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Climate change has intensified rainfall variability, increasing urban flooding risks in
arid regions like Makkah and Riyadh. This study develops Intensity-Duration-
Frequency (IDF) curves to analyze rainfall intensities for various storm durations
and return periods, supporting urban planning and water resource management.
Historical precipitation data (1950–2020) and future projections from two Shared
Socioeconomic Pathway scenarios (2021–2100) were used to construct IDF
curves for Makkah and Riyadh to assess precipitation extremes and support
hydrological and infrastructure planning. Downscaling and bias correction
were applied to five Global Climate Models, followed by feature engineering
using CatBoost and LightGBM. Multi-Model Ensemble (MME) predictions were
then evaluated usingmachine learning algorithms, including AdaBoost, CatBoost,
and XGBoost, with XGBoost achieving the highest accuracy. For precipitation
modeling, Gamma and Log-Pearson 3 distributions were identified as the best fits
for observed and projected data inMakkah and Riyadh, respectively, underscoring
the importance of selecting appropriate probability distributions to accurately
capture precipitation extremes. The study offers a predictive tool in terms of
climate resilience of urban areas within arid zones, which strengthens climate
projections to aid decision-making.
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1 Introduction

Climate change has triggered the increase of the global hydrological cycle and exposed it
as a critical problem to water resource management, infrastructure resiliency, and urban
design (Wang and Liu, 2023). Changes in extremes of frequency and intensity of
precipitation events present high risks to urban drainage infrastructure, sustainability of
agricultural operations, and disaster management operations and plans. Makkah and
Riyadh cities are in arid and semi-arid areas, and thus they are highly vulnerable to
these changes given their existence on resilient infrastructure systems to allow the
mitigation of urban flooding risks. The Intensity-duration-frequency (IDF) curves are
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useful in the calculation and audit of the hydraulic structures by
providing clues of rainfall intensities at different storm durations
and intervals (Agakpe et al., 2024). IDFs curve buildings have
conventionally used historical record precipitation data, and they
are constructed with typical statistical techniques. Nonetheless,
climate systems are rather dynamic and nonstationary, and
stronger, flexible methods of the IDF curve modeling under the
changing climate requirements are demanded. Machine learning
(ML) has received the widespread adoption as a game-changer to
hydrology and climate sciences, and recent advancements make it
possible to model the complex and nonlinear relationships between
different parameters and identify meaningful implications in big
data. Researchers have an opportunity to improve IDF curve
variations predictions in both climatic change paths via ML-
integration with climate projections. In practice, statistical
distributions, e.g., Gumbel, Log-Pearson 3, and Gamma, have
been utilized in modeling extreme precipitation occurrences
because they are sufficiently effective in modeling hydrological
extremes (De Luca et al., 2024). Such methods, however, are
quite deficient in capturing nonlinearity and dynamical behavior
of climate systems. The use of ML in conjunction with these
statistical models offers a promising avenue for improving the
accuracy and adaptability of IDF curve predictions.

Knowledge of extreme precipitation and hydrological processes
are important to IDF curve development in arid and semi-arid areas
(Li et al., 2025; Lu et al., 2025; Huang et al., 2025). The development
of remote sensing, multisource information synthesis and fractional
surface coverage assessment has enhanced rainfall measurement
(Yang et al., 2023; Sun et al., 2024; Li et al., 2024a; Jahangir et al.,
2024). The extreme event analysis and climate modeling provides
details of future projections (Yi et al., 2024; Yu et al., 2025; Liu et al.,
2024; Zhu et al., 2025a; Zhu et al., 2025b). Research into soil-
atmospheric processes, greenhouse gases, ecological models,
drought indices, hydraulic fracturing, atmospheric water uptake
and tunnel safety has placed emphasis on the employment of
reliable probabilistic models (Zhang et al., 2026; Gebrewahid
et al., 2024; Ren et al., 2024; Li et al., 2024b; Song et al., 2025).
IDF curves have been the most important in hydrological and urban
infrastructural planning, development of such has traditionally been
based on predictions that rely on stationary assumptions thus
lacking the ability to capture the climatic variability being
developed by climate change. Research studies, e.g., Doulabian
et al. (2023) and Zhu et al. (2012) highlight why it is essential to
include climate change issues into the development and modeling of
IDF curves to come up with resilient urban infrastructure planning.
Extreme precipitation modeling has been at the center of statistical
distributions. An example is the distribution changes in Gumbel,
which is generally well known as an ideal distribution to cover the
maximum rainfalls in a year and the Log-Pearson 3, which is known
to be flexible in distributing skewed precipitation data (Doost et al.,
2024). In contrast, Gumbel distribution provides a more generalized
model of characterizing a wide variety of selections of extreme events
(Gentilucci et al., 2023). Generally, these conventional approaches
cannot effectively define the complexity of the climate-generated
variability. Advanced ML developments have shown the possibility
to solve these shortcomings. Such methods as Random Forest,
Support Vector Machines, and Artificial Neural Networks have
been effectively used in the prediction of streamflow, rainfall-

runoff relationships, and floods (Maity et al., 2024; Haider et al.,
2024). Particularly, findings of Zhang et al. (Zhang et al., 2024), and
Yoshikane and Yoshimura (Yoshikane and Yoshimura, 2023) depict
the application of ML models in providing downscaling and bias-
correction of Global Climate Model (GCM) results and enhancing
the confidence of hydrological forecasts. Despite these
developments, combination of ML techniques with statistical
distributions of the IDF curve modeling has been poorly
explored. Recent studies have attempted to address this gap by
integrating machine learning models with extreme value theory to
assess the impact of climate change on extreme precipitation events
(Dai et al., 2022; Kim et al., 2022). These references show that ML
has the promise of improving conventional statistical methods
because it can be used to provide a more comprehensive theory
of how IDF curves can be modeled in the context of climate change.
Nonetheless, there is still an enormous gap in the implementation of
these strategies in arid and semi-arid areas, especially in such cities
as Makkah and Riyadh, where the issue of climate-resilience is an
overriding concern.

The study would fill this research gap by establishing the IDF
curves of two stations, Makkah and Riyadh, through a combination
of five GCMmodels and two Shared Socioeconomic Pathways (SSP),
SSP245 and SSP585. The methodology encompasses the
downscaling, and bias correction of the GCMs with the help of
linear scaling, feature engineering with Categorical Boosting
(CatBoost) and Light Gradient Boosting Machine (LightGBM) to
determine the best combination of the GCMs. A Multi-Model
Ensemble (MME) is next generated through the Extreme
Gradient Boosting (XGBoost) approach of precipitation
projections. Further, three statistical distributions, such as
Gumbel, Log-Pearson 3, and Gamma, are applied to generate
IDF curves of observed and forecasted precipitation values with
reference to SSP245 and SSP585 scenarios by CMIP6. The research
will guide the important planning of regional hydrology, and it will
aid in advancing the framework of urban infrastructures in Makkah,
Riyadh, and other arid regions that can cope with weather changes.

