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Introduction: Accurate identification of forest tree species is essential for
sustainable forest management, biodiversity assessment, and environmental
monitoring. Urban forests, in particular, present spectral heterogeneity that
challenges conventional classification methods. This study focuses on
developing an efficient classification framework for species-level tree
mapping in the Hauz Khas Urban Forest, New Delhi, India, using EO-1
Hyperion hyperspectral imagery.
Methods: Thirteen supervised classification algorithms were comparatively
evaluated, encompassing traditional spectral/statistical classifiers—Maximum
Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral
Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary
Encoding—and machine learning algorithms including Decision Tree (DT), K-
Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF),
and Artificial Neural Network (ANN). Dimensionality-reduction techniques
(Principal Component Analysis—PCA and Minimum Noise Fraction—MNF)
and band-selection strategies based on the Average Pairwise Absolute
Difference (APAD) metric and species-specific band-ratio indices were
implemented to mitigate spectral redundancy. Ground-truth samples were
collected from extensive field surveys and validated using very high-
resolution Pléiades imagery.
Results: A total of 21 tree species were identified. Among all classifiers, Random
Forest and Decision Tree exhibited superior performance, with Random Forest
achieving the highest species-level accuracy (95% for Peepal and Medlar) and
overall accuracy of 82.56% (Kappa = 0.81) when applied to PCA-transformed data.
Discussion: The results highlight that integrating dimensionality reduction and
optimal band selection with ensemble learning substantially improves
classification efficiency and accuracy. The study identifies the most effective
fast-learning classifiers for hyperspectral urban forest mapping and underscores
the potential of hyperspectral imaging and ensemble methods for scalable and
operational tree species monitoring.
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1 Introduction

Forests are among Earth’s most vital ecosystems, playing a
crucial role in climate regulation, biodiversity conservation, and
supporting human livelihoods (FAO, 2022). Accurate and spatially
explicit information on individual tree species is essential for
sustainable forest management, biodiversity assessment, green
GDP estimation, carbon-stock evaluation, and ecosystem-service
analysis. However, traditional field-based identification methods,
though reliable, are often time-consuming, labor-intensive, and
impractical for large or inaccessible areas. Consequently, the
integration of advanced geospatial technologies—particularly
remote sensing—has emerged as a robust and scalable alternative,
enabling the development of high-resolution forest cover databases
for improved monitoring, carbon accounting, and sustainable
management.

Over the past 2 decades, hyperspectral remote sensing has
emerged as a powerful tool for capturing reflectance data across
hundreds of narrow spectral bands, enabling detailed discrimination
among plant species based on their unique spectral signatures
(Landgrebe, 2002). Compared with multispectral sensors,
hyperspectral systems provide enhanced spectral resolution,
allowing finer differentiation of vegetation types with overlapping
structural or phenological characteristics. Unmanned aerial vehicles
(UAVs), airborne sensors, and spaceborne hyperspectral platforms
now acquire data at bandwidths of 0.1–10 nm and spatial resolutions
ranging from centimeters to meters. These advances represent a
major milestone in vegetation mapping, offering unprecedented
capabilities for tree-species discrimination.

Despite hyperspectral imagery provides rich spectral
information, it often requires rigorous preprocessing and
dimensionality reduction to mitigate issues of high
dimensionality, redundancy, and spectral noise (Kumar et al.,
2020; Green et al., 2009). Machine learning algorithms have
demonstrated strong potential for extracting meaningful
patterns from hyperspectral data (Camps-Valls and Bruzzone,
2005). Classical classifiers such as Decision Tree (DT) (Quinlan,
1986; Breiman et al., 1984), K-Nearest Neighbor (KNN) (Cover
and Hart, 1967; Li et al., 2022), Support Vector Machine (SVM)
(Vapnik, 1995; Melgani and Bruzzone, 2004), Random Forest (RF)
(Breiman, 2001; Ma et al., 2021), and Artificial Neural Network
(ANN) (Rumelhart et al., 1986; Zhang et al., 2021) have been
widely adopted for land-cover mapping, agricultural monitoring,
and forest composition analysis (Bruzzone et al., 2003; Ballanti
et al., 2016; Guan et al., 2020). Traditional statistical and spectral
classifiers—such as Maximum Likelihood, Mahalanobis Distance,
Minimum Distance, Parallelepiped, Spectral Angle Mapper
(SAM), Spectral Information Divergence (SID), and Binary
Encoding—remain relevant due to their interpretability,
computational efficiency, and proven robustness for high-
dimensional data. Despite extensive algorithmic development,
comprehensive comparative evaluations across diverse classifiers
remain limited, especially in spectrally heterogeneous forest
environments. Moreover, few studies have systematically
examined classifier performance across dimensionality-reduced
datasets derived from Principal Component Analysis (PCA) or
Minimum Noise Fraction (MNF) transformations (Cetin and
Yastikli, 2022; Lee and Plaza, 2012).

