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Plastic pollution in freshwater ecosystems poses a growing environmental threat,
yet the availability of efficient and scalable monitoring solutions remains limited.
This study presents a lightweight, real-time macroplastic detection framework
based on the YOLOv8 object detection model, optimized for continuous
monitoring using video footage from fixed (pontoon-, bank-, or bridge-
mounted) camera systems or mobile (Unmanned Aerial Vehicle, UAV-based)
deployments for pollution assessment. The model’s performance was evaluated
across multiple environmental scenarios, including simulated pollution and real-
world UAV footage under moderate and high plastic pollutant loads. To address
key challenges such as small object size and occlusion by vegetation, pre-
processing techniques including image tiling and blurring were applied. These
enhancements led to notable improvements in recall and mean Average
Precision (mAP) scores. The proposed system architecture supports both
decentralized (on-site) and centralized processing configurations, allowing
flexible deployment across diverse monitoring contexts. Beyond its
operational applicability, the system enables the large-scale collection of pre-
annotated datasets, supporting future model refinement and site-specific
training. When combined with hydrological and meteorological data, the
resulting time series may serve as a foundation for predictive models of
plastic pollution transport, offering a valuable tool for mitigation efforts and
early warning systems.
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1 Introduction

1.1 Plastic pollution of rivers

The accelerated production, consumption and (mismanaged)
disposal of single-use materials exert a significant stress on the
environment, both on land and in water. The production of plastic
materials has increased exponentially since the Second World War,
reaching a global production of 400.3 million tonnes in 2022 (Geyer
et al., 2017; Nayanathara Thathsarani Pilapitiya and Ratnayake,
2024). The continued prevalence and unwavering appeal of
polymers can be attributed to their distinctive characteristics,
which include a lightweight yet robust composition, high tensile
strength, resistance to corrosion, low electrical and thermal
conductivity (Ilyas et al., 2018; Nayanathara Thathsarani
Pilapitiya and Ratnayake, 2024). Moreover, the cost of
production is relatively low. The produce-use-dispose linear
economic model is a prevalent paradigm for plastic materials,
despite the growth of recycling as a business sector (Morales-
Caselles et al., 2021). The majority of single-use plastics is used
for packaging purposes, with plastic bags, bottles and food
containers representing the most common forms of packaging
and accounting for approximately half of the total plastic
production. This particular form of waste is among the most
frequently mismanaged and is therefore highly likely to enter the
environment as pollution (Geyer et al., 2017). The increasing
presence of plastic pollution along shorelines and in nearshore
waters is largely driven by the accumulation of land-based litter,
which is subsequently transported tomarine environments via rivers
and other watercourses (Jambeck et al., 2015). While open ocean
waters are also affected by terrestrial plastic inputs, the predominant
source of plastic in these regions is fishing-related debris,
particularly lines, nets, and buoys (Morales-Caselles et al., 2021).

Although inland areas generally contribute less to marine and
oceanic litter than coastal or near-coastal regions they produce
comparable quantities of plastic waste. However, the likelihood of
these materials reaching estuaries is reduced due to their tendency to
become trapped in floodplains or deposited in reservoir sediments
along their longer transport pathways. As a result, while inland
plastic waste may exert less direct pressure on coastal and marine
systems, significant volumes of anthropogenic debris accumulate
within continental freshwater systems. These accumulations are
particularly prevalent in floodplains and wetlands, ecologically
sensitive areas with diverse and valuable ecosystems (Gallitelli
and Scalici, 2022; Lebreton et al., 2017; Schreyers et al., 2024).

Plastic pollutants are commonly classified based on particle size;
however, the categorization schemes and associated thresholds vary
across the literature. The primary consideration in distinguishing

categories is the potential for ingestion by animals. Microplastic
particles are small enough to be ingested by a wide range of
organisms, including fishes, mammals, reptiles, amphibians, and
birds (Cole et al., 2011; Ilyas et al., 2018). In contrast, macroplastics
are generally too large to be ingested by most species. The threshold
that separates microplastics from macroplastics is inconsistently
defined. While some sources adopt a 10 mm upper limit for
microplastics (Graham and Thompson, 2009), others propose a
5 mm threshold (Barnes et al., 2009; Betts, 2008), or even 1 mm
(Browne et al., 2007; Browne et al., 2010; Claessens et al., 2011).