2 Study area and dataset overview

2.1 Makkah and Riyadh, Saudi Arabia

The current study aims to provide information on climatic
changes and their impacts on precipitation patterns along both
the coastal and inland areas, especially due to changes in climate in
two provinces of Saudi Arabia, Makkah and Riyadh, as illustrated in
Figure 1. Makkah, located on the western coast near the Red Sea,
experiences a hot desert climate with seasonal rainfall. Although
rainfall is rare, the region is prone to intense winter storms that can
result in flash floods due to rapid runoff and insufficient drainage
infrastructure (Alzahrani et al., 2024). Given its status as a major
pilgrimage site, Makkah’s urban resilience is crucial, making it an
important location for this study. The city’s vulnerability to climate-
induced extreme weather events highlights the need for robust flood
mitigation strategies. Riyadh, the capital city in central Saudi Arabia,
has an inland desert climate with minimal rainfall. Intense but brief
rainfall events, often occurring during the winter and spring, can
overwhelm the city’s infrastructure, particularly due to rapid
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FIGURE 1
Map of Makkah and Riyadh highlighting the study area.

FIGURE 2
Representation of observed annual precipitation from 1950 to 2020 of Makkah.
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urbanization (Hereher, 2016). These storms can lead to urban
flooding in areas that lack adequate flood protection measures.
Riyadh’s climate, characterized by extremely hot summers and
cooler winters, makes it highly susceptible to shifts in
precipitation patterns resulting from climate change, further
complicating its water scarcity issues.

2.2 Data acquisition

In this study, IDF curves were developed for Makkah and
Riyadh based on observed and SSPs scenarios using annual
precipitation data.

2.2.1 Rainfall dataset overview
Annual rainfall data spanning from 1950 to 2020 visualized in

Figures 2, 3 for Makkah and Riyadh were collected from the Climate
Knowledge Portal to develop IDF curves. The combination of
Makkah’s coastal climate and Riyadh’s inland desert conditions
provides a diverse setting for analyzing rainfall variability.

2.3 Downscaling and bias correction

In the context of GCM-based modeling, preprocessing steps
such as downscaling and bias correction are indispensable for
ensuring that coarse-resolution climate model outputs are
consistent with observed local conditions.

2.3.1 Downscaling
Downscaling is a climate science technique used to transform

the coarse-resolution data from GCMs into higher-resolution
data that more accurately reflects local or regional climate
conditions (Teutschbein et al., 2011). GCMs simulate the
Earth’s climate system at a global level, typically with spatial

resolutions between 100 and 300 km (Palmer, 2014; Ullah et al.,
2023). While these models capture broad climate patterns
effectively, their coarse resolution makes them less suitable for
localized studies, such as evaluating climate change impacts on
specific regions, cities, or watersheds (Humphries et al., 2024). To
overcome this limitation, the raw GCM data, which is often at a
coarse spatial resolution, was downscaled to match the local scale
of Makkah, making the data more appropriate for regional
climate impact assessments. In this study, a Python script was
developed to implement the downscaling process for GCM data,
specifically focusing on extracting and processing precipitation
data for the study area. The script utilizes the xarray and pandas
libraries to handle NetCDF files, the standard format for storing
climate data. The primary function of the script, extract_gcm_
data_to_excel, is designed to extract precipitation data for
specific geographic coordinates from the GCM file, convert the
units from kilograms per square meter per second (kg/m2/s) to
millimeters per day (mm/day), and save the processed data into
an Excel file for further analysis. The script begins by iterating
through all NetCDF files in a specified folder, identifying the
precipitation variable within each file. It then extracts data for the
nearest latitude and longitude coordinates provided by the user,
ensuring alignment with the study area. A critical step in the
process is the conversion of precipitation units from kg/m2/s to
mm/day, achieved by multiplying the values by 86,400 (the
number of seconds in a day). This conversion is essential for
making the GCM data compatible with hydrological analyses and
IDF curve development. The extracted data is then compiled into
a single pandas DataFrame. Finally, the downscaled data is saved
into an Excel file, providing a structured and accessible format for
subsequent analysis. This script plays a crucial role in the
downscaling process by enabling the extraction and
preprocessing of GCM data at a local scale, ensuring its
suitability for evaluating future climate scenarios and their
impacts on extreme precipitation events in the study area.

FIGURE 3
Representation of observed annual precipitation from 1950 to 2020 of Riyadh.
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2.3.2 Bias correction
Bias correction is a method used to rectify systematic errors

in climate model outputs, hydrological models, or remote sensing
data (Shrestha et al., 2017). Climate models frequently diverge
from observed data due to limitations in resolution,
parameterization, or initial conditions (Randall et al., 2007).
By adjusting the model’s statistical properties to better align
with observed data, bias correction enhances the accuracy of the
model’s predictions. One of the most powerful techniques for
quantile mapping. In this study, a Python script was developed to
apply Quantile Mapping (QM) bias correction to GCM
precipitation data. The script loads historical GCM data,
observed data, and future GCM projections under SSP245 and
SSP585 climate scenarios from Excel files. These datasets are
processed to ensure alignment based on the “Date” and
precipitation columns. The script calculates percentiles for
observed and historical GCM data, and then maps GCM
values to observed quantiles, ensuring statistical consistency.
The correction function is applied to both historical and
future GCM data, maintaining consistency across different
periods and scenarios. The corrected data is saved in Excel
format for further analysis. This ensures the corrected GCM
data is suitable for IDF curve development and climate impact
assessments.

2.4 Simulated climate data from GCMs

To evaluate future climate trends, five GCMmodels, selected based
on their strong performance in simulating precipitation in arid regions
recommended by different literature (Sharif, 2015; Alotaibi et al., 2018;
Hassan et al., 2016), were downloaded from the CMIP6 portal. These
models are presented in Table 1.

These models were chosen for their reliability in forecasting
climate parameters in the Arabian Peninsula, enabling a thorough
analysis of potential future climate changes in both Makkah
and Riyadh.

3 Methodology

To develop the IDF curve for two stations, Makkah and
Riyadh, using five different GCM models under two SSPs,
SSP245 and SSP585, after downscaling and bias correction,
and then perform multi-modeling using machine learning.
Firstly, the five GCM models were downscaled and bias-
corrected using linear scaling techniques. Subsequently,
feature engineering was conducted using CatBoost and
LightGBM to select the best combination of bias-corrected
GCMs that closely resemble observed data. Secondly, an

MME was computed for the top three GCMs for
precipitation using the XGBoost technique. Thirdly, three
various distributions were chosen: Gumbel, Log-Pearson 3,
and Gamma distributions. The former distributions were the
basis in constructing the IDF curves of observed and future
precipitation data across two distinct SSP scenarios
(SSP245 and SSP585) of CMIP6 (see Figure 5).

TABLE 1 GCM Models used in this research.

