following Granger
(1969). The results in Table 2 show that, for most cases, the

causal links between CCPU and carbon market returns are weak
or insignificant, with only a few exceptions. This suggests that a
simple linear approach does not capture the more complex
dependencies between CCPU and market dynamics.

To dig deeper, we apply the quantile Granger-causality test
developed by Troster (2018), which combines a parametric omnibus
test with a subsampling procedure. This method is more effective in
detecting distributional heterogeneity and tail dependence, and it
performs better than Sup-Wald and non-parametric approaches in
terms of model specification and small-sample reliability. We look at
three representative quantiles—0.05, 0.50 and 0.95—corresponding
to lower, median and upper market conditions. The results reveal
several key patterns. First, causality is generally absent at the median

FIGURE 4
Returns and volatility of CTP in six ETS pilots.
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TABLE 2 Granger-causality test among CCPU and CTP returns.

Variables Mean τ � 0.05 τ � 0.50 τ � 0.95

CCPU Granger-causality to

SZR 0.618 0.002*** 0.014** 0.095*

BJR 0.322 0.002*** 0.035** 0.002***

SHR 0.508 0.002*** 0.397 0.024**

TJR 0.903 0.002*** 0.582 0.002***

GDR 0.001*** 0.173 0.135 0.002***

HBR 0.655 0.002*** 0.352 0.002***

SZR Granger-causality to

CCPU 0.636 0.002*** 0.002*** 0.021**

BJR 0.848 0.024** 0.002*** 0.002***

SHR 0.876 0.002*** 0.669 0.002***

TJR 0.326 0.002*** 0.574 0.002***

GDR 0.772 0.123 0.092* 0.002***

HBR 0.921 0.002*** 0.017** 0.002***

BJR Granger-causality to

CCPU 0.583 0.002*** 0.002*** 0.113

SZR 0.708 0.019** 0.887 0.002***

SHR 0.512 0.002*** 0.591 0.002***

TJR 0.899 0.002*** 0.603 0.002***

GDR 0.816 0.397 0.097* 0.002***

HBR 0.725 0.047** 0.043** 0.002***

SHR Granger-causality to

CCPU 0.188 0.002*** 0.002*** 0.002***

SZR 0.696 0.043** 0.560 0.002***

BJR 0.367 0.059* 0.040** 0.035**

TJR 0.595 0.002*** 0.650 0.002***

GDR 0.062* 0.232 0.087* 0.002***

HBR 0.769 0.002*** 0.208 0.002***

TJR Granger-causality to

CCPU 0.050** 0.002*** 0.019** 0.099*

SZR 0.743 0.007*** 0.702 0.002***

BJR 0.547 0.002*** 0.040** 0.002***

SHR 0.850 0.002*** 0.563 0.002***

GDR 0.075* 0.187 0.163 0.002***

HBR 0.291 0.002*** 0.194 0.002***

GDR Granger-causality to

CCPU 0.056* 0.002*** 0.002*** 0.019**

SZR 0.435 0.038** 0.326 0.002***

(Continued on following page)
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quantile, suggesting that under normal conditions, CCPU exerts
little predictive power over carbon market returns. By contrast, at
the lower and upper quantiles, significant causal linkages emerge,
highlighting the stronger influence of policy uncertainty in extreme
market states. Second, while the Granger causality from carbon
market returns to CCPU is present even at the median level in
certain markets, the reverse causality—CCPU affecting market
returns—mainly appears in the tails, with clear market-specific
differences. Third, we observe strong causal connections among
the returns of different regional carbon markets, particularly in the
tails, suggesting that China’s ETS pilots become more tightly
interconnected when markets face stress.

These findings indicate that the relationships are not uniform
but distribution-dependent, and that market linkages intensify
under extreme conditions. Yet, the Granger-causality framework
remains confined to pairwise testing and cannot fully capture the
system-wide interactions. To move beyond this, we turn to the
QVAR-DY framework, which combines QVAR with the
Diebold–Yilmaz spillover approach. Specifically, we use a QVAR
(1) model selected by BIC and track dynamic spillovers with a 10-
step-ahead forecast error variance decomposition and a 200-week
rolling window.