Recent literature highlights the increasing use of machine
learning in remote sensing, where supervised algorithms have
been applied to both urban and natural forests using
hyperspectral and LiDAR datasets. These approaches have been
employed to quantify forest structural variables and vegetation
indices, linking them to above-ground biomass (AGB) and
species richness. For example, Melgani and Bruzzone (2004)
demonstrated the effectiveness of SVM for hyperspectral image
classification, while Ballanti et al. (2016) and Guan et al. (2020)
reported high accuracies for SVM and RF in tree-species mapping.
Recent advances further underscore the growing role of deep
learning, particularly convolutional neural networks (CNNs),
which outperform traditional classifiers by jointly exploiting
spatial–spectral features.

Wang et al. (2021) and Xia et al. (2020) demonstrated the
advantages of CNNs in hyperspectral vegetation mapping,
findings later extended through hybrid CNN–Transformer
networks (Chen et al., 2023; Sun et al., 2024) and deformable
convolution models designed for limited training samples (Li
et al., 2023). Likewise, Tong and Zhang, (2024) illustrated the
feasibility of tree-species mapping in heterogeneous forests using
fewer training samples. In parallel, Random Forest-based feature-
selection techniques (Wang et al., 2019) and information-theoretic
band-selection approaches (Sun et al., 2019; Fu et al., 2022) continue
to enhance spectral separability and reduce data dimensionality.
Despite these advances, the performance of deep-learning models is
constrained by their need for large labeled datasets and substantial
computational resources—conditions not always feasible for sensors
such as EO-1 Hyperion, which are characterized by limited spatial
resolution and mixed-pixel effects. Accordingly, the present study
focuses on fast-learning classifiers that achieve a balance between
accuracy and efficiency, while recognizing that future research may
integrate deep-learning architectures as data availability and
computing power increase.

In this study, the analysis is restricted to fast-learning
supervised classifiers because of their computational efficiency,
interpretability, and operational suitability for EO-1 Hyperion
data. Although deep-learning models represent a promising
frontier, they generally require extensive labeled datasets and
specialized computational infrastructure, which fall beyond the
current study’s scope. Nonetheless, their potential is
acknowledged, and deep-learning integration is identified as an
important direction for future research.

The thirteen supervised classifiers examined in this research are
categorized as fast-learning classification algorithms—computationally
efficient models requiring modest training time and limited labeled
data while maintaining reliable performance on high-dimensional
hyperspectral datasets. Unlike contemporary deep-learning methods
such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs), three-dimensional CNNs, and Transformer-based
models—which often attain superior accuracy but rely on large
annotated datasets and intensive computation (Xia et al., 2020;
Zhang et al., 2024)—fast-learning algorithms remain well suited for
operational remote sensing applications, particularly when employing
legacy sensors such as EO-1 Hyperion. Their strengths lie in
interpretability, robustness with small training sets, and suitability
for rapid, scalable environmental monitoring. The core contribution
of this study therefore lies not in proposing new classifiers but in
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systematically evaluating the performance of a broad range of fast-
learning algorithms across multiple dimensionality-reduction
strategies (APAD, PCA, MNF) for species-level classification in
spectrally complex urban forests. Nevertheless, recent advances
using transformer-based and hybrid CNN architectures—such as
HyperSFormer (Xie et al., 2023), multi-scale spatial–spectral
transformers (Ma et al., 2024), and dual-stream 3D CNNs with
band selection (Zhang et al., 2024)—demonstrate the potential for
future benchmarking of such models against classical approaches
under improved data and computing conditions.

2 Study area

The study was conducted in the Hauz Khas Forest, a prominent
urban woodland situated in southern part of New Delhi, India
(28°33′18″N, 77°11′31″E) shown in Figure 1. Spanning
approximately 400 acres, this forest is embedded within a densely
urbanized matrix and serves as a vital ecological refuge amid the
city’s rapidly expanding metropolitan landscape. It represents one of
the largest and most ecologically significant green spaces in the
capital city and supports a diverse array of native and exotic flora
and fauna. The area was selected owing to its biodiversity, historical
relevance, and structural heterogeneity, making it an ideal test site
for high-resolution hyperspectral analysis and species-level
classification. Hauz Khas forest exhibits a complex mosaic of
native and exotic tree species, ranging from tall emergent
canopies to understory shrubs, influenced by varied
microclimatic conditions, soil types, and moisture regimes.

Field surveys identified over 30 tree species, of which
21 representative species were selected for classification based on
canopy structure, spectral distinctiveness, and the availability of
reliable ground-truth data. Notable species include Ipil-Ipil
(Leucaena leucocephala), Neem (Azadirachta indica), Blackboard
Tree (Alstonia scholaris), Karanj (Pongamia pinnata), Fig (Ficus
racemosa), Peepal (Ficus religiosa), Medlar (Mimusops elengi),
Jaggery Palm (Caryota urens), Indian Banyan (Ficus
benghalensis), Northern Cottonwood (Populus deltoides), Ashok
(Polyalthia longifolia), Australian Silky Oak (Grevillea robusta),
Eucalyptus (Eucalyptus globulus), Buddha Coconut (Pandanus
odorifer), Putranjiva (Putranjiva roxburghii), Golden Shower Tree
(Cassia fistula), Cassie (Vachellia farnesiana), Christ’s Thorn
(Ziziphus spina-christi), Multiya, Orchid Tree (Bauhinia
variegata), and Tree of Heaven (Ailanthus altissima).