Model EC-Earth3-CC CNRM-CM6-1 MPI-ESM1-2-LR UKESM1-0-LL GFDL-CM4

Country of origin Europe France Germany United Kingdom United States

Horizontal resolution ~0.25° (~25 km) ~1.4° (~140 km) ~1.9° (~190 km) ~1.25° (~125 km) ~1.0° (~100 km)

FIGURE 4
Bias correction technique applied in this study.

FIGURE 5
Flowchart of the feature engineering process.
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3.1 Refining GCM rainfall with downscaling
and bias correction

A downscaling involves the practice of converting the coarse
spatial resolution of GCMs to finer resolutions, more appropriate for
local and regional studies (Ullah et al., 2023). This allows the
development of fine-scale forecasts of weather phenomena,
including rainfall, on finer spatial resolutions, with more
accessible results at local levels. Where Bias correction on the
other hand is the process of modifying the output of GCMs to
handle systematic mistakes or bias within the model predictions.

In this study, the bias correction algorithm was carried out in the
linear scaling technique, as it is associated with ease of
implementation and computing efficiency. It is a method of
ensuring biases are adjusted but retaining the patterns and
variability in the original GCM. To ease this process, a Python
code was constructed and was applied to downscale, and bias correct
the data of the GCMs (Haider et al., 2020).The whole process of bias
correction is indicated in Figure 4. Adopting an ensemble approach
after bias correction is a strong suggestion as proposed by
Teutschbein and Seibert (Teutschbein and Seibert, 2012) where
the results of several bias-corrected climate projections are used
to enhance the credibility and reliability of the climatic projections.

3.2 Multi-Model Ensemble approach (MME)

There is an overall approach that has been used by several
climate science researchers and applied hydrologists known as
method of MME where the projections of several general
circulation models are combined to improve the accuracy and
stability of climate projections (Anwar et al., 2024). GCMs are
numerical models that simulate the entire climate system on the
surface of the earth, by discretizing numerical solutions of physical
equations that represent atmosphere, oceans, land, and ice.

In this research, MME process was introduced after feature
engineering to identify the most important GCMs. CatBoost, and
LightGBM, two of the most advanced Machine learning classifiers
were then used to calculate feature importance scores. GCMs with
the maximum values of such scores were kept overcoming
redundancy and improve the reliability of the ensemble. Three
disparate Machine learning methods, which include the AdaBoost
framework, CatBoost, and the XGBoost, were assessed versus the
chosen GCMs to construct the MME. The created forecasts were
synthesized through procedures of ensemble averaging, thus
capitalizing on the complementary capabilities of the member
models and increasing the forecast accuracy and repeatability,
and at the same time highlighting the extraordinary roles played
by the highest-rank GCMs. The combination of feature selection
and an ensemble model, therefore, produced sound, comprehensible
results, hence proving the usefulness of this framework when dealing
with the issues of climate and hydrological modeling.

3.3 Feature engineering

In predictive modeling, the process of designing, transforming, or
creating the input features (variables) to optimize the performance of

the Machine learning models is termed feature engineering. Gradient-
boosting models have become well-established techniques commonly
used to this end, which include the CatBoost and LightGBM libraries,
whose advantageous properties comprise efficient speed, scalability,
and productive predictive ability. One of the most prominent
characteristics of the two systems is the ability to give a feature-
importance score that measures the contribution of every variable to
the predictive capacity of the model. The scores are essential in terms
of determining the most influential points of learning with datasets as
an effective feature selection, or model interpretability, and
consequent optimization.

3.3.1 Categorical Boosting (CatBoost)
CatBoost is a more advanced version of gradient boosting with

its application in tasks such as classification as well as regression. It
minimizes the difference between the predicted and observed values
in cases of regression using numerous loss functions, such as Huber
Loss or Quantile Loss (Hancock and Khoshgoftaar, 2020).
Peculiarity of CatBoost is that it allows working with the
categorical variables, avoiding heavy preprocessing; this feature
makes the algorithm especially beneficial to work with the data
allowed to have both numerical and categorical components.
CatBoost reduces overfitting by integrating ordered boosting,
which results in creation of efficient and accurate predictions.

To use CatBoost in regression, the output results in continuous
numeric values, making the tool applicable in price prediction,
demand forecasting, and energy consumption estimation. The
framework requires very few parameters to tune and can be
implemented on a CPU or GPU, which provides both scalability
with large finite datasets as well as efficiency. The integrated
interpretability mechanisms that the algorithm has implemented,
including feature importance scores and SHAP values, enable the
algorithm not only to achieve high predictive accuracy but also to
give pertinent insight into what contributes to the given prediction.

In this application, the Python script allows the use of CatBoost
in obtaining the scores of feature importance. It first imports such
modules as pandas and numpy to manipulate the data, scikit-learn
to select the model and process missing values, CatBoostRegressor to
use in the Machine learning model, and matplotlib to visualize the
data. The dataset, contained in an excel file, is loaded at a desired file
location with the help of pandas and then the features and the target
variable are then separated. Training of CatBoostRegressor model
occurs using an imputed training data, pre-decided learning rate,
number of iterations, and depth. The scores of feature importance
are acquired with the help of the get_feature_importance method.
These scores are followed by normalization of scores to [0, 1]
interval to compare them directly with other models.

3.3.2 Light Gradient Boosting Machine (LightGBM)
LightGBM is an effective ML framework that possesses high

efficiency, scalability, and speed, especially on larger datasets (Zhang
et al., 2019). Unlike the other methods of gradient boosting which
formed trees in a level-wise manner, light GBM uses a leaf-wise
method to grow by having the computational resources focused on
the leaves that pose the greatest contribution to the reduction of the
loss. This of experimentation results in an efficient model with fewer
trees but a more powerful model that is inherently prone to over
extrapolation when used on a medium-sized dataset.
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A Python code of LightGBM was designed in the current
research to estimate feature importance scores. The script
imports the required libraries at the beginning of the code such
as the pandas library and numpy library, to manipulate the data, the
scikit-learn library, to select the model and deal with the missing
values, the LightGBM library, the machine learning model used, and
the matplotlib library to visualize the data. Pandas is used to load the
dataset, which is available in an Excel file in each file path. The
features and target variable are then separated. The LightGBM
Regressor model is then trained on the imputed training data
with a specified learning rate, number of estimators, and
maximum depth. The feature importance scores are retrieved
from the feature importances_ attribute. These scores are then
normalized to a [0, 1] scale to allow for direct comparison with
other models.

3.4 Machine learning models

After the top three GCM models were chosen based on feature
engineering, as indicated in Figure 6, three machine learning models
were trained on them to ensemble future climate data.

3.4.1 Adaptive boosting (AdaBoost)
AdaBoost is an ensemble learning algorithm designed to

improve the performance of weak learners, typically decision
stumps (one-level decision trees), by combining them into a
strong model (Wu and Zhao, 2010). The algorithm works

iteratively, training each weak learner on the dataset while
adjusting the weights of the data points. Initially, all data points
are given equal weights. However, after each iteration, misclassified
points are assigned higher weights, forcing subsequent learners to
focus on the harder-to-classify instances. Each learner is assigned a
performance-based weight, and the final model combines all weak
learners’ predictions using a weighted majority vote.