We start with the static connectedness analysis across ETS pilots
under a CCPU shock, as reported in Table 3. The results show clear
differences across quantiles. At the lower (74.81%) and upper
(76.72%) quantiles, the total connectedness index (TCI) is high,
while at the median (3.99%) it drops sharply. This gap reflects how,
in extreme cases, the impact on the variable itself weakens but
spillovers to other markets intensify. Looking at static directional
connectedness, we see similar patterns. Under normal conditions,
both “FROM others” and “TO others” connectedness remain low,
around 5%. In contrast, at the tail these values surge to about 70%,
pointing to a much stronger degree of system-wide connectedness.
Notably, the “TO others” connectedness of CCPU climbs to 86.35%
at the 0.95 quantile, showing its central role in driving

connectedness at higher levels. Finally, considering net total
directional connectedness (NET), CCPU shows a value of −0.46%
at the lower quantile, meaning it mainly absorbs shocks. At the
median, the NET stays negative (−1.20%). At the upper quantile,
however, the NET rises to 8.80%—the highest among all ETS
pilots—showing that CCPU becomes a dominant transmitter of
shocks under extreme conditions. Taken together, these results
suggest that the CCPU’s spillover effect matter primarily at
higher quantiles, where it shifts from being a shock recipient to a
leading shock contributor.

The spillover effects across ETS markets returns show clear
heterogeneity. Tianjin displays the largest variation across quantiles,
with a NET of 6.55% at the lower quantile, −7.32% at the upper
quantile and 1.38% at the median. This reflects its low trading
activity, fewer trading days, and a higher incidence of outliers
compared with other markets, making it more sensitive to
changing conditions (Guo and Feng, 2021). Shenzhen also stands
out due to its annual permit listings and differentiated pricing (Xiao
et al., 2022). Its NET is −8.32% at the upper quantile, −0.20% at the
median and 2.49% at the lower quantile, again showing strong
dependence on market conditions. Beijing and Shanghai follow
similar patterns, acting as shock transmitters at higher quantiles
and recipients at lower quantiles. Their spillovers remain relatively
stable, reflecting market maturity (Xiao et al., 2022). Guangdong,
supported by its growing trading volume (Li and Wang, 2022),
consistently serves as a shock contributor under extreme conditions.
Overall, spillovers differ significantly across pilots and quantile, with
the most pronounced effects emerging under extreme conditions.

We then turn to the network connectedness analysis in Figure 5,
which illustrates connectedness at the lower, median and upper
quantiles. In these networks, blue nodes represent net transmitters
and yellow nodes represent net recipients of shocks. Node size
indicates the magnitude of shocks, while arrows thickness shows the
intensity of spillovers. Figure 5a depicts the lower quantile. Here, the
CCPU mainly receives shocks from Shanghai, Hubei and

TABLE 2 (Continued) Granger-causality test among CCPU and CTP returns.

Variables Mean τ � 0.05 τ � 0.50 τ � 0.95

BJR 0.663 0.017** 0.031** 0.002***

SHR 0.062* 0.002*** 0.428 0.007***

TJR 0.388 0.002*** 0.565 0.002***

HBR 0.025** 0.002*** 0.222 0.002***

HBR Granger-causality to

CCPU 0.207 0.002*** 0.002*** 0.019**

SZR 0.892 0.014** 0.676 0.002***

BJR 0.785 0.031** 0.007*** 0.002***

SHR 0.040** 0.002*** 0.534 0.021**

TJR 0.521 0.002*** 0.598 0.002***

GDR 0.003*** 0.170 0.118 0.002***

This table reports the results of Granger-causality tests among CCPU, SZR, BJR, SHR, TJR, GDR, and HBR at the mean level and across three quantiles. For the mean-level test, we follow

Granger (1969), while for the quantile-based test we adopt the approach of Troster (2018). As recommended, we use subsampling p-values of the ST test with subsample size b = [kT2/5]. Setting

k = 5 yields b = 59 for T = 480 observations; robustness checks with k = 4 and k = 6 confirm stable results. In the quantile autoregressive model, we set the lag order to 1, consistent with the QVAR

specification, and find that results remain robust when increasing the lag to 2 or 3. Statistical significance is denoted by *** for p < 1%, ** for p < 5%, and * for p < 10%.
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Guangdong, while transmitting shocks to Shenzhen, Beijing and
Tianjin. Hubei and Tianjin show the highest connectedness, with
strong spillovers between them that reinforce overall system
linkages. In Figure 5b, under median conditions, the CCPU
remains the main shock recipient, absorbing shocks from Beijing,
Shanghai, Tianjin, Hubei and Shenzhen, while transmitting only to
Guangdong. Tianjin functions solely as a transmitter, whereas other
markets both send and receive shocks. Spillovers are weaker overall,
reflected in thinner edges between nodes. Figure 5c shows the upper
quantile, where the CCPU becomes the dominant transmitter,
sending shocks to all ETS markets, especially Shenzhen. As a