3 Materials

The primary dataset comprised hyperspectral imagery acquired
by the EO-1 Hyperion sensor (NASA, 2010), a push-broom
instrument providing 242 contiguous spectral bands spanning
400–2,500 nm, with a nominal spectral resolution of ≈10 nm and
a spatial resolution of 30 m. Complementary very-high-resolution
(VHR) satellite imagery from the Airbus Pleiades Neo constellation
(30 cm spatial resolution) was employed for accurate visual
interpretation of individual tree crowns. The EO-1 Hyperion
Level-1R hyperspectral data are publicly accessible via the USGS
EarthExplorer portal (https://earthexplorer.usgs.gov/). In contrast,

the VHR Pleiades data were used under research license and are not
publicly distributable.

A comprehensive field campaign was conducted using Garmin
handheld GPS receivers to collect 400 geo-referenced tree-species
samples for classifier training and validation. Species identification
was verified through the PlantNet mobile application (PlantNet,
2023), which analyzed plant imagery and provided morphological
matches. In addition to EO-1Hyperion data, 30 cm Pleiades imagery
supported validation of tree-species distribution. To address spatial-
resolution disparities between datasets, 30 cm Pléiades imagery was
not resampled to the 30 m Hyperion grid but was instead used for
reference mapping and delineation of dominant tree crowns within
each pixel. Similar approaches have demonstrated the utility of
hyperspectral data for species discrimination in complex forest
environments (Priedītis et al., 2015). Ground-truth samples were
cross-validated with Pléiades imagery to ensure that training and
validation pixels corresponded to pure or dominant tree species,
thereby minimizing mixed-pixel effects. The integration of EO-1
Hyperion hyperspectral imagery, very high-resolution Pléiades data,
and extensive field observations provided a strong foundation for
assessing spectral separability and species-level classification
performance within a heterogeneous urban forest environment.
This integrated approach, in line with earlier studies (Tong and
Zhang, (2024)), underscores the robustness and credibility of the
methodological framework.

4 Methodology

The methodological framework for tree species classification
using hyperspectral data is illustrated in Figure 2. It outlines a
systematic workflow adopted in this study, comprising data
preprocessing, dataset preparation, dimensionality reduction and
spectral band selection, supervised classification and accuracy
assessment, and evaluation of methodological limitations. Each
step was designed to ensure radiometric consistency, minimize

FIGURE 1
Study area and location map.

Frontiers in Environmental Science frontiersin.org03

Balabathina et al. 10.3389/fenvs.2025.1668746

https://earthexplorer.usgs.gov/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1668746


noise, and enhance spectral separability for reliable species-level
discrimination. The workflow also addresses key challenges
associated with the high dimensionality and spectral redundancy
of EO-1 Hyperion imagery, ensuring robust and reproducible
classification outcomes. The following subsections describe these
stages in detail.

4.1 Preprocessing

Effective preprocessing of hyperspectral imagery is a critical and
time-intensive step to ensure high data quality, analytical accuracy,
and suitability for advanced analyses. In this study, EO-1 Hyperion
imagery obtained from the USGS EarthExplorer portal was used. The
sensor provides 242 contiguous spectral bands covering the
400–2,500 nm range, with a spectral resolution of approximately
10 nm and a spatial resolution of 30 m (NASA, 2010). EO-1
Hyperion imagery underwent comprehensive preprocessing,
including spectral, spatial, radiometric, atmospheric, terrain, and
geometric corrections, to ensure accurate reflectance values and
spatial consistency. The initial preprocessing step involved
identifying and removing non-informative or corrupted spectral
bands. Specifically, 75 bands were excluded due to issues such as
zero-value data (e.g., bands 1–7, 58–76, and 225–242) and
atmospheric absorption artifacts, particularly those caused by
water vapor interference (e.g., bands 120–131, 166–182, and
223–224). This resulted in a refined dataset consisting of
167 effective spectral bands, following the preprocessing strategies
adopted by Priedītis et al. (2015) and Sun et al. (2019). Subsequently,
vertical striping noise commonly present in Hyperion data due to
calibration inconsistencies and the imaging mechanism of push-

broom sensors was addressed through local Destriping techniques.
These systematic vertical striping artifacts, or bad columns, were
corrected using Destriping methods incorporating statistical
equalization and filtering, wherein the affected pixel values were
replaced with neighborhood-based averages to improve image
uniformity. Following this, radiometric calibration was conducted
to convert digital number (DN) values into radiance units, facilitating
the quantification of reflected or emitted energy. The calibrated data
were then subjected to atmospheric correction using the Fast Line-of-
sight Atmospheric Analysis of Hypercubes (FLAASH) module
within the ENVI software environment (Harris Geospatial
Solutions, 2015). FLAASH corrects for atmospheric absorption
and scattering effects, generating surface reflectance data with
smoother spectral profiles compared to alternative methods such
as QUAC and ACORN. In this study, the retrieval of water vapor and
aerosol information was disabled to streamline the processing
workflow. Following atmospheric correction, spatial subsetting
was performed to isolate the Hauz Khas region as the area of
interest. The resulting spectrally and spatially refined reflectance
dataset provides a reliable foundation for further classification and
interpretation tasks. To assess the impact of input dimensionality on
classification accuracy, four distinct datasets were generated from
EO-1 Hyperion hyperspectral imagery.