In this study, Python code was developed to implement the
AdaBoost model. Initially, the essential libraries include pandas for
data manipulation, scikit-learn for model development and
evaluation, and SciPy. Stats for hyperparameter tuning were
imported. The dataset was loaded from an Excel file, and the
input features were extracted from the top three GCM models,
while the target variable was the observed precipitation. The dataset
was then split into training and testing sets, with 30% of the data
reserved for testing. A DecisionTreeRegressor with a maximum
depth of 5 was chosen as the base learner for the AdaBoost model.
An AdaBoost regressor was built, and grid search was performed
through RandomizedSearchCV to find the best hyperparameters:
the number of estimators (n_estimator), the learning rate, and the
random state. The model was then trained after identifying optimal
settings and tested against the training and testing datasets. The
performance measures, i.e., R2, Mean Squared Error (MAE), and
Mean Absolute Error (MSE) were then used to estimate the model
precision and predictive capacity.

3.4.2 Extreme Gradient Boosting (XGBoost)
XGBoost is a recent and efficient gradient-boosting learning

framework specifically created to work on structured and tabular
data and to deal with regression and classification problems.
XGBoost has been designed to be effective in hydrological
modeling due to its ability to model nonlinear data, sparseness
and extreme data points (Chen and Guestrin, 2016; Mosavi et al.,
2018). These strengths allowed our study to surpass other ensemble
techniques, which is why it is especially beneficial in precipitation
modeling in arid and semi-arid conditions with limited and highly
variable data (Mosavi et al., 2018). The XGBoost algorithm is
generally recognized in terms of speed, accuracy and scalability,
thus, making a favorite choice in the competitive system of machine-
learning and even in large-scale practices. Some of its main
advantages are regularization algorithms like L1 and L2 that are
intended to address overfitting, management of missing values,
parallelization support, and memory-optimizing techniques.

The current study is based on the creation of the Python code to
apply to the XGBoost model. The essential libraries, “pandas”,
“scikit-learn” to evaluate models, and “xgboost”, to use a model,
and “scipy.stats” to tune parameters, were imported first. A data
acquired in excel form contained the input characteristics, which
refer to the best three Global Climate Models, as well as the observed
precipitation as the focus variable. This data was then divided into
training and testing data with 30% of it being the latter. A model was
built using XGBoost regressor and hyperparameters tuning was
performed using “RandomizedSearchCV” by optimizing
hyperparameters like number of estimators (“n_estimator”),
learning rate, maximum tree depth (“max_depth”), random state.
Once the best set of parameters was found, the model was trained
with the help of the training dataset and was evaluated with the help
of both training and testing sets. The most significant performance

FIGURE 6
Flowchart of machine learning models.
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measurements, i.e., R2, MAE, and MSE were used to assess the
accuracy and predictive ability of the model, hence, guaranteeing
optimal and reasonable estimation of observed precipitation data.

3.4.3 Categorical Boosting (CatBoost)
The current study assessed the performance of CatBoost, a high-

performance gradient-boosting framework designed by Yandex and
fine-tuned in terms of handling categorical variables. This algorithm
makes the workflows easier and reduces the risk of overfitting that
appears in the consequences of poor encoding. Additional features
are strong missing values treatment, extensive cross-validation, and
support of GPU acceleration, which makes CatBoost applicable to a
wide range of tasks, both in terms of small and large datasets. By
implementing optimization methods of superior quality, the
algorithm has displayed exceptional predictive precision, but at
the same time, controlled overfitting, returning trusted results in
the regression and classification tasks.

The experimental setting of the CatBoost in a Python-based
environment was performed by installing necessary libraries: pandas
to work with data, scikit-learn to divide the dataset and evaluate the
performance, CatBoost to create a model, and scipy. stats to optimize
hyperparameters. It included information on input features based on
the three leading climate models worldwide, the observed precipitation
as the target variable, using the dataset, which was obtained through an
Excel file. The data was split up, where 30% of the data was used in
testing. The key MLmodel was a “CatBoostRegressor” due to its ability
to work with categorical data even when there are no such data in the
analysis. Hyperparameter optimization was performed using the
“RandomizedSearchCV” routine and maximized the iterations,
learning rate, the depth of the trees, and the random seed. Once the
best parameterizationwas found the finalmodel was then trained on the
complete dataset.

3.5 Machine learning model
evaluation criteria

R2, MSE, and MAE were three statistical parameters used to
measure the performance of Machine learning models in the current
research. These metrics, in combination, are a valuable
representation of how accurate and precise the models are when
they make predictions (Ullah et al., 2023).

3.5.1 Mean squared error (MSE)
A commonly used derived metric to evaluate regression models’

performance is called mean squared error (MSE). It is the arithmetic
mean of squared residuals or the difference between predicted and
observed outcomes. The suitable formula of computation is
presented in Equation 1:

MSE � 1
n
∑n
i�1

yi − yi( )2 (1)

3.5.2 Mean absolute error (MAE)
MAE is the average variation between the observed values and

the predicted values in the dataset (Schneider et al., 2022). MAE can
be computed by Equation 2.

MAE � 1
n
∑n
i�1

yi − yi

∣∣∣∣ ∣∣∣∣ (2)

3.5.3 Coefficient of determination (R2)
R2 is a statistical measure that represents the proportion of the

variance in the dependent variable that is explained by the
independent variables in a regression model. It is calculated using
Equation 3.

R2 � ∑n
i�1 yi − �y( ) y1

i − y′( )( )2
∑n

i�1 yi − �y( )2∑i�1 y′
i − y′( )2 (3)

where:
yi = observed values,
y′ = predicted values,
�y = mean of observed values,
n = number of data points.
These statistical indicators are commonly utilized by researchers

to evaluate the model’s accuracy and determine its suitability for a
specific task or dataset.

3.6 Development of IDF curves

In hydrology, the trend of constructing IDF curves forms an
imperative product in the analysis of the interdependence of the
rainfall intensity, period, and recurrence interval. These curves act as
statistical identifications of rainfall patterns over different periods of
time, thus assisting the development of efficient drainage structures
and flood hazard management. The process begins by putting up
long-term records of rainfall at local weather stations, which is then
followed by calculating the rainfall intensities at sequential time
intervals ranging from a few minutes to hours. This set of data is
then strictly examined to ascertain the IDF relationship,
traditionally represented graphically in intensities of rainfall
against duration at a specific recurrence interval. The generation
of IDF curves is normally in form of a systematic three-step
approach that has been recalibrated with discrete time periods: 5,
10 min, and up to 1,440 min based on probability distribution
functions to correspond with the observed data so as to determine
rainfall intensities in terms of a given return period of 2, 10, 25, 50,
75 and 100 years. Being an inevitable tool in water-resource
development, IDF curves are used to design stormwater
management units and facilities.