low-carbon pilot city, Shenzhen is particularly sensitive to air
quality concerns (Wen et al., 2022). Beijing, Shanghai and
Guangdong also emerge as transmitters, leveraging their
economic weight to influence other regions. In summary,
network results indicate weak system connectedness at the
median, stronger spillovers at the lower quantile, and CCPU’s
dominance as a shock transmitter at the upper quantile.

Beyond the static results, we also examine how connectedness
evolves over time. Using a rolling window approach, we capture the
time-varying connectedness between the CCPU index and EST
returns. Figure 6 shows the system’s total dynamic

TABLE 3 Static connectedness between CCPU and returns.

Variables CCPU SZR BJR SHR TJR GDR HBR FROM

τ � 0.05

CCPU 26.25 12.80 12.04 12.24 12.51 12.21 11.95 73.75

SZR 13.02 24.76 11.84 12.37 12.48 13.54 11.99 75.24

BJR 12.44 13.04 25.71 12.88 12.15 12.55 11.23 74.29

SHR 11.95 12.62 11.18 23.66 14.17 14.58 11.85 76.34

TJR 12.91 13.19 10.43 11.42 28.99 13.26 9.79 71.01

GDR 11.18 13.21 12.16 13.89 13.10 24.13 12.32 75.87

HBR 11.79 12.87 12.68 13.05 13.15 13.62 22.85 77.15

TO 73.29 77.73 70.33 75.84 77.56 79.76 69.13 TCI

NET −0.46 2.49 −3.96 −0.50 6.55 3.89 −8.02 74.81

τ � 0.50

CCPU 94.38 0.86 0.45 1.14 0.65 1.63 0.89 5.62

SZR 0.63 96.99 0.33 0.51 0.28 0.94 0.32 3.01

BJR 0.34 0.30 96.59 0.99 0.74 0.92 0.12 3.41

SHR 0.16 0.29 1.02 96.27 0.65 0.67 0.94 3.73

TJR 0.50 0.21 0.60 0.17 97.90 0.30 0.32 2.10

GDR 2.15 0.96 1.52 0.54 0.81 93.00 1.01 7.00

HBR 0.64 0.19 0.17 0.55 0.34 1.16 96.95 3.05

TO 4.42 2.81 4.10 3.91 3.48 5.62 3.59 TCI

NET −1.20 −0.20 0.68 0.18 1.38 −1.39 0.54 3.99

τ � 0.95

CCPU 22.45 11.63 13.86 13.17 12.44 12.79 13.67 77.55

SZR 14.96 22.96 13.07 12.31 11.01 13.38 12.31 77.04

BJR 14.60 11.85 22.32 13.72 11.72 13.56 12.24 77.68

SHR 14.79 11.15 13.83 23.13 11.14 13.41 12.55 76.87

TJR 14.02 11.24 13.32 12.71 24.66 12.61 11.45 75.34

GDR 13.62 11.83 13.43 14.28 10.81 23.24 12.80 76.76

HBR 14.37 11.02 13.04 13.08 10.90 13.34 24.25 75.75

TO 86.35 68.72 80.55 79.27 68.02 79.08 75.02 TCI

NET 8.80 −8.32 2.86 2.39 −7.32 2.32 −0.74 76.72
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connectedness, where warmer colours indicate higher levels of
connectedness. From a quantile perspective, a clear pattern
emerges: connectedness is weaker around the median but
stronger in the upper and lower 20% quantiles, echoing the
earlier static analysis. Over time, connectedness peaks during
periods of large return fluctuations or sharp rises in the CCPU
index—for instance, in 2020 when China actively advanced the “dual
carbon” goals, and in 2019 when Guangdong and Beijing
experienced pronounced volatility. Taken together, these findings
suggest that total system connectedness both intensifies under
extreme conditions and shifts with market events.