4.2 Dataset preparation

Four datasets were prepared to evaluate the influence of spectral
dimensionality and feature selection on classification performance.
The first dataset, termed the Full-Band dataset, comprised
167 spectral bands retained after removing noisy, overlapping

FIGURE 2
Workflow for hyperspectral tree species classification using EO-1 hyperion data.
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and atmospheric absorption bands from the original 242 bands of
the EO-1 Hyperion sensor. The second dataset, designated as the
Spectrally Separable Subset, was derived using a hybrid feature-
selection strategy based on spectral contrast and feature importance.
The Average Pairwise Absolute Difference (APAD) metric was
employed to quantify inter-species spectral separability and
identify the most discriminative hyperspectral bands from the
EO-1 Hyperion imagery. For each spectral band, mean
reflectance values of the 21 species were used to compute all
pairwise absolute differences, which were then averaged across all
210 class pairs to yield a single APAD score per band (Figure 3).
Bands were ranked in descending order of APAD values, and the top
30 bands were selected as the most discriminative features. This
non-parametric method does not rely on intra-class variance or
covariance estimation and is therefore well suited to high-
dimensional hyperspectral data with limited homogeneous pixels.
Under such conditions, APAD provides a pragmatic, robust
separability metric for coarse-resolution hyperspectral data.

In contrast, variance-dependent measures such as the
Bhattacharyya or Jeffries–Matusita distance require reliable intra-
class statistics, which are often unavailable for natural forest datasets
with small sample sizes and overlapping spectra (Zhang et al., 2007).
The APAD approach was implemented in Python using a custom
script that computed class-wise mean spectra, all pairwise absolute
differences, and averaged them to derive APAD scores per band.

The top 30 bands selected (13, 26, 25, 24, 23, 32, 31, 30, 27, 46,
47, 45, 41, 92, 93, 95, 94, 96, 113, 112, 124, 123, 118, 122, 114, 120,
108, 137, 149, 105, 134) exhibited the highest inter-class separability.
The APAD for band i was computed as

APADi � 1
C

∑
k−1

A�1
∑
k

B�A+1
μA,i − μB,i
∣∣∣∣

∣∣∣∣

where:
C = ( K

2 ) = k(k−1)/2 is number of unique species pairs
k = 21 is the number of tree species,
n = 167 is the number of bands
μA,i and μB,i are the mean reflectances of species A and B

in band i.
The third and fourth datasets were produced through

dimensionality-reduction techniques applied to the Full-
Band dataset. Principal Component Analysis (PCA) extracted
the first four principal components capturing the majority of
spectral variance (Lee and Plaza, 2012), while the Minimum
Noise Fraction (MNF) transform retained the four noise-
filtered components with the largest eigenvalues (Green
et al., 2009).

To derive species-specific band-ratio indices, inter-band
correlation and mean reflectance contrast were analyzed. For
each species, band pairs with minimal correlation and maximal
reflectance difference were selected to form ratio indices that
enhanced separability. These ratios were later integrated into
classification experiments as additional discriminative features.

4.3 Classification

Supervised classification techniques were employed to
discriminate individual tree species using the pre-processed EO-1

FIGURE 3
Average pairwise absolute difference (APAD) band separability score.
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Hyperion surface reflectance data. A total of thirteen supervised
classifiers were evaluated, encompassing both traditional statistical
and modern machine-learning approaches to ensure a
comprehensive comparative assessment.

The statistical classifiers included Binary Encoding, Minimum
Distance, Parallelepiped, Maximum Likelihood, Mahalanobis
Distance, Spectral Angle Mapper (SAM), and Spectral
Information Divergence (SID). The machine-learning algorithms
comprised Support Vector Machine (SVM) (Vapnik, 1995; Melgani
and Bruzzone, 2004), Artificial Neural Networks (ANN) (Rumelhart
et al., 1986; Zhang et al., 2021), Random Forest (RF) (Breiman, 2001;
Ma et al., 2021), K-Nearest Neighbor (KNN) (Cover and Hart, 1967;
Li et al., 2022), and Decision Tree (DT) (Quinlan, 1986; Breiman
et al., 1984). Among these, SVM and ANN have been extensively
reported for hyperspectral image classification owing to their
effectiveness in handling high-dimensional feature spaces and
complex nonlinear class boundaries (Melgani and Bruzzone,
2004; Ballanti et al., 2016).

All classifiers were implemented within the ENVI 5.6 software
environment (Harris Geospatial Solutions, 2015) following
standardized supervised learning protocols. Ground-truth Regions
of Interest (ROIs), delineated from field-collected GPS samples and
cross-validated with very high-resolution Pléiades Neo imagery,
were used as training data for supervised classification. The mean
spectral reflectance profiles of 21 urban tree species, derived from
these field-verified ROIs using EO-1 Hyperion hyperspectral data,
are presented in Figure 4. These spectra exhibit distinct absorption
and reflectance features across the visible, near-infrared, and
shortwave-infrared regions, highlighting species-specific spectral
variability critical for accurate classification and separability
analysis. The dataset was subsequently partitioned into 70%
training and 30% validation subsets to ensure unbiased model
calibration and performance evaluation. Each classifier was

trained using the designated ROIs and subsequently applied to
the full hyperspectral dataset to generate thematic tree-species
classification maps. Post-classification majority filtering was
performed to reduce speckle noise and enhance spatial
coherence, thereby improving the overall interpretability of the
classification outputs.