Rainfall data collected are often fitted to a probability
distribution, usually the Gumbel distribution, to find rainfall
intensities of different return periods with widely different
separation. The statistical tests are used to determine the
accuracy and reliability of the derived IDF curve. Rapid changes
of rainfall regimes caused by climatic change can require IDF curve
recalibrations to adjust to changing patterns. IDF curves play an
important role in urban planning, flood management, and
infrastructure development, owing to their ability to provide
information related to the severity and the frequency of the
precipitation events, which directly affects the design of the
stormwater drainage systems, flood management and overall
water management efforts.
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3.6.1 Empirical reduction equation for short-
duration rainfall estimation

The empirical reduction equation is one of the broadly used
tools in hydrological studies to predict the intensity of rainfall in
shorter periods using long-term duration data. The Indian
Meteorological Department (IMD) has recommended one of the
simplest equations (Kawara and Elsebaie, 2022):

Pt � P24

				
t

1440

3
√

(4)

The corresponding Equation 4 gives the short-duration
intensity, Pt, after scaling a 24-h intensity, P24, by dividing the
certain time, t. It is particularly applicable in arid regions such as
Saudi Arabia where high resolution data is not available; however
short-duration estimations are required to construct IDF curves and
to assess the risk of floods within urban regions.

3.6.2 Probability distribution fitting
The frequency distribution method of fitting the Probability

Density Function (PDF) involves the application of an adequate
theoretical distribution to empirical data to determine the
probability of different results yielded by a random variable. The
process is widely used in hydrological analysis, especially in
parameters estimation of rainfall or streamflow in the sense that it
aims at determining distribution that best resembles the observed data.
Numerous theoretical distributions are in common usages in different
parts of the globe, some examples outlined here under are the Gumbel
Distribution, the Gumbel Distribution (Extreme Value Distribution 1),
the Normal Distribution, the Log-Normal Distribution, the Pearson
Distribution, and the Log Pearson 3 Distribution. Three of the most
used PDFs in appliance and practices in hydrology and statistics, and in
this case, attention given to modeling extreme events: Log-Pearson 3,
Gumbel Distribution (Extreme Value I) and Gamma Distribution. All
these distributions consist of their unique benefits based on the data
that is to be analyzed. The Log-Pearson 3 distribution has evolved to a
common standard in analysis with flood frequencies in that: it can
model adequately the skew common to many hydrological records
rainfall and streamflow, and it is particularly evident when the data has
a large right tail. As a result, the capacity of its skewness explains the
Log-Pearson 3 is invaluable in the modeling of hydrological extremes
that are not normal. The Gumbel Distribution (Extreme Value I) is
highly suitable towards analysis of the highest or the lowest value of a
dataset, e.g., the peak rain-fall events or largest stream-flow events and
as such a foundation of extreme value theory. Subsequently, it is
commonly utilized in the evaluation of flood risk and storm water
management mechanisms to calculate likelihood as well as estimated
recurrence instances of extreme precipitation events. The Gamma
distribution has a very flexible shape that makes it regularly used
on a continuous positive variable such as rainfall intensity and
streamflow. This property, which allows it to approximate both
light- and heavy-tailed distributions conveniently, qualifies it to be
used to model phenomena that occur in bursts, e.g., storms. The
distributions present a powerful analytical package to hydrologic
modelling, with which a researcher or an engineer can study and
predict extreme events about water resource management and design
of infrastructure systems, as well as the insights generated regarding
climatic-induced effects.

4 Log-Pearson 3 distribution

The Log-Pearson 3 distribution is a pivotal statistical parameter
in applied hydrology, especially in modelling data that is positively
skewed, which is revealed in the magnitudes of floods, rainfall
intensity, as well as streamflow records. Its usefulness is in
managing the situations in which the cumulative distribution
becomes extremely right skewed, which is also a common
behavior of extreme hydrological phenomena like floods.

The implementation of this distribution is covered by the results
of the transformation of the original data to the logarithmic axis,
resulting in an asymmetric normal distribution. This mapping
makes the model applicable even with the datasets that cannot be
appropriately modelled by the conventional normal distribution. In
combining consideration of the mean and the tails of the
distribution at the same time, the Log-Pearson 3 model can
represent a natural asymmetry in distributions of natural
phenomena like the amounts of rainfall and floods. This
allocation, therefore, is part of the management of flood risks,
not to mention the design and establishment of strong water
management systems.

4.1 Calculation methodology

The rainfall data is first converted to logarithmic values using
Equation 5.

Pricipitation � log10 Original Pricipitation( ) (5)

Then the annual precipitation is initially reduced using
Equation 6.

Pt � P24
t

1440
( ) 1

3 (6)

Where P24 is the 24-h precipitation, and t is the duration (in
minutes). Next, the mean, standard deviation, and skewness are
calculated. Then the cumulative probability P is determined using
Equation 7.

P � 1 − 1
T

(7)

where T is the return period (in years). Then the frequency factor Kt

is calculated using Equation 8.

Kt � Z + Skewness

6
Z2 − 1( ) (8)

where Z value is computed using the formula Equation 9:

Z � NORMSINV P( ) (9)

Finally, the precipitation for a given time (T) and duration (t) is
calculated using Equation 10.

Pt � μ +KtS (10)
where

μ = arithmetic mean of the rainfall records,
S = standard deviation,
Kt = frequency factor, calculated as described above.
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Finally, convert the precipitation estimate back to its original
scale using Equation 11

P � 10 Pt (11)

To facilitate the development of IDF calculations for
precipitation and rainfall intensity (I in mm/hr), the formula is
given by Equation 12.

I � Pt

t
(12)

where
I is the rainfall intensity in mm/h, Pt is the extreme rainfall value

for the given duration and t is the duration in hours.
This framework provides an effective method for

determining precipitation estimates for various durations and
return periods, forming the basis for hydrological design
and analysis.

5 Gumbel Distribution (extreme value I)

In hydrology, the Gumbel distribution serves as the Extreme
Value I distribution, and it has generally been used to describe the
record or record minimum of meteorological or hydrological
variables, such as extreme rain events, peak flood levels and high
wind velocity. The extreme value theory centers on this
distribution, and it is applicable to analyses of the largest or
smallest observations in a sample, called peak over-threshold
extremes. The Gumbel distribution assumes that the extreme
values (e.g., maximum annual rainfall or peak river discharge)
follow a specific pattern and can be modeled with two
parameters: the location parameter (which shifts the
distribution) and the scale parameter (which defines the
spread of the distribution). This makes it valuable for
predicting extreme events and estimating their return periods.

Stepwise Procedure for IDF Curve Construction Using the
Gumbel Distribution

1. Convert Annual Precipitation Data for Corresponding
Durations: Convert the annual precipitation data for the
corresponding durations using equation (VI) to transform
the precipitation data into the desired duration.