Figure 7 further illustrates the net time-varying connectedness
(NET), where blue denotes shock recipients and red indicate shock
transmitters, with darker shades reflecting stronger spillovers. The
net directional connectedness of the ETS markets shows complex
and shifting spillover patterns across quantiles and over time. By
contrast, the CCPU displays more evident spillover effects at tails
than at the median, confirming its greater influence under extreme

conditions. In the following section, we examine these time-varying
spillovers in greater details at low, medium and high quantiles.

At the lower quantile, two key periods stand out. In 2020, new
climate and carbon emissions policies—such as the formalisation of the
“dual carbon” target and the release of the Carbon Emissions Trading
Administration measures—triggered major shifts in ETS spillovers.
Beijing moved from being a net contributor to a net recipient, while
Shanghai and Tianjin both experienced sharp changes in spillover
intensity. The CCPU also switched from receiving shocks to
transmitting them. A second turning point came in 2022, when the
“14th Five-Year Plan” identified the ETS as central to carbon reduction.
During this time, spillovers from Beijing and Shenzhen strengthened,
while the CCPU briefly returned to the role of shock recipient, in
contrast to its usual behavior at the tails.

At the upper quantile, where higher returns coincide with greater
uncertainty, connectedness intensifies and becomes more market-
specific. Beijing’s role shift over time—from a contributor in 2020,
to a recipient in 2021, and back to a transmitter in 2023 as more
enterprises entered its carbon market. Shenzhen and Tianjin mainly
acted as recipients, especially in 2021 during the development of the
national carbon market. Shanghai, on the other hand, changed from a
transmitter in 2020 to a recipient in 2022, likely due to reduced trading
during the COVID-19 lockdown. Throughout, the CCPU remained a
strong and persistent transmitter, particularly from 2020 to 2021,
aligning with China’s carbon goals.

Undermedian conditions, system-wide connectedness falls sharply.
Before 2020, Beijing, Shenzhen, Tianjin and Hubei were the main
contributors, with Beijing and Tianjin notably involved in building the
national carbon market. Shanghai and Guangdong mainly absorbed
shocks. After 2020, spillovers weakened across most markets, with the
exception of Shanghai, which became a contributor. This shift suggests
that markets turned their attention to local policies and economic
development. Meanwhile, the CCPU showed little influence at the
median, playing neither a transmitting nor a receiving role.

6.2 Spillovers between CCPU and volatility

Similarly, we first check the Granger causality relationship
between CCPU and the volatility of the carbon market. As

FIGURE 5
Network between CCPU and returns. (a) τ � 0.05 (b) τ � 0.50 (c) τ � 0.95.

FIGURE 6
Dynamic total connectedness of CCPU index and returns.
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shown in Table 4, the overall links are weak at the mean and median
levels, but they appear more often than in the case of returns. This
suggests that CCPU has a wider and stronger impact on volatility
than on returns. The quantile results further show that causality is
generally stronger in the tails, though it varies across markets. For
instance, in Shanghai other variables tend to drive volatility more at
higher quantiles, while in Tianjin the effect is stronger at lower
quantiles. These patterns point to the need for a closer look at how
CCPU and volatility interact under different market conditions.

To this end, we further examine the spillover effects of the CCPU
on ETS volatility across quantiles, with results reported in Table 5.
The system’s static connectedness shows clear variation across

quantiles, with the TCI rising under extreme conditions. At the
lower quantile, the TCI reaches 67.92%, and at the upper quantile it
climbs to 76.20%, a pattern similar to that observed for returns. At
the median, the TCI is 10.92%—higher than for returns—indicating
that volatility is more tightly linked to CCPU than returns under
normal conditions. Total directional connectedness (“FROM” and
“TO” others) follows the same pattern, with values increasing
sharply at the extremes, especially at the upper quantile. The
NET measure highlights the ultimate role of each variable. At the
upper quantile, the CCPU records the highest NET (12.97%),
confirming its role as the dominant shock contributor. At the
lower quantile, the CCPU continues to emit shocks, though its

FIGURE 7
Dynamic net total directional connectedness between CCPU and returns.
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TABLE 4 Granger-causality test among CCPU and CTP volatility.