1.2 Assessment of macroplastics in fluvial
water

When assessing the impact of plastic pollution in riverine
environments, quantifying the flux of plastic materials is
essential. This involves measuring the amount of plastic
transported by the river, typically expressed as weight or number
of items per unit time (Hurley et al., 2023). Additional relevant
parameters include the material composition of the plastic debris
(Ronkay et al., 2025; van Calcar and van Emmerik, 2019), the degree
of degradation, the environmental residence time of the particles,
and the origin of the plastic waste (González-Fernández et al., 2021;
Ronkay et al., 2025).

Several viable methods exist for assessing the amount of
macroplastic litter in fluvial environments. One of the main
approaches involves the physical collection of plastic debris from
the river, typically using nets (Haberstroh et al., 2021; Moore et al.,
2011; Munari et al., 2021; Schöneich-Argent et al., 2020; Taryono
et al., 2020; van Emmerik et al., 2019a; van Emmerik et al., 2019b) or
booms (Malik et al., 2020; Roy et al., 2021). In this case, plastic flux
can be estimated by dividing the collected quantity by the
deployment time of the instrument. An alternative method
involves sampling plastic particles trapped on floodplains after
flood even (Molnár and Hankó, 2022). While this approach does
not support direct flux estimation, it can provide valuable
information on plastic characteristics such as material
composition, degradation state, and source. Additionally, booms
and manual collection methods serve multiple purposes by
supporting both data collection, mitigation and cleanup efforts.

The second major category of assessment methods is based on
visual observation. This may be conducted by human observers
counting particles at fixed cross-sections (Crosti et al., 2018;
González-Fernández and Hanke, 2017; van Emmerik et al., 2018;
van Emmerik et al., 2020) or through the analysis of imagery
captured by fixed cameras (Kataoka and Nihei, 2020; Lieshout
et al., 2020), unmanned aerial vehicles (UAV) (Geraeds et al.,
2019; Rocamora et al., 2021; Schreyers et al., 2021; Wolf et al.,
2020), or satellites (Molnár et al., 2024; Salgado-Hernanz et al., 2021;
Tasseron et al., 2021). The increasing availability of digital imagery
has enabled the use of computer vision techniques for automated
video analysis (Armitage et al., 2022; Cortesi et al., 2021; Cortesi
et al., 2023; de Vries et al., 2021; Garcia-Garin et al., 2021; Geraeds
et al., 2019; Kataoka and Nihei, 2020; Lieshout et al., 2020; Pinto
et al., 2021; Teng et al., 2022; Veerasingam et al., 2022; Wolf et al.,
2020). While observation- and image-based methods are limited to
visible plastics floating on the surface of water or found on land and

Abbreviations: AP, Average precision; ARIMA, Autoregressive Integrated
Moving Average; ARMA, Autoregressive Moving Average; BB, Bounding
Box; CNN, Convolutional Neural Network; CPU, Central Processing Unit;
FN, False Negative; FP, False Positive; FPS, Frames Per Second; GPU,
Graphics Processing Unit; GT, Ground Truth; HD, High Definition; ID,
Identification Number; IoU, Intersection over Union; IP, Internet Protocol;
mAP, mean Average Precision; P, Precision; R, Recall; Rkm, River kilometer;
SGD, Stochastic Gradient Descent; TP, True Positive; UAV, Unmanned Aerial
Vehicles; YOLO, You Only Look Once.
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do not provide detailed information on material properties or
degradation state, they can deliver reliable estimates of flux,
quantity, and item categories (Hurley et al., 2023). Moreover,
recent advances in deep learning have substantially reduced the
cost and labor associated with such approaches, enhancing both
spatial and temporal scalability. These developments open the way
for the establishment of cost-effective, continuous monitoring
networks across entire river systems.