2. Compute Statistical Measures: Compute the mean (μ) and
standard deviation (S) of the transformed precipitation data for
each duration. These statistical measures help in understanding
the central tendency and the spread of the rainfall data.

3. Determine the Exceedance Probability (P): The exceedance
probability P for a return period T is calculated using the
following Equation 7.

4. Calculate the Frequency Factor (Kt) Using the Gumbel
Distribution: The frequency factor Kt is computed using the
Gumbel distribution formula. As given by Equation 13.

Kt � −ln −ln P[ ][ ]{ } (13)
where

P is the exceedance probability and Kt represents the scaling
factor for the rainfall intensity corresponding to the return period.

5. Compute Extreme Rainfall Values for Different Durations:
Using the calculated mean (μ), standard deviation (S), and
frequency factor (Kt), the extreme rainfall values for a
specific return period and duration are determined using
Equation 10.

6. Repeat for Different Return Periods: The steps above are
repeated for different return periods, such as 2 years,
10 years, 25 years, 50 years, 75 years, and 100 years, to
calculate the corresponding extreme rainfall values for
each duration.

7. Calculate Rainfall Intensity (I) for Each Duration: To facilitate
the development of IDF calculations for precipitation and
rainfall intensity (I in mm/hr), the formula is given by
Equation 12.

The current methodological framework outlines a process of
developing an intensity-duration-frequency (IDF) curve using the
Gumbel distribution, hence probabilistically providing information
related to the expected rainfall intensities associated with the defined
return periods and durations.

6 Gamma Distribution

Gamma distribution is a popular statistical model of
continuous positive data used in hydrology, engineering and
statistics, especially measurements of rainfall, streamflow and
quantities of precipitation. This distribution is well deemed in
capturing heavy-tailed property, i.e., burst behavior which
happens in a storm situation, and it is used around the world.
The distribution is parameterized in terms of a shape parameter k
and a scale parameter θ, providing the flexibility of the
distribution tail: the heaviness or lightness of the tails depends
on k, and the spread depends on θ. The Gamma distribution is
therefore a flexible model which can be used in a wide range of
applications such as hydrological modelling, survival analysis
and time-to-event data analysis. All the other formulas are the
same as for the Gumbel distribution, except for Kt. To calculate
the Kt frequency factor for a Gamma distribution, follow
these steps:

All the other formulas are the same as for the Gumbel
distribution, except for Kt. To calculate the Kt frequency factor
for a Gamma distribution Equation 14 can be used.

Kt � Xp − Mean

StandardDeviation
(14)

The next step is to use the inverse CDF of the Gamma
distribution to find the precipitation amount XP corresponding to
P. In Excel, it can use the GAMMA.INV function for this. As given
by Equation 15.

XP � GAMMA.INV P, k, θ( ) (15)
where

P is the non-exceedance probability,
k is the shape parameter of the Gamma distribution,
θ is the scale parameter of the Gamma distribution,
XP is the precipitation amount corresponding to P.
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This process computes the Kt frequency factor for the Gamma
distribution, which represents how the precipitation amount
deviates from the mean, scaled by the standard deviation.

7 Results and discussion

7.1 Evaluation of feature engineering

Feature importance scores were calculated using CatBoost and
LightGBM. These scores are invaluable for identifying the most

influential features in a dataset, aiding in feature selection, model
interpretability, and optimization.

7.1.1 Selection of GCM via of CatBoost
The feature importance was calculated using CatBoost

conducted of various GCM models. For Makkah, the normalized
CatBoost feature importance scores were as follows: MPI-ESM1-2-
LR (0.2542), CNRM-CM6-1 (0.2382), EC-Earth3-CC (Europe)
(0.2004), GFDL-ESM4 (0.1970) and UKESM1-0-LL (0.1102). For
Riyadh, the normalized CatBoost feature importance scores
were EC-Earth3-CC (Europe) (0.2489), GFDL-ESM4 (0.2199),

FIGURE 7
Presents a Radar Chart and a Polar Bar Chart, highlighting the importance of each GCM model for Makka.
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FIGURE 8
Presents a Radar Chart and a Polar Bar Chart, highlighting the importance of each GCM model for Riyadh.

TABLE 2 Training and testing results of the machine learning models.

Model Location Training Testing

R2 MSE MAE R2 MSE MAE

AdaBoost Makkah 0.85 295.63 11.85 0.80 406.11 14.7

Riyadh 0.93 36.05 4.83 0.92 45.09 5.15

CatBoost Makkah 0.66 647.13 19.95 0.61 762.26 22.9

Riyadh 0.84 92.51 7.61 0.82 115.31 9.16

XGBoost Makkah 0.87 252.7 10.33 0.85 286.82 12.4

Riyadh 0.95 31.27 4.16 0.93 39.57 4.21
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MPI-ESM1-2-LR (0.2124), UKESM1-0-LL (0.1597), andCNRM-CM6-1
(0.1590). then the top 3 GCM models for each station is taken as
input variables. These scores provide insight into the relative
significance of each model in contributing to the overall
prediction for each location.

7.1.2 Selection of GCM via LightGBM
Similarly, feature importance scores were calculated using

LightGBM for Riyadh and Makkah. For Makkah, the normalized
LightGBM feature importance scores were: MPI-ESM1-2-LR
(0.4400), CNRM-CM6-1 (0.3140), GFDL-ESM4 (0.2260), EC-
Earth3-CC (Europe) (0.0120), and UKESM1-0-LL (0.0080). For

Riyadh, the normalized LightGBM feature importance scores
were: UKESM1-0-LL (0.6040), GFDL-ESM4 (0.1620), EC-
Earth3-CC (Europe) (0.0980), MPI-ESM1-2-LR (0.0960), and
CNRM-CM6-1 (0.0400). The performance assessment of
GCM-guided predictive framework shows the unequal
evidential capacity of the constituent members of the
LightGBM ensembles to both Makkah and Riyadh. The
Feature importance metric was referred to isolate the models
with the greatest contribution in each city. Based on this criterion
we selected models which showed in both LightGBM and
CatBoost computation: MPI-ESM1-2-LR, CNRM-CM6-1 and
GFDL-ESM4 belong in the high tier of Makkah ranking, and

FIGURE 9
Probability distribution functions of observed precipitation for
Makkah, illustrating the (a) Gamma, (b) Gumbel, and (c) Log Pearson
3 distributions.

FIGURE 10
Probability distribution functions of observed precipitation for
Riyadh, illustrating the (a) Gamma, (b) Gumbel, and (c) Log Pearson
3 distributions.
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GFDL-ESM4, EC-Earth3-CC (Europe) and UKESM1-0-LL in the
top of Riyadh.

Two complementary charts, the radial bar charts and radar, were
used to visualise the relative importance of the models used. As
shown in Figures 7, 8, the most significant impact on rainfall
patterns of Makkah is imposed by the MPI-ESM1-2-LR model,
but in Riyadh the GFDL-ESM4model performs a similar role. Radar
graphs also show the multidimensional contribution of each model
to different predictive variables. These observations can and do align
with the results of single-model analyses, which highlight that the
explanatory power of a model is situation-specific and may differ
quite considerably across geographical location. These findings
explain why it is important to take into account spatial variability

as a method of determining the model performance and identifying
the most appropriate models to use in the evaluation of the effects of
regional climate.