Variables Mean τ � 0.05 τ � 0.50 τ � 0.95

CCPU Granger-causality to

SZV 0.264 0.092* 0.369 0.007***

BJV 0.005*** 0.002*** 0.002*** 0.028**

SHV 0.176 0.128 0.137 0.028**

TJV 0.147 0.031** 0.045** 0.274

GDV 0.775 0.002*** 0.565 0.002***

HBV 0.773 0.002*** 0.002*** 0.014**

SZV Granger-causality to

CCPU 0.003*** 0.002*** 0.002*** 0.111

BJV 0.369 0.002*** 0.002*** 0.028**

SHV 0.000*** 0.199 0.095* 0.050**

TJV 0.868 0.019** 0.059* 0.255

GDV 0.973 0.002*** 0.738 0.002***

HBV 0.088* 0.002*** 0.002*** 0.024**

BJV Granger-causality to

CCPU 0.000*** 0.002*** 0.002*** 0.017**

SZV 0.407 0.019** 0.270 0.019**

SHV 0.798 0.123 0.241 0.087*

TJV 0.476 0.043** 0.064* 0.187

GDV 0.000*** 0.002*** 0.305 0.002***

HBV 0.075* 0.002*** 0.009*** 0.026**

SHV Granger-causality to

CCPU 0.013** 0.002*** 0.002*** 0.017**

SZV 0.000*** 0.163 0.208 0.085*

BJV 0.049** 0.002*** 0.012** 0.005***

TJV 0.069* 0.035** 0.109 0.234

GDV 0.000*** 0.002*** 0.669 0.002***

HBV 0.000*** 0.002*** 0.045** 0.040**

TJV Granger-causality to

CCPU 0.304 0.002*** 0.007*** 0.099*

SZV 0.312 0.128 0.350 0.005***

BJV 0.666 0.002*** 0.024** 0.024**

SHV 0.098* 0.111 0.409 0.059*

GDV 0.523 0.002*** 0.740 0.002***

HBV 0.930 0.002*** 0.002*** 0.047**

GDV Granger-causality to

CCPU 0.715 0.002*** 0.009*** 0.113

SZV 0.276 0.069* 0.314 0.005***

(Continued on following page)
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influence is smaller. At the median, its NET turns negative (−3.94%),
showing that it mainly absorbs shocks, while Tianjin (4.17%) and
Guangdong (5.85%) act as the primary transmitters.

Figure 8 visualises the network connectedness between the
CCPU and volatility across quantiles. At the lower quantile, the
CCPU mainly absorbs shocks from Shanghai and Hubei but
transmits to other pilots. Guangdong emerges as the main shock
recipient, heavily influenced by Beijing and Shenzhen, as indicated
in the thick arrows. Beijing also exerts a strong impact on Tianjin,
pointing to a high degree of interconnectedness within the system.
At the upper quantile, the CCPU becomes the dominant transmitter,
sending shocks to all pilots, particularly Guangdong, Tianjin and
Beijing, with thick arrows signaling intensified interactions. By
contrast, at the median, system connectedness falls sharply. The
CCPU shifts to being a shock recipient, mainly influenced by
Guangdong, Tianjin and others. Guangdong reverses its role and
transmits substantial shocks to Beijing, which in turn affects the
CCPU. Overall, these results show that the spillover effects between
the CCPU and volatility are weakest at the median and strongest at
the extremes, underscoring the importance of tail dynamics in
understanding market interconnectedness.

Extending the static tail dynamic, Figure 9 plots the dynamic
total connectedness over time, where spillovers are again strongest at
upper and lower quantiles. Total connectedness is especially
pronounced in the top and bottom 20%, with the most
substantial effects near the extreme of 1 or 0, as shown by the
darker color. A comparison across quantile indicates stronger
spillovers in the upper quantiles than in the lower ones.
Consistent with static analysis, connectedness around the median
remains weak. Although variability across quantiles is limited, a
clear rise appears in 2021, coinciding with the rollout of China’s
“dual carbon” targets and visible as darker shading at the
upper quantiles.

Figure 10 presents the dynamic net connectedness (NET)
between the CCPU and volatility, which is generally stronger

than for returns. This relationship varies by quantiles and over
time, but does not always align with fluctuations in returns.

At lower quantiles, volatility spillovers remain relatively
stable. Beijing and Shanghai act as the main transmitters, with
Beijing’s spillovers intensifying in 2018 due to national carbon
market preparations and stricter emissions management policies.
By 2021, Shenzhen’s rising trading volume and renewable energy
initiatives amplified its volatility. During this period, Tianjin,
Shanghai, Guangdong and Hubei were mostly shock recipients,
although Shanghai experienced a temporary surge in spillovers in
2021 following the launch of the “China Securities Shanghai
Environmental Exchange Carbon Neutrality Index”. The
CCPU also shifted from being a shock recipient before 2020 to
a shock emitter afterwards, reflecting the growing role of
climate policy.