1.3 Application of deep learning for the
monitoring of macroplastics

The application of deep learning has proven highly effective in
addressing various challenges, including the detection of plastic
litter. The aim of the present investigation was to evaluate the
applicability of image classification, segmentation, and object
detection techniques for the quantification of macroplastics,
with the goal of identifying the most suitable approach for
detecting and measuring plastic objects. Tile-wise image
classification has been shown to be effective in quantifying
plastic litter in heavily polluted environments, particularly in
satellite and UAV imagery (Gonçalves et al., 2020; Pinto et al.,
2021; Wolf et al., 2020). This technique enables the generation of
object density maps across large areas. Pixel-wise
classification—more commonly referred to as image
segmentation—can also be applied to macroplastic detection
(Kylili et al., 2021; Lieshout et al., 2020; Shinichiro and Morita,
2020). It is most often used in the analysis of aerial images,
including those captured by UAVs and satellites. While these
approaches can cover vast areas or long river stretches, they are
less suited for continuous monitoring and typically require more
effort to achieve reliable quantification. The third method, object
detection is the most commonly used for quantifying plastic litter
in open water (Armitage et al., 2022; de Vries et al., 2021;
Gonçalves et al., 2020; Teng et al., 2022) or riverine
environments. Its main advantage is the ability to detect and
count individual objects directly. Detected items are localized
using bounding boxes (BB), which can be easily counted in still
images or tracked over time in video sequences.

All three approaches support the classification of objects into
multiple categories, allowing differentiation by litter type or
pollution intensity. In this study, the authors adopted object
detection as the preferred method, as it enables efficient
identification and quantification of individual macroplastic items
with minimal manual intervention.

Modern one-stage object detectors can achieve real-time
throughput on suitable GPUs (e.g., YOLO; Redmon et al., 2015;
Jocher et al., 2023). Real-time systems have been reported for aquatic
plastic detection (Lin, 2021; Yang et al., 2025; Balamurugan et al.,
2025) and for waste-management applications (Ghatkamble et al.,
2022; Hua et al., 2020), but adoption remains limited, particularly
for sustained, low-power operation at remote sites. Long-duration
river monitoring typically requires continuous video in locations
with constrained power and bandwidth and limited maintenance
access, which favors low-power edge devices over datacenter
hardware. Although larger architectures can, in principle, meet
frame-rate targets, the necessary GPUs are generally impractical

for long-term field stations in terms of cost and energy demand.
Consequently, lightweight models and resource-aware pipelines are
preferred for sustained real-time monitoring.

1.4 Aim of this study

The objective of this study is to apply computer vision
techniques for the detection of macroplastic pollutants on water
surfaces and floodplains, including those of streams, rivers, and
lakes. The primary focus is on fluvial environments. The use of
computer vision in this context is motivated by its ability to quantify
visible plastic items, thereby enabling an estimation of macroplastic
flux across river cross-sections. Deploying a system capable of real-
time detection and quantification could significantly improve the
understanding of macroplastic transport processes and support the
development of alert systems to assist in organizing remediation and
mitigation efforts during so-called “plastic flood” events. The most
common types of plastic litter consist of a heterogeneous mixture of
food packaging, including plastic bags, bottles, and containers.
Among these, plastic bottles represent a particularly prominent
fraction. Due to their lightweight construction and large surface
area, plastic bags are highly susceptible to entrapment, degradation,
and sinking. In fluvial environments, turbulent flows tend to
submerge and fragment plastic bags rapidly, often rendering
them visually undetectable.

As a result, this study primarily focuses on plastic bottles, which
serve as practical indicators of plastic pollution. Their smooth shape
causes them to dislodge first during flood events, and their resistance
to degradation, combined with their tendency to retain air—even
when uncapped—allows them to remain afloat for extended periods.
These characteristics make them particularly suitable for detection
using visual or image-based methods.