7.2 Analyzing the effectiveness of the
machine learning model

In this study, we used the Multivariate-Moving-Ensemble (MME)
framework that utilized three s of statistical learning algorithms, namely,
AdaBoost, XGBoost, and CatBoost, to identify the spatially distributed
precipitation. The target data were results of precipitation
measurements in the global gridded precipitation dataset GPCC
version 7.0, whereas the predictors, precipitation forecasts of the top

FIGURE 11
Probability distribution functions of future precipitation under
the SSP245 scenario for Makkah, depicting the following distributions:
(a) Gamma, (b) Gumbel, and (c) Log Pearson 3.

FIGURE 12
Probability distribution functions of precipitation under the
SSP585 scenario for Makkah, showing the following distributions: (a)
Gamma, (b) Gumbel, and (c) Log Pearson 3.
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three GCMs of each MME ensemble, were utilized. Data was divided
into the training-test stratum of 70:30, which also allows a strict analysis
of accuracy and the generalization performance of a model. In every
station, out-of-sample validation was conducted by comparing the
calculated precipitation to the model prediction and the results were
measured in terms of root-mean-squared error (RMSE), the mean
absolute error (MAE) and coefficient of determination (R2), all of which
are reported in Table 2. In both stations, XGBoost ensemble provided
better predictions during the training and test periods, which illustrates
its overall better performance among all the ensemble members.

Trial 2 added more precipitation forecasts of the best three
GCMs which were not used to train the ensembles, and in that
way produced forecasts of 5 members of the GCMs. These

extended forecasts once again confirmed the strength of
XGBoost, which again gave the most successful forecasts, and
decisively proved its usefulness in this MME framework in
precipitation forecasting.

7.2.1 Evaluation of AdaBoost model performance
A stringent evaluation was adopted to question the capacity

of the AdaBoost model in predicting precipitation patterns. The
evaluation parameters used in training and testing are
performance statistics: R2, MAE, and MSE. In the case of
Makkah, the model achieved training R2 of 0.85 and testing
R2 of 0.80, MSE values of 295.63 and 406.11, and MAE values of
11.85 and 14.70, respectively, with the best hyperparameter
combinations as learning rate of 0.0332, the number of

FIGURE 13
Probability distribution functions of precipitation under the
SSP245 scenario for Makkah, illustrating the following distributions: (a)
Gamma, (b) Gumbel, and (c) Log Pearson 3.

FIGURE 14
Probability distribution functions of precipitation under the
SSP585 scenario for Makkah, depicting the following distributions: (a)
Gamma, (b) Gumbel, and (c) Log Pearson 3.
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estimators as 66 and random state as 24. The model showed
outstanding predictive power in Riyadh with training and
testing R2 of 0.93 and 0.92, MSE of 36.05 and 45.09, and
MAE of 4.83 and 5.15 with hyperparameters `learning rate =
0.5444`, n_estimator = 75 and random state = 73. Even though
AdaBoost had good results in both cities, an alternative model
was more successful with the provided dataset, which makes
AdaBoost an ineffective, less appropriate model. These results,
however, demonstrate that the model has a strong
predictive power.

7.2.2 Evaluation of CatBoost performance
The CatBoost model has been empirically tested in terms of

its usefulness to predict the pattern of precipitation, such that its
performance is estimated by the metric criteria R2, MAE and
MSE, both in training and testing. The model in Riyadh had a
great predictive ability with a training R square of 0.84 and a
testing R square of 0.82, with MSEs of 92.51 and 115.31 and
MAEs of 7.61 and 9.16. The best hyperparameters that were used
to generate these results were “depth: 6, iterations: 17, learning
rate: 0.1457, and random seed: 54”. In comparison, in the case of

FIGURE 15
IDF curves for Makkah based on the Gamma distribution,
illustrating (a) observed data, (b) SSP245 scenario, and (c)
SSP585 scenario.

FIGURE 16
IDF curve for Riyadh using the Gamma distribution, illustrating
the following scenarios: (a) observed data, (b) SSP245, and (c) SSP585.
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Makkah, the model worked average with training R2 = 0.66 and
testing R2 = 0.61, then MSE = 647.13 and 762.26, as well as MAE =
19.95 and 22.90. The best hyperparameters of the Makkah were
“depth: 8”, “iterations: 162”, “learning rate: 0.0201” and “random
seed: 95”. Where CatBoost demonstrated a strong performance in
Riyadh, its comparatively weaker performance in Makkah
suggests that perhaps models made with regional data-
specificities should be used, since model performance appears
to be region-dependent.

7.2.3 Evaluation of XGBoost performance
After developing and thoroughly testing, the XGBoost model

has been utilized to predict the patterns of precipitation in Makkah
and Riyadh, Saudi Arabia. R2, MSE and MAE were determined in
terms of the models-performance because of training and testing.
The XGBoost model showed high levels of accuracy in Makkah
because its R2 was 0.87 in training and 0.85 in testing; MSE was
252.70 and 286.82 in training and testing, respectively; andMAEwas
10.33 and 12.40 in testing and training, respectively. The best

FIGURE 17
IDF curve for Makkah using the Gumbel distribution, depicting
the following scenarios: (a) observed data, (b) SSP245, and (c) SSP585.

FIGURE 18
IDF curve for Riyadh using the Gumbel distribution, illustrating
the following scenarios: (a) observed data, (b) SSP245, and (c) SSP585.
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hyperparameters adopted in Makkah were learning rate = 0.0165,
max_depth = 18, n_estimator = 110 and random state = 6. In the
case of Riyadh, the model produced equally satisfactory results and
had R2 of 0.95 in training and 0.93 in testing, and MSE of 31.27 and
39.57, and MAE of 4.16 and 4.21. Then the respective
hyperparameters are: learning rate = 0.0257, max_depth = 16, n_
estimator = 87, and random state = 67.

In both regions, the XGBoost model yielded a better result than its
previous versions and other datasets, AdaBoost, and CatBoost, indicating
fewer prediction errors, with minimal MSE and MAE values and

maximum R2 values. These datasets, alongside the literature about the
XGBoost performance, could be viewed as a sign of the fact that this
model provides trustworthy and stable predictions about rainfall.

XGBoost outperformed the other models, achieving the
highest accuracy in both Makkah (R2 = 0.85, MAE = 12.40,
MSE = 286.82) and Riyadh (R2 = 0.93, MAE = 4.21, MSE =
39.57). Its superior performance stems from advanced
regularization, shrinkage, and tree-pruning strategies, which
reduce overfitting and capture nonlinear rainfall patterns more
effectively. In comparison, AdaBoost, though strong in Riyadh

FIGURE 19
IDF curve for Makkah using the Log Pearson 3 distribution,
showing the following scenarios: (a) observed data, (b) SSP245, and
(c) SSP585.