At higher quantiles, spillovers intensifies and market roles shift
more frequently. Beijing and Hubei dominate as contributors, with
Beijing’s influence peaking in 2018 and 2022, while Hubei’s impact
peaked in 2019 before falling back after COVID-19 outbreak (Li
et al., 2022). Shanghai and Shenzhen generally absorbed shock,
although Shanghai became a strong transmitter in 2021. Tianjin and
Guangdong reversed roles after 2022, with Tianjin moving to a
recipient role and Guangdong emerging as a transmitter. Post-2020,
the CCPU consistently served as a dominant transmitter,
particularly around the announcement and rollout of the “dual
carbon” targets.

At themedian, overall connectedness is weaker, though volatility
spillovers remain present. Beijing acted as a notable transmitter in
2018, while Shenzhen and Shanghai were recipients. Across the
period, Tianjin, Guangdong and Hubei contributed to spillovers (Xu
and Salem, 2021), with their influence intensifying in 2020. Outside
extreme conditions, the CCPU mainly received shocks and showed
limited spillover effects.

In sum, the spillover effects of CCPU on volatility are far more
evident at the extremes than at the median, reinforcing the

TABLE 4 (Continued) Granger-causality test among CCPU and CTP volatility.

Variables Mean τ � 0.05 τ � 0.50 τ � 0.95

BJV 0.000*** 0.002*** 0.005*** 0.002***

SHV 0.001*** 0.196 0.298 0.005***

TJV 0.889 0.012** 0.028** 0.116

HBV 0.629 0.002*** 0.002*** 0.012**

HBV Granger-causality to

CCPU 0.031** 0.002*** 0.002*** 0.092*

SZV 0.040** 0.135 0.097* 0.002***

BJV 0.005*** 0.002*** 0.007*** 0.005***

SHV 0.000*** 0.210 0.442 0.061*

TJV 0.886 0.149 0.106 0.362

GDV 0.314 0.002*** 0.489 0.002***

This table reports the results of Granger-causality tests among CCPU, SZV, BJV, SHV, TJV, GDV, and HBV at the mean level and across three quantiles. For the mean-level test, we follow

Granger (1969), while for the quantile-based test we adopt the approach of Troster (2018). As recommended, we use subsampling p-values of the ST test with subsample size b = [kT2/5]. Setting

k = 5 yields b = 59 for T = 480 observations; robustness checks with k = 4 and k = 6 confirm stable results. In the quantile autoregressive model, we set the lag order to 1, consistent with the QVAR

specification, and find that results remain robust when increasing the lag to 2 or 3. Statistical significance is denoted by *** for p < 1%, ** for p < 5%, and * for p < 10%.
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Hypothesis 1. These effects are stronger for volatility than for
returns, and the interactions among ETS markets display
heterogeneity and lack of synchronicity across quantile
and over time.

6.3 Robustness tests

To test the robustness of our finding, we conduct six checks
across three dimensions: (1) varying QVAR forecast horizons
from 10 to 5 and 15, (2) adjusting rolling window lengths from

200-week to 150-week and 250-week and (3) testing volatility
reliability by modifying the moving standard deviation window
from 20 to 18 and 22. Detailed results are reported in the
Supplementary Material. Overall, system connectedness
remains stable across these alternative specifications. The
static analysis shows that, under extreme conditions, the
spillover effects of CCPU on CTP returns and
volatility remain significant, consistent with our main
conclusions. The dynamic analysis further confrims that the
directional linkages between returns, volatility and CCPU
are robust.

TABLE 5 Static connectedness between CCPU and volatility.