The main novelty of this work is a scalable, cost-effective
framework for real-time macroplastic monitoring, engineered for
practical field deployment. Building on a robust body of prior work
(Wolf et al., 2020; Kylili et al., 2021; Marin et al., 2021; Teng et al.,
2022; Wang and Zhao, 2024; Reddy et al., 2024), the authors move
from controlled evaluations to field readiness by presenting an
operational system concept suitable for inland waters and
adaptable to open-water contexts. The framework supports
networked stations along river corridors, enabling reach-scale
coverage and basin-scale situational awareness rather than
reliance on a single vantage point. The authors also extend
applicability to UAV-based rapid assessments and show that
simple pre-processing (blurring and tiling) can demonstrably
improve detection in vegetation-obscured and small-object
scenarios without specialized acquisition hardware.

2 Methods and materials

2.1 Selection of the detector

To address the challenge of quantifying macroplastic pollutants
and estimating their flux in fluvial waters, the authors employed an
object detection approach. Among available solutions, models from
the You Only Look Once (YOLO) family (Redmon et al., 2015) are
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widely regarded for their high detection accuracy, particularly when
trained on relevant datasets. Previous studies have successfully
utilized larger YOLOv5 models (Kylili et al., 2021; Teng et al.,
2022) for detecting macroplastic pollution in open water, coastal,
and, less frequently, inland environments.

The authors adopted the YOLOv8 framework (Jocher et al.,
2023) for its modern, anchor-free design, decoupled heads,
TensorRT export, and integrated tracking; according to the
developers’ benchmark reports, it also delivers higher detection
metrics at comparable inference times (Ultralytics, 2023),
facilitating real-time deployment under the hardware constraints
considered here. YOLOv8 is available in five model sizes—N (nano),
S (small), M (medium), L (large), and X (extra-large). Implemented
in PyTorch with export options to ONNX/TensorRT, it combines
strong detection performance with fast frame processing, supports
real-time analysis of video and streaming inputs, and provides built-
in tracking, making it a comprehensive, out-of-the-box solution.

YOLOv8 has been successfully implemented in numerous
applications for environmental monitoring (Chen et al., 2024;
Guo et al., 2024; Wang et al., 2024; Zhu and Xu, 2025; Zhu
et al., 2024; Di et al., 2025; Zhang and Wu, 2025; Jiang and Wu,
2024) showcasing its suitability to be deployed in macroplastic
detection as well.

Given the constraints of real-time deployment and the need for
cost-effective implementation in practical applications, the use of
large-capacity GPUs was not feasible. As a result, the larger
YOLOv8 models (L and X) were excluded due to their high
computational demands, while the N model was found to be
inadequate for capturing the complexity of the task. The study
therefore focused on training multiple S and Mmodels with varying
hyperparameters to identify the optimal balance between
performance and efficiency.

2.2 Training images

The training images used in this study were collected from a
variety of sources. A portion originated from a previous research
project (Paller and Élő, 2022), which provided both the equipment
and a functional, though imprecise, Fast R-CNN model based on
the method of (Girshick, 2015), along with its training dataset
comprising 243 images. In several instances, these images
contained only a single plastic bottle placed in an artificial
indoor setting, such as on a desk. To obtain additional training
data and essential validation videos, an artificial pollution scenario
was staged along the right bank of the Danube River at river
kilometer (Rkm) 1,645 in Budapest. Plastic bottles were
deliberately released into the river and subsequently retrieved.
This campaign yielded 348 annotated images. Further
contributions came from the Plastic Cup Society, a Hungarian
non-governmental organization dedicated to removing plastic
waste from the River Tisza and its tributaries. They provided
68 images from the River Bodrog, as well as a substantial
volume of UAV footage from both the Tisza and Bodrog rivers.
To further expand the dataset, an extensive search was conducted
across online platforms for any visual material featuring plastic
debris in hydraulic environments. In total, 1,667 images were
assembled for training purposes.