4.4 Accuracy assessment

Accuracy assessment was performed using the independent
validation set by generating confusion matrices for each of the
13 classifiers. Classification performance was quantified using
Overall Accuracy (OA), Producer’s Accuracy (PA), User’s
Accuracy (UA), and the Kappa coefficient (κ), ensuring a robust
comparison of classifier effectiveness at both the dataset and
species levels.

To maintain methodological rigor, several preprocessing steps
were undertaken prior to classification, including the removal of
noisy and atmospheric absorption bands, destriping correction,
and atmospheric calibration using the Fast Line-of-sight
Atmospheric Analysis of Spectral Hypercubes (FLAASH)
module. Independent field samples were cross-validated with
Pléiades imagery to confirm that training and validation ROIs
represented pure or dominant tree crowns, minimizing mixed-
pixel errors. Parameter settings for each classifier followed
established hyperspectral remote sensing standards (Melgani
and Bruzzone, 2004; Ballanti et al., 2016), ensuring that results
reflected true algorithmic performance rather than dataset
inconsistencies or implementation biases.

Accuracy assessment was conducted using the independent
validation set by computing confusion matrices and deriving
standard accuracy metrics—Overall Accuracy (OA), Producer’s

FIGURE 4
Mean spectral reflectance of the tree species.
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Accuracy (PA), User’s Accuracy (UA), and the Kappa coefficient (κ)
for each classifier. This ensured rigorous, quantitative evaluation of
classifier performance at the species level. All parameter settings
were verified with reference to established hyperspectral
classification literature (e.g., Melgani and Bruzzone, 2004; Ballanti
et al., 2016). Data preprocessing included the removal of noisy
bands, atmospheric correction using FLAASH, and destriping
correction. Field and Pléiades Neo data were jointly used to
cross-validate class labels, ensuring that the comparative results
reflected algorithmic performance rather than preprocessing or
dataset inconsistencies.

4.5 Selection of the best performing
classification strategy

The performance of all classification algorithms was rigorously
evaluated using confusion matrices and standard accuracy metrics,
following the accuracy assessment framework proposed by
Congalton (1991). Each supervised classification algorithm was
applied to the prepared datasets, and its performance was
quantified based on Overall Accuracy (OA), Producer’s Accuracy
(PA), User’s Accuracy (UA), and the Kappa coefficient (κ). The
classifier that achieved the highest overall and class-wise accuracies
for the given dataset was identified as the optimal model for
subsequent analysis.

To further validate the classifier’s capability to discriminate
individual tree species, both UA and OA were analyzed to
determine classification reliability and inter-class confusion.
Species exhibiting the highest classification confidence and
spectral separability were considered optimally extractable under
the selected model. To enhance class separability and minimize
spectral overlap, a correlation matrix of species-wise spectral
responses was generated. Statistical descriptors, including mean,
standard deviation, and coefficient of variation, were derived and
integrated within a decision-tree framework to construct species-
specific band ratio indices. These indices facilitated the extraction of
discriminative spectral features, thereby improving inter-species
separability and overall classification performance.

5 Results and discussion

This section presents a comparative evaluation of
classification outcomes across four datasets—Full Band,
Spectrally Separable Subset, Principal Component Analysis
(PCA), and Minimum Noise Fraction (MNF)—using thirteen
supervised classifiers. It also examines species-level accuracies,
spectral separability patterns, and optimal band-ratio indices to
interpret how spectral and algorithmic characteristics influence
classification performance. While dimensionality reduction and
feature-selection strategies (PCA, MNF, and APAD) significantly
enhance classification outcomes, their purpose is
complementary—serving to improve classifier efficiency and
accuracy rather than acting as end goals. The core focus of
this study is the comparative analysis of classifier performance
for reliable species-level discrimination in heterogeneous
urban forests.

5.1 Classifier performance across datasets

Table 1 summarizes the classification performance (Overall
Accuracy, OA, and Kappa coefficient) of the thirteen classifiers
applied to the four datasets. Following the evaluation framework
of Ma et al. (2021), several traditional classifiers, particularly
spectral and statistical methods, exhibited relatively low
accuracies across all dimensionality-reduced datasets. These
results underscore the limited ability of older algorithms to
manage the high-dimensional and noise-prone nature of
Hyperion hyperspectral data.

In contrast, ensemble-based classifiers—particularly Random
Forest (RF) and Decision Tree (DT)—demonstrated consistently
high accuracies across all datasets, confirming their robustness and
adaptability. Among all classifiers, RF achieved the highest OA of
82.56% and Kappa coefficient of 0.81 using PCA-transformed data,
indicating strong agreement between predicted and reference
classes. DT also performed competitively, yielding OA values
above 73% for all datasets and peaking at 79.49% with the
Spectral Separability subset.