Variables CCPU SZV BJV SHV TJV GDV HBV FROM

τ � 0.05

CCPU 31.17 13.99 12.96 12.13 8.34 10.28 11.13 68.83

SZV 14.74 27.11 12.08 14.32 11.03 9.91 10.81 72.89

BJV 13.34 13.81 32.64 10.87 9.15 10.22 9.97 67.36

SHV 11.35 13.60 12.81 29.75 11.22 10.71 10.56 70.25

TJV 9.38 11.28 12.97 12.31 36.29 10.81 6.96 63.71

GDV 10.52 14.97 14.91 12.16 9.02 27.41 11.02 72.59

HBV 11.06 10.54 10.65 9.92 7.12 10.50 40.21 59.79

TO 70.38 78.19 76.39 71.71 55.87 62.43 60.45 TCI

NET 1.55 5.30 9.02 1.46 −7.83 −10.16 0.66 67.92

τ � 0.50

CCPU 89.42 3.55 1.37 0.51 1.31 2.60 1.24 10.58

SZV 1.84 86.32 2.21 5.29 2.08 1.72 0.53 13.68

BJV 2.07 4.05 85.80 0.70 0.84 4.76 1.77 14.20

SHV 0.80 3.29 0.88 87.24 4.13 3.16 0.50 12.76

TJV 0.97 0.97 1.35 0.64 94.08 1.20 0.79 5.92

GDV 0.27 1.83 2.57 2.57 1.00 88.91 2.85 11.09

HBV 0.69 0.47 1.01 1.82 0.72 3.50 91.78 8.22

TO 6.64 14.17 9.39 11.54 10.09 16.95 7.68 TCI

NET −3.94 0.49 −4.80 −1.22 4.17 5.85 −0.54 10.92

τ � 0.95

CCPU 23.05 14.92 12.28 13.71 11.18 11.93 12.93 76.95

SZV 14.93 18.14 13.58 14.02 13.26 11.96 14.11 81.86

BJV 15.24 11.40 28.98 9.99 10.27 8.22 15.91 71.02

SHV 15.52 10.32 12.51 21.67 12.81 14.34 12.83 78.33

TJV 13.32 11.45 14.07 10.63 28.02 9.68 12.83 71.98

GDV 15.30 11.06 12.62 13.98 12.49 22.19 12.35 77.81

HBV 15.61 11.58 15.93 12.12 10.08 10.13 24.56 75.44

TO 89.92 70.72 81.00 74.44 70.09 66.25 80.97 TCI

NET 12.97 −11.14 9.98 −3.88 −1.90 −11.56 5.53 76.20
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6.4 Discussion

The dynamics of CTP can be understood through returns and
volatility, each carrying different meanings and spillover patterns
with CCPU. Returns capture short-term price changes and are
shaped largely by the internal dynamics of pilot schemes (Guo
and Feng, 2021). Volatility, by contrast, reflects the intensity of price
fluctuations, signaling risks, uncertainties and co-movements across
markets. It often displays stronger spillover effect during external
shocks. For instance, the Hubei pilot saw heightened volatility
spillovers during the COVID-19 period, driven not only by
supply-demand factors but also policy uncertainty, shifting
market expectations and climate targets (Xu et al., 2019). Our
findings confirms this: volatility spillovers tend to exceed those of
returns, reflecting their sensitivity to both internal and
external forces.

These patterns are also shaped by market conditions. In stable
periods, markets remain interdependent, while in turbulent periods,

risk contagion becomes pronounced (Luo et al., 2021). Differences
in economic and operational contexts across pilots generate
heterogeneous spillovers, with volatility playing a stronger role in
influencing returns. This results in asynchronous spillover
dynamics, consistent with earlier evidence (Li et al., 2022). Such
behaviour highlights the need for enterprises, investors and
policymakers to closely monitor the multi-dimensional spillover
features of carbon markets.

Returns and volatility are, of course, closely linked. Negative
returns and high volatility often co-occurred in the early years of
ETS implementation, particularly when CCPU was rising. In 2020,
for example, the dual shock of COVID-19 and reinforced carbon
neutrality targets reduced returns and increased volatility across
several pilots, demonstrating their financial asset characteristics
(Wang et al., 2022). Volatility not only measures risk but also
explains expected risk premiums through its relationship with
returns and conditional variance. High risks are often associated
with higher expected returns, and large CCPU shocks can amplify
the co-movement between returns and volatility, contributing to
systemic risk (Fan et al., 2021). In line with the financial nature of
ETS, contagion tends to remain muted in stable periods but escalates
sharply under extreme conditions.

This pattern is not unique to ETS but extends to climate and
green finance more broadly. When markets face abrupt climatic
events, sharp oil prices swings, or major policy shifts, green
financial markets frequently exhibit non-linear and
asymmetric dynamics (Dong and Yu, 2024b; Xu et al., 2025),
with spillovers amplified in the tails. Extending the quantile-
based analysis of CCPU-CTP spillovers to the broader climate
and green finance domains helps shed light on how
extreme shocks shape the mechanisms and pathways of risk
transmission.