2.3 Annotation

Once a sufficient set of training images had been compiled,
ground truth (GT) data were generated through manual annotation
using BBs for object detection. It is essential to establish and
consistently follow a clear annotation methodology, as
inconsistencies can significantly compromise model performance.
During the planning phase, the definition of detection classes must
also be addressed in a consistent and well-justified manner. A review
of the dataset revealed that creating multiple classes based on the
original use or material composition of anthropogenic waste was not
feasible due to the limited number of training samples. As a result, a
single detection class—labelled “Plastic”—was adopted. Annotation
was carried out solely by the first author to ensure consistency; the
guiding principle was that if the annotator could not clearly identify
an item as plastic, it was not labelled. While not all annotated objects
were strictly composed of plastic, a small amount of visually
comparable items such as floating glass bottles and aluminum
cans were included, which were less than 5% of all annotated
objects. Although these fall outside the formal scope of the study,
excluding them would likely have confused the detector during
training due to their visual resemblance to plastic objects. Since the
primary objective was to quantify plastic pollutants, individual
object-level annotation was selected as the most effective strategy,
providing optimal conditions for subsequent quantification. The
annotation process was carried out using the Roboflow platform,
which was chosen for its advanced and user-friendly annotation
tools. In total, 1,667 annotated image–label pairs were produced.

2.4 Augmentation

To expand the training dataset, a series of data augmentation
techniques were applied using the Imgaug Python library. For each
original image, five augmented variants were generated through a
combination of geometric transformations. These included scaling
(±10%), shearing (±10°), and rotation (±15° in both directions),
along with image-level modifications such as motion blur (kernel
size: 5–10), perspective transformation (scale: 0.05–0.1), and
random padding or cropping (±25% of the image). Not all
transformations were applied to every image–annotation pair.
Instead, augmentations were applied randomly, within predefined
parameter ranges. This process yielded a total of
8,335 image–annotation pairs. In accordance with YOLO
requirements, the dataset was split into three subsets: 70% for
training, 10% for testing, and 20% for validation.

2.5 Training of the models

The models were trained in a Google Colab environment using a
Tesla T4 (16 GB) GPU, which enabled the use of larger batch sizes
and higher-resolution training images. Training, in this context,
refers to the process of adjusting the parameters of the model,
amounting to a substantial number of variables. For instance, the
YOLOv8 small (S) model contains approximately 11.2 million
parameters, while the medium (M) model comprises around
25.9 million.

Frontiers in Environmental Science frontiersin.org04

Tikász et al. 10.3389/fenvs.2025.1666271

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1666271


YOLOv8 offers several optimizers based on the Gradient
Descent algorithm. In all experiments, Stochastic Gradient
Descent (SGD) was used consistently as the optimizer.
Preliminary tests exploring various hyperparameter settings
showed limited improvement compared to the default
configuration. As a result, subsequent experiments focused on
comparing the effects of increased input image resolution and a
larger model architecture (YOLOv8m) to the baseline YOLOv8s
model trained with default image size, while keeping all other
hyperparameters unchanged. Model training was carried out for
a maximum of 300 epochs, or until performance ceased to
improve or began to decline, in which case training was
terminated early.

2.6 Analysis of the model performances

To evaluate the performance of the models during training,
validation, and under varying test conditions, it is essential to define
a set of objective indicators that enable consistent comparison. In
object detection tasks, evaluation is based on two key criteria: the
spatial accuracy of the predicted BBs and the correctness of the
predicted class label relative to the GT. In this study, the latter is
irrelevant, as the analysis is limited to a single class. The positional
accuracy of a predicted BB is assessed using the Intersection over
Union (IoU) metric, which quantifies the ratio between the area of
overlap and the area of union of the predicted and GT boxes
(Rezatofighi et al., 2019). A predicted BB is considered a true
positive (TP) if the IoU exceeds a predefined threshold. If the
IoU is below the threshold, the prediction is considered a false
positive (FP). GT objects that are not detected are counted as false
negatives (FN). Model performance is commonly summarized using
Precision (P), defined as the ratio of TP to the total number of
predicted BBs (TP + FP), and Recall (R), defined as the ratio of TP to
the total number of GT BBs (TP + FN) (Padilla et al., 2021). Average
Precision (AP) is calculated as the area under the P–R curve for a
given IoU threshold. In multi-class problems, the AP is computed
per class, and their average yields the mean Average Precision
(mAP) (Rezatofighi et al., 2019). For single-class scenarios such
as this study, AP and mAP are equivalent. Commonly reported
variants include mAP@50 (IoU threshold = 0.5) and mAP@50–95,
which is the mean of APs calculated across IoU thresholds from
0.5 to 0.95 in increments of 0.05, providing a more stringent measure
of detection accuracy.