FIGURE 20
IDF curve for Riyadh using the Log Pearson 3 distribution,
depicting the following scenarios: (a) observed data, (b) SSP245, and
(c) SSP585.
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(R2 = 0.92, MAE = 5.15, MSE = 45.09), was weaker in Makkah
(R2 = 0.80, MAE = 14.70, MSE = 406.11), reflecting its sensitivity
to outliers. CatBoost showed mixed results, performing
moderately in Riyadh (R2 = 0.82, MAE = 9.16), MSE =
115.31 but poorly in Makkah (R2 = 0.61, MAE = 22.90, MSE =
762.26). These results confirm the effectiveness and validity of
the XGBoost to forecast precipitation in arid Saudi Arabia.

7.3 Probability density functions fitting

This evaluated precipitation data using the probability
distribution: Log-Pearson 3, Gumbel and Gamma which are
commonly used in hydrology time series and rare events. The
model fittings are shown in Figures 9–14 and indicate that the
distributions can capture observed trends and variance of
precipitation. Kolmogorov-Smirnov (KS), Anderson-Darling
(AD) and Chi-Squared (χ2) tests were used to evaluate the
goodness-of-fit of observed and projected precipitation of
Riyadh and Makkah. To obtain the most suitable
approximation to observed precipitation, Gamma fitted Riyadh
(KS = 0.084999, AD = 0.44249, χ2 = 4.8925) and Makkah, where
Log-Pearson 3 is the least suitable. In the case of projected
precipitation under SSP245, Gamma most closely represented
Makkah (KS = 0.06334, AD = 0.53223, χ2 = 8.3171), closely
followed by Gumbel, then Log-Pearson 3 (KS = 0.01819, AD =
0.73554, χ2 = 4.3681). In SSP585, Makkah (KS = 0.09657, AD =
0.84556, χ2 = 5.8115) and Riyadh (KS = 0.17019, AD = 2.51356,
χ2 = 6.0739) were best fitted by Log-Pearson 3 and then Gumbel
and Gamma, respectively.

In general, the above analysis indicates that Gamma is best
suited to observed data in Makkah under SSP245 and that Log-
Pearson 3 gives the best fit in Riyadh and Makkah under SSP585.
The results can be used to highlight the importance of the selection
of probability distributions in the hydrologic modeling of
precipitation extremes.

7.4 Intensity duration frequency curve
generation

The IDF curve developed through the selected approach
illustrates the relationship between rainfall duration (measured in
minutes), intensity (in mm/hr.), and return period (in years). Three
different methods have been recommended for calculating rainfall
intensity across varying return periods. Figures 15–20 visually
represent the correlation between rainfall intensity and duration
by integrating these three methods. The correlation between rainfall
intensity and duration of storms reveals that short storms yield very
high intensities, which drop with extended duration of the storm. It
relates how the intensity of rainfall varies with the length of the
storms in relation to various return periods. It demonstrates that the
intensity of rainfall reduces with time, but over any period of time,
the shorter the period, the greater the intensity of the rainfall. This
correlation shows the intensity of short and intense storms in
comparison with the long and low intensity ones. A notable shift
in the return period is evident when the rainfall intensity decreases
gradually as the duration extends from 1 to 4 h. The Intensity-

Duration Curve demonstrates that the Gumbel method produces the
highest intensity values for longer return periods among the
three methods.

In both Riyadh and Makkah, it was found that the rainfall
intensity under the SSP 585 and SSP 245 scenarios is higher than
that of the observed historical rainfall. The intensity follows this
order: SSP 585 > SSP 245 > observed rainfall. These findings
demonstrate that higher emission scenarios, particularly SSP5-
8.5, lead to significant increases in rainfall intensity compared to
historical observations and lower emission scenarios such as
SSP2-4.5. This evidence obtained demonstrates the importance
of incorporating future emission trajectories in climate resilient
engineering practice.

8 Conclusions

The current research provides an in-depth analysis of rainfall
volatility and future climate scenarios of Makkah and Riyadh using
observational records, global climate models (GCMs) and fine
Machine learning (ML) methods. In the arid region where
Arabian Peninsula is located, precipitation is known to be a vital
determining factor to the management of water resources and the
development of urban plans. In this regard, the data on annual
precipitation recorded between 1950 and 2020 were considered to
create individual intensity period-frequency (IDF) curves in each of
the cities to describe the existing rainfall pattern and trends. To
achieve this goal, five GCMs were, initially, downscaled and bias-
corrected through linear scaling strategies. An additional step of
feature engineering using the CatBoost and LightGBM allowed
determining the GCMs that best approximated the observed
precipitation. Three of the GCMs were better, and the MME
prediction was calculated on these GCMs, using the XGBoost
algorithm to produce highly reliable precipitation predictions.
Those three statistical distributions, namely, Gumbel, Log-
Pearson 3, and Gamma, were subsequently used to estimate IDF
curves of observed precipitation and that of future precipitation
projections within the CMIP6 ensemble based on two Shared
Socioeconomic Pathways (SSP245 and SSP585), thus making up
a comprehensive evaluation of precipitation variability and the
future climate trend at the whole of Makkah and Riyadh. It was
observed during the analysis that Gamma mostly fits best observed
data andMakkah under SSP245 and Log-Pearson 3 is always reliable
to fit Riyadh and Makkah under SSP585. Future precipitation
scenarios under SSP245 and SSP585 indicated an increase in
rainfall intensity, with SSP585 showing the highest intensities.
These findings align with existing studies, which confirm that
higher emission scenarios, such as SSP585, lead to significant
increases in rainfall intensity. The research also explored how
emission pathways influence IDF curves. Analysis revealed that
as return periods increase, storm durations also increase, while
rainfall intensity decreases. Among the statistical methods, the
Gumbel distribution produced the highest intensity values for
longer return periods. The study formulates a stringent model of
predicting future rainfall climates in both Makkah and Riyadh in
different climatic conditions. The combination of statistical learning
algorithms with ensemble precipitation model-can be applied to
other arid and semi-arid areas around the world. For instance, the
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framework can be adapted to areas in North Africa, the Middle East,
and parts of Central Asia, where limited observational data and
extreme rainfall events pose similar challenges. As the study
combines general circulation model output with applications of
Machine learning methods, it confirms the reliability of future
climate predictions and provides practical answers to the
planning, governance of water resources, and development of
infrastructures in coherent cities. The methodology is imperative
in enhancing climate resilient and the need to maintain equitable
water management in the face of continued climatic change. The
results have significant policy implications, especially in the design
of infrastructures and water management. The greater prediction of
precipitation can be applied to promote resilient storm water
drainage systems, improve flood protection standards and train
on sustainable water resources approaches in arid and semi-arid
areas. The outcomes of the strength models and the bias correction
processes also include useful empirical information, which could be
utilized in other regions sharing the same climatic characteristics.
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