Traditional classifiers such as Binary Encoding, Parallelepiped,
and Spectral Angle Mapper (SAM) produced considerably lower
accuracies (OA < 45%), reaffirming their limited suitability for
complex hyperspectral scenes. SVM exhibited moderate
performance (OA ≈ 44%), while ANN and Neural Networks
showed dataset-dependent variability. For example, Neural
Networks achieved 73.33% OA on the Spectral Separability
dataset but dropped to 5.13% on the Full Band data, likely due
to overfitting and insufficient training samples in high-
dimensional feature spaces. The lower accuracies observed for
several classifiers are not attributed to preprocessing or
implementation errors, as workflows and parameters were
verified across all tests. Rather, they reflect inherent algorithmic
limitations when handling mixed-pixel and high-dimensional data
characteristic of EO-1 Hyperion imagery.

The species-level classification maps generated by the top-
performing classifiers—Random Forest (RF) and Decision Tree
(DT)—using their respective optimal datasets (PCA, MNF,
Spectral Subset, and Full Band), illustrating spatial
distribution and inter-species variability across the Hauz
Khas urban forest shown in Figure 5. Figure 6 presents the
comparative performance of all thirteen classifiers across the
four datasets—Full Band, Spectral Separability Subset, PCA,
and MNF—based on Overall Accuracy (OA) and Kappa
coefficient (κ). These findings confirm the effectiveness of
dimensionality reduction and feature optimization in
enhancing classification reliability and inter-class
separability. Among the compared models, Random Forest
consistently outperformed others in both accuracy and
robustness, confirming its suitability for operational tree
species mapping with hyperspectral data.

5.2 Species-level classification performance

Table 2 summarizes the species-level classification
performance results using the optimal classifier–dataset
combinations, showing Overall Accuracy (OA), Producer’s
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Accuracy (PA), and User’s Accuracy (UA) for 21 urban tree species
ranked by mean accuracy. The results highlight the best-
performing classifier–dataset combinations and demonstrate the
influence of dimensionality reduction techniques on species
discrimination shown in Figure 7.

Ensemble-based classifiers—Random Forest (RF) and
Decision Tree (DT)—dominated the overall performance,
achieving ≥86% Overall Accuracy (OA) for 16 out of
21 species. Among these, Peepal and Indian Banyan achieved
the highest accuracies (95% OA and PA) using PCA-
transformed datasets with RF and DT classifiers, respectively.
This finding reinforces the strength of ensemble learning
methods in modeling non-linear spectral responses inherent to
hyperspectral data. Species such as Neem and Eucalyptus also
exhibited strong classification performance, achieving >92% OA
with MNF and Spectral Subset (SS) datasets, respectively. These
outcomes indicate that both PCA and MNF effectively reduce
spectral redundancy and noise while retaining essential
discriminatory information for species-level classification.
Moderate-performing species, including Tree of Heaven,
Multiya, and Christ’s Thorn, attained OA values around 87%
using Full Band or MNF datasets. The lower accuracies
observed for these species can be attributed to their overlapping

spectral signatures and mixed-pixel effects due to canopy
intermixing within 30 m Hyperion pixels.

Overall, RF consistently produced stable and high accuracies
across multiple datasets, attributed to its ensemble averaging and
resistance to overfitting (Breiman, 2001). DT, while slightly more
sensitive to noise, provided comparable performance and
computational efficiency, making it particularly suitable for rapid
classification of large hyperspectral datasets. Neural Networks
demonstrated satisfactory performance (90% OA) for Northern
Cottonwood, suggesting their potential for species with distinct
spectral–structural features.

The comparative analysis confirms that PCA and MNF
transformations substantially improve classification reliability by
enhancing inter-class separability and minimizing within-class
variability. Furthermore, the APAD-based Spectral Subset
effectively supported species with subtle spectral differences, such
as Eucalyptus and Fig, highlighting its utility for targeted band
selection. In summary, the integration of dimensionality reduction
with ensemble-based classifiers achieved the highest overall
classification efficiency. The combination of RF and PCA
emerged as the most effective strategy for species-level mapping
in heterogeneous urban forest conditions, ensuring both accuracy
and computational practicality.

TABLE 1 Classifier performance across four datasets.

Dataset Full band Spectral subset PCA MNF

Classifier Overall
accuracy

(%)

Kappa
coefficient

(κ)

Overall
accuracy

(%)

Kappa
coefficient

(κ)

Overall
accuracy

(%)

Kappa
coefficient

(κ)

Overall
accuracy

(%)

Kappa
coefficient

(κ)