2.7 Employment of the models

Given the goal of developing a cost-effective device for
macroplastic quantification, it is essential that the detection
model operates efficiently on low-to mid-range hardware. To
evaluate this requirement, performance testing was conducted on
a laptop equipped with an Intel Core i7-8565U CPU and an
NVIDIA GeForce GTX 1050 Max-Q Design GPU, representative
of affordable yet capable computational platforms. Due to the high
computational demands and inherent parallelism of deep learning
inference, real-time performance can only be achieved on a GPU.
Since YOLO models rely on PyTorch, which utilizes NVIDIA’s

CUDA architecture for GPU acceleration, only NVIDIA GPUs are
compatible for deployment.

While PyTorch provides considerable flexibility in terms
of model configuration and input image resolution, it does
not always leverage the full performance potential of the
GPU. To address this limitation and improve inference speed,
the trained models were exported to TensorRT engines. This
conversion significantly accelerated frame analysis when
applied to Full HD input images. It should be noted, however,
that the exported TensorRT engine is resolution-specific and
can only process images at the resolution defined at the time
of export.

2.8 Tracking and quantification

YOLOv8 supports a tracking mode for video and live stream
inputs, enabling not only object detection but also real-time
object tracking. Once an object is detected with a confidence
score exceeding a predefined threshold, the tracker activates and
continues to follow the object across subsequent frames. This is
achieved by predicting the likely location of the object in the
next frame based on its previous trajectory. In this study, the
default tracking algorithm integrated into YOLOv8, namely
BoT-SORT (Aharon et al., 2022), was employed. Upon
initiating tracking, each detected object is assigned a unique
identification number (ID), which is maintained throughout its
presence in the scene. This makes it possible to quantify the
number of individual objects observed during a given time
interval by comparing the highest assigned ID at the start
and end of the interval. Additionally, the use of tracking
significantly mitigates the risk of double-counting objects
that remain in the frame for an extended period or become
temporarily occluded or stationary.

2.9 Improvement of model detecting
capabilities on complex UAV footage

Object detectors often encounter challenges in environments
where target objects are partially occluded or intersected by other
elements, which can distort their visual boundaries and hinder
accurate detection. A promising strategy to address this issue is
the application of a blurring filter as a preprocessing step (Hanson
et al., 2022; Yoshihara et al., 2023). By reducing the sharpness of
overlapping elements, blurring diminishes visual noise and
enhances the distinguishability of relevant object contours. In the
present study, the effectiveness of different blur types and kernel
sizes was systematically evaluated to determine their influence on
detection performance. Three types of convolution-based blurring
methods were tested on a representative UAV video frame: (i) Box
blur, which computes the arithmetic mean of all pixel values within
the kernel window; (ii) Median blur, which replaces the central pixel
with the median of the surrounding values; and (iii) Gaussian blur,
which applies a weighted average governed by a Gaussian
distribution centered on the kernel.

Another persistent challenge in object detection is the reduced
performance when detecting small objects. One adopted approach
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to improve detection in such cases involves increasing the relative
size of objects within the analyzed region (Kos et al., 2025; Yang
et al., 2024). In this study, a simple yet effective tiling method was
hypothesized and tested: the input image was subdivided into
smaller tiles, effectively enlarging the apparent size of small
objects in each tile. The procedure involved dividing the image’s
vertical and horizontal axes into equal segments, creating a uniform
grid of sub-images. The tiling level was defined by the number of
subdivisions along one edge. As expected, increasing the tiling
resolution led to higher computational costs and longer inference
times per frame. Consequently, identifying an optimal tiling
configuration is essential to balancing improved detection
accuracy against processing efficiency.