Underlying these dynamics are two persistent challenges for
green innovation: information asymmetry and financing
constraints. These issues, closely watched by external investors,
are also the key channels through which policy shocks exert
influence. Rising policy uncertainty exacerbates both frictions,
heightening risks for corporate investment decisions and
accelerating the spread of such risks across sectors and regions.
Evidence suggests that reforms in green finance can strengthen

FIGURE 8
Network between CCPU and volatility. (a) τ � 0.05 (b) τ � 0.50 (c) τ � 0.95.

FIGURE 9
Dynamic total connectedness of CCPU index and volatility.
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firms’ resilience by fostering green technological innovation,
improving energy efficiency, and easing financing conditions,
thereby dampening the amplification effect of policy uncertainty.
In addition, in more market-oriented environments, green bond
issuance provides firms with long-term and stable funding (Dong
and Yu, 2024a), while optimised ownership structures—particularly
the involvement of institutional investors and debt–equity dual
holders—help mitigate information asymmetry and governance
costs (Zhang et al., 2025). These mechanisms are highly relevant
for risk prevention and for strengthening financial market stability
in the face of extreme shocks.

7 Conclusion and policy implications

This study examines the spillover effects of the CCPU on CTP
returns and volatility. First, we construct a weekly CCPU index using
word frequency analysis of Chinese newspapers. The index captures
peaks linked to key climate events and broadly tracks the UCPU
during milestones such as the Sino-US climate agreement and the
Paris Agreement, while also reflecting China’s own policy shifts,
especially the adoption of the “dual carbon” goals.

Second, results from the QVAR-DY framework show that
spillover effects are limited under normal conditions but become

FIGURE 10
Net total directional connectedness for volatility.
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much stronger in extreme states, a pattern echoed by the quantile
Granger-causality tests. In particular, at higher quantiles, the CCPU
exerts a clear influence on major carbon markets. For return
spillovers, Shanghai and Guangdong act mainly as transmitters at
higher quantiles, while Hubei tends to be a receiver. For volatility
spillovers, Hubei and Beijing emerge as the primary transmitters,
whereas Guangdong is more often a receiver. Return spillovers
capture short-term trading sentiment and information flow,
which are more pronounced in Shanghai and Guangdong, where
markets are relatively advanced. Volatility spillovers instead reflect
stability and resilience, features more evident in large and mature
markets such as Hubei and Beijing. Overall, volatility spillovers are
stronger than return spillovers, indicating that systemic risk
transmission outweighs short-term price fluctuations, especially
under extreme conditions. These findings reveal the asymmetric
and heterogeneous nature of spillovers, underline the value of
quantile-based analysis, and show that such patterns are closely
tied to regional market development and shifts in CCPU index.

Based on these results, we offer several policy recommendations
to strengthen China’s carbon market. With national and regional
markets currently coexisting, our findings show that different
regions play distinct roles in transmitting risk. Regulators should
take these differences into account when promoting national market
integration, to prevent local shocks from spreading nationwide.
Since systemic risk transmission is more severe than short-term
price fluctuations, market management should focus not only on
improving price discovery but also on reinforcing risk control to
safeguard long-term stability.

Greater transparency and stronger regulation are also essential. A
coordinated risk monitoring and early warning system across both
national and regional levels is needed to enable timely intervention
during periods of extreme volatility and to prevent local risks from
escalating into systemic crises. At the same time, deeper integration
with green finance is necessary. Tools such as green bonds, funds and
climate-related financial instruments can help spread risks, allocate
resources efficiently, and channel long-term capital into low-carbon
sectors. Most importantly, climate policy should maintain consistency
between long-term goals and implementation pathways, reducing
uncertainty that could disrupt the market. Taken together,
strengthening regional coordination, enhancing risk prevention, and
aligning green finance with climate policy are key to ensuring the
sustainable development of China’s carbon market.

Finally, this study analyses the spillover effects between CCPU
and CTP primarily from a distributional perspective. Future
research may build on this by examining carbon price formation
mechanisms in greater depth (Yang et al., 2025), incorporating more
advanced treatments of data tails in quantile models (Li et al., 2025),
or testing dynamic adjustments between markets (Li et al., 2021).
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