Binary
encoding

34.36 0.2988 24.62 0.2079 14.87 0.1077 25.64 0.2008

Minimum
distance

41.54 0.3763 38.97 0.3485 38.46 0.3447 40.51 0.3649

Neural
networks

5.13 0 73.33 0.714 41.03 0.3632 48.72 0.4434

Parallelepiped 41.54 0.1791 12.82 0.0886 11.79 0.0829 21.54 0.1797

Maximum
likelihood

41.00 0.2132 44.9 0.358 62.05 0.5975 64.62 0.6152

Mahalanobis
distance

39.00 0.2923 52.00 0.436 39.49 0.3558 41.03 0.3699

Spectral angle
mapper

34.36 0.3096 30.77 0.2758 34.87 0.3091 29.23 0.2496

Spectral
information
divergence

40.51 0.3642 36.41 0.3287 30.77 0.2632 29.23 0.2565

Support vector
machine

42.56 0.3692 41.03 0.3518 44.1 0.3875 43.59 0.3813

Random forest 75.90 0.7425 80.51 0.7915 82.56 0.8134 72.82 0.7098

Artificial neural
networks

47.69 0.42781 48.21 0.4396 37.95 0.3309 43.08 0.3742

Decision tree 77.44 0.7591 79.49 0.7811 73.33 0.7142 65.64 0.6299

K-Nearest
neighbour

62.05 0.5958 63.08 0.6071 60.00 0.5747 64.1 0.6182

PCA, principal component analysis dataset; MNF, minimum noise fraction dataset.
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5.3 Spectral separability among tree species

Using the Average Pairwise Absolute Difference (APAD)
metric, 210 unique species-pair separability scores were

computed across 167 bands. The analysis revealed several
species pairs—such as Cassie and Christ’s Thorn and Multiya
and Neem—with higher APAD values, indicating enhanced
inter-species separability. These pairs were instrumental in

FIGURE 5
Classification maps generated by top classifiers. (a) PCA-RF. (b) MNF-RF. (c) SS-RF. (d) FB-RF. (e) SS-DT.
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guiding band selection and the development of species-specific
ratio indices.

Although APAD does not incorporate intra-class variance, it
effectively captured meaningful inter-species contrast. Species pairs
such as Cassie–Christ’s Thorn, Multiya–Christ’s Thorn, and
Neem–Tree of Heaven exhibited correlation coefficients between
0.4 and 0.6, suggesting substantial potential for discrimination via
band ratios or supervised classifiers. The least correlated species
pairs—Cassie–Christ’s Thorn, Multiya–Christ’s Thorn, Tree of
Heaven–Christ’s Thorn, Cassie–Neem, Multiya–Neem,
Cassie–Blackboard Tree, and Orchid Tree–Cassie—represent the
most promising candidates for targeted separability enhancement.
Although no pair achieved orthogonal spectral distinction, these
moderate decorrelation levels demonstrate the usefulness of APAD
in identifying separable spectral regions.

A key limitation lies in the coarse 30m spatial resolution of EO-1
Hyperion, where each pixel may encompass multiple tree crowns,
introducing mixed-pixel effects that reduce separability. Ground-
truth field data, APAD-based band selection, and band-ratio indices
were therefore critical in improving classification reliability. Despite
residual uncertainty, this approach successfully enhanced inter-
species separability under sensor limitations.

5.4 Band ratio index insights

Optimal band-ratio indices were developed to further enhance
discrimination between spectrally similar species. Ratios were
derived by pairing bands with low inter-correlation and high

mean reflectance contrast, as determined from 167 bands of
Hyperion imagery. These ratios provide interpretable, physically
meaningful features for vegetation index design and decision-rule
formulation. The following ratios were found to be most
discriminative:

Christ’s Thorn: B23/B92; Ipil-Ipil: B92/B134; Neem: B2/B93;
Blackboard Tree: B52/B166; Cassie: B69/B92; Karanj: B54/B166; Fig:
B79/B131; Peepal: B53/B132; Medlar: B24/B92; Jaggery Palm: B1/
B92; Indian Banyan: B53/B92; Northern Cottonwood: B3/B138;
Australian Silky Oak: B51/B163; Orchid Tree: B37/B92; Ashok:
B1/B53; Golden Shower Tree: B122/B132; Eucalyptus: B24/B105;
Putranjiva: B92/B140; Buddha Coconut: B2/B92; Multiya: B80/B93;
Tree of Heaven: B1/B95.

Among these, Band 92 (near-infrared region) frequently
appeared in denominator positions, reflecting its strong
discriminative ability due to high reflectance sensitivity to
vegetation structure and moisture content.

5.5 Ecological and management
implications of classification outcomes

The classification results provide ecological insights relevant to
urban forest monitoring and management. Accurate species-level
mapping enhances understanding of urban forest composition,
resilience, and biodiversity distribution. The ability to distinguish
native species such as Neem (Azadirachta indica) and Peepal (Ficus
religiosa) from exotic or invasive taxa supports informed decision-
making in reforestation and conservation initiatives, thereby

FIGURE 6
Classification performance across four datasets.
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TABLE 2 Species-level classification performance with best classifier and type of dataset.

Rank Tree species Best classifier Dataset Overall accuracy % Producer’s accuracy % User’s accuracy %