2.10 Study sites

The trained model was applied to various media formats,
including still images, pre-recorded videos, and live video
streams. The still images were collected from the floodplain of
the River Bodrog, a tributary of the Tisza River in northeastern
Hungary, a region known to be heavily impacted by plastic
pollution, as well as from a macroplastic trap installed on the
Danube (Case A).

The pre-recorded videos used for evaluation originated from
three distinct fluvial environments (Table 1). Case A was recorded in
central Budapest, Hungary, on the right bank of the Danube River at
river kilometer (Rkm 1,645). This scenario represents a simulated
pollution event in which plastic items were deliberately released, and
subsequently retrieved, to mimic a plastic leakage scenario. Case B
consists of UAV footage captured upstream of the Kisköre Dam on
the River Tisza (Rkm 404) following the 2019 flood, showing plastic
litter retained by the dam. Case C comprises UAV imagery from the
River Bodrog, depicting plastic debris accumulated in the floodplain
and riparian forest following a flood event in 2023.

In addition, the model was tested on a live video stream recorded
by an Internet Protocol (IP) camera mounted on a pontoon
approximately 100 m downstream from the Case A location on
the Danube. This footage was captured during a flood event in
September 2024.

3 Results

3.1 Selection and training of the most
appropriate model

To investigate the effect of model architecture and image
resolution on detection performance, three YOLOv8 models (A,
B, and C) were trained using identical default hyperparameters.
Model A served as the baseline, trained with the default image
resolution. Two enhancement strategies were then evaluated
independently: increasing the input image size (Model B) and
using a more complex model architecture (Model C). All models
were trained using the same dataset and training protocol. This
approach allowed for an isolated assessment of the impact of
model complexity and input resolution on key performance
metrics, namely P, R, mAP@50, and mAP@50–95, while also
considering the suitability of each model for real-time
deployment. The image resolutions and batch sizes used in
training are summarized in Table 2.

Training was carried out for a maximum of 300 epochs, or
until early stopping criterion was met, namely, stagnation or
signs of overfitting (Figure 1). In each case, the weights of the
model corresponding to the best validation performance, as
recorded by the YOLOv8 training algorithm, were retained for
further use (Table 3). Training of Model A was halted once
performance plateaued. In contrast, Model B exhibited
overfitting, as indicated by a decline in performance on the
test set with continued training. For this model, the best-
performing weights prior to overfitting were used. In the case
of Model C, training continued beyond the onset of stagnation,
approximately at epoch 200, in order to observe potential delayed
improvements, although this approach may not have been the
most resource-efficient.

The results obtained from the three models reveal broadly
similar performance, suggesting that the primary limiting factor
is the training dataset itself. Nevertheless, all three models are
deemed sufficient for initiating a first deployment phase, during
which additional training images can be collected to support the
development of more accurate models in the future. As reflected by
the higher R values observed on the validation dataset (Table 3),

TABLE 1 Source of the pre-recorded video footages.

Case Location River Environment Video source

A Budapest Danube Urban Mounted camera on a Floating pontoon

B Kisköre Tisza Reservoir, engineering structure UAV footage

C Bodrog Bodrog Floodplain with light forest UAV footage

TABLE 2 The trained model variants.

Model Architecture Size of the training images Batch size

A YOLOv8s 640 × 640 39

B YOLOv8s 1280 × 1280 11

C YOLOv8m 640 × 640 22
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Models B and C exhibited an improved ability to detect plastic
objects. To investigate this further, Model B was selected for
subsequent testing due to its faster inference speed compared to
Model C, with the caveat that the performance differences between
the two were marginal (Table 3), with the advantage going to Model
B (henceforth referred to as “the model”).