1 Peepal Random Forest PCA 95.12 95.33 97.04

2 Indian Banyan Decision Tree PCA 95.05 95.20 96.45

3 Medlar Random Forest PCA 93.48 94.12 95.23

3 Eucalyptus Decision Tree SS 93.20 94.05 95.10

5 Neem Decision Tree MNF 92.34 93.21 94.15

5 Orchid Random Forest PCA 93.05 93.18 94.02

7 Fig Decision Tree SS 91.28 92.10 94.12

7 Jaggery Palm Random Forest PCA 92.12 92.05 94.00

9 Golden Shower Random Forest SS 91.00 92.12 93.05

10 Budha Coconut Decision Tree FB 90.45 91.10 92.12

10 Northern Cottonwood Neural Networks SS 90.05 91.05 92.00

12 Karanj Random Forest MNF 88.23 89.12 91.05

13 Australian Silky Oak Random Forest MNF 89.05 89.10 90.12

14 Tree of Heaven Random Forest FB 87.12 88.05 88.10

14 Ashok Random Forest PCA 86.34 88.00 88.12

16 Putranjiva Decision Tree FB 86.05 87.12 89.05

17 Blackboard Decision Tree FB 87.00 87.05 88.12

18 Multiya Decision Tree MNF 87.12 87.00 87.05

19 Ipil-Ipil Random Forest PCA 86.00 86.12 87.00

20 Christ’s Thorn Decision Tree PCA 84.12 84.05 85.05

21 Cassie Random Forest PCA 80.05 81.12 81.00

FB, Full-band dataset; SS, Spectral Subset (spectrally separable (APAD)); PCA, principal component analysis dataset; MNF, minimum noise fraction dataset.

FIGURE 7
Species-wise classification performance with optimal classifier–dataset combinations.
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contributing to ecological balance and urban sustainability. High-
accuracy classification maps also enable improved estimation of
urban biomass, canopy health, and carbon sequestration
potential—key parameters for green GDP assessment and
climate-resilient urban planning. The demonstrated success of
ensemble classifiers highlights the potential of hyperspectral
remote sensing as a reliable decision-support tool for urban
forest management, guiding targeted species planting, stress
detection, and biodiversity restoration.

5.6 Methodological insights and future
directions

The integration of ensemble classifiers—particularly Random
Forest (RF) and Decision Tree (DT)—demonstrated superior
accuracy and robustness, confirming their suitability for scalable
species-level classification in spectrally complex urban ecosystems.
The combination of Average Pairwise Absolute Difference
(APAD)-based band selection and species-specific band-ratio
indices proved effective in enhancing spectral separability,
offering a transferable framework for vegetation discrimination
even when using moderate-resolution hyperspectral data such as
EO-1 Hyperion.

Despite these promising results, two methodological limitations
were identified. First, the single-date Hyperion acquisition
constrains analysis to a single phenological phase, limiting the
ability to capture seasonal dynamics such as leaf emergence,
flowering, or senescence. Second, while APAD effectively
quantified inter-species spectral separability, it does not account
for intra-class variance, partly due to mixed pixels in the 30 m
Hyperion imagery limiting homogeneous samples for variance-
based statistics. Although deep learning architectures—such as
Convolutional Neural Networks (CNNs), deformable CNNs, and
hybrid CNN–Transformer networks (Wang et al., 2021; Chen et al.,
2023; Li et al., 2023; Sun et al., 2024)—have shown excellent
potential for hyperspectral classification, their effective
deployment requires large labeled datasets and substantial
computational resources. Given the limited ground-truth samples
and mixed-pixel constraints, this study prioritized computationally
efficient fast-learning classifiers. Future research could integrate
deep learning with high-resolution multispectral or hyperspectral
data and LiDAR-derived structural metrics to further enhance
species-level discrimination and support scalable, operational
urban forest monitoring.

6 Conclusion

This study presented an effective and scalable framework for
species-level classification using EO-1 Hyperion hyperspectral
imagery in the heterogeneous Hauz Khas urban forest. A
comprehensive comparative analysis of thirteen supervised
classifiers across four datasets—Full Band, Spectral
Separability Subset(APAD-based), PCA, and MNF—revealed
that ensemble learning algorithms, particularly Random Forest
(RF) and Decision Tree (DT), consistently outperformed
traditional statistical and spectral classifiers. RF classifier

applied to PCA-transformed data achieved the highest overall
accuracy (82.56%) with a Kappa coefficient of 0.81, while DT
achieved superior per-species accuracies for Neem and Indian
Banyan. The APAD metric proved highly effective for
quantifying inter-species spectral separability, guiding optimal
band selection, and supporting the derivation of species-specific
band-ratio indices that enhanced classification performance.
Furthermore, PCA and MNF-based dimensionality reduction
preserved inter-class spectral variance while reducing
redundancy and noise, thereby improving classification
robustness and computational efficiency.

Despite the inherent 30 m spatial resolution constraint and
mixed-pixel effects of Hyperion imagery, the integrated use of
APAD-based band selection, band-ratio indices, and ensemble
classifiers proved to be a reproducible, interpretable, and
operationally viable approach for tree species mapping in
spectrally complex urban environments. This study underscores
the continued relevance of fast-learning classifiers, which are
computationally efficient and effective under limited ground-
truth conditions, particularly for legacy hyperspectral datasets.
Future research should extend this framework by incorporating
deep learning architectures, such as convolutional neural
networks (CNNs) and hybrid CNN–Transformer models, in
conjunction with high-spectrospatial-resolution hyperspectral
data to further improve species-level discrimination and
scalability in urban forest monitoring. Overall, this work
demonstrates that fast-learning ensemble classifiers, when
optimized through spectral separability–driven feature
selection, remain highly effective for legacy hyperspectral
missions and provide a strong foundation for next-generation,
deep-learning–enabled hyperspectral analysis and urban forest
monitoring systems.
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