3.2 Deployment of the model on images

The initial deployment of the trainedmodel was conducted on a set
of pre-recorded images captured in the floodplain of the River Bodrog
and at a macroplastic trap on the Danube in Budapest. The image set,
comprising eight representative samples, contained real-world

FIGURE 1
Metrics of the tests of the models during training in function of epochs.
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instances of pollution embedded in complex environmental contexts.
The model demonstrated acceptable performance across this dataset;
however, its detectionmetrics (Table 4) were lower than those observed
during the validation phase (Table 3). This reduction in performance is
expected, given the increased complexity of the task, particularly the
presence of occluding vegetation and background noise.

The model demonstrated a general capability to detect a
substantial number of plastic objects. However, in some
instances, multiple BBs were assigned to a single object
(Figure 2), which complicates accurate quantification. A key
challenge identified during testing was the presence of vegetation,
particularly branches intersecting the edges of plastic items. These
occlusions often distorted the object contours, leading the model to
detect only fragments of the actual item. As a result, several
otherwise correct detections were classified as FP, despite the
object being a genuine plastic item.

3.3 Deployment on prerecorded videos

As a step toward real-time application, the trained model was
first deployed on pre-recorded video footage from multiple
case studies.

In case A (Supplementary Video S1; Figure 3A), which
featured simulated light plastic pollution, the model exhibited
reliable detection and tracking performance for plastic waste
appearing in the central region of the frame. However, it showed
limited capability in identifying objects passing through the
right side of the image, closer to the main flowline. Most
detections occurred near the camera, reflecting a common
limitation of object detection models in recognizing small,
distant objects.

In Case B (Supplementary Video S2; Figure 3B), the model
exhibited a limited ability to detect the substantial level of plastic
pollution present. It successfully identified individual plastic items,
primarily those isolated or situated along the edges of the dense
floating debris accumulations. However, it failed to detect most
particles embedded within the interior of these aggregations, likely
due to their small relative size and the high object density. As a
result, pollution events of this nature cannot be reliably quantified
using the current model. Nevertheless, the detection of conspicuous

TABLE 3 The metrics of the models in validation.

Precision Recall mAP@50 mAP@50-95

A 0.853 0.607 0.687 0.426

B 0.849 0.698 0.774 0.450

C 0.874 0.636 0.717 0.464

TABLE 4 Means of the indicators of image deployment.

Precision Recall mAP@50 mAP@50-95

0.691 0.359 0.316 0.116

FIGURE 2
Deployment on pre-recorded images from the floodplain of
River Bodrog TP with blue, FP with red.

FIGURE 3
Representative frames from the study videos. (A)Case A; (B)Case
B; (C) Case C.
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concentrations of plastic waste may still serve as an effective basis for
issuing pollution alerts.

In Case C (Supplementary Video S3; Figure 3C), the overhead
perspective of dense vegetation posed a significant challenge to the
model, as tree branches frequently intersected with plastic objects,
obscuring their contours and hindering detection. The small relative
size of the litter further compounded this difficulty. As a result, the
model was unable to detect the majority of the plastic debris present
in the footage.

By contrast, the performance observed in Case A suggests that
the model is suitable for the originally intended application:
monitoring the open water surface from a fixed, shore- or
pontoon-mounted camera. In such settings, the absence of
occlusions and the proximity of objects to the camera enable
effective detection and tracking of floating macroplastic pollutants.

3.4 Deployment on real time video feed

A sensitivity analysis was carried out to determine the minimum
frame rate necessary for effective operation of the tracking mode in
real-time conditions. The objective was to identify the lowest feasible
model inference rate (in frames per second, FPS) at which object
tracking remains stable. To this end, the pre-recorded video from
Case A was used, and different frame rates were simulated by
selectively omitting frames between analyzed images. The results
indicated that the number of objects detected remained consistent at
or above 6 FPS. However, when the frame rate dropped below this
threshold, the tracking performance deteriorated: objects were
repeatedly detected with new IDs, indicating instability in the
tracking mechanism (Table 5).

The results of the sensitivity analysis indicate that a frame rate of
6–10 FPS is required for reliable operation of the tracking mode
under conditions similar to those in Case A. This requirement is
closely tied to the movement speed of floating objects, which is
primarily influenced by hydrodynamic and wind conditions.
Accordingly, frame rate requirements should be re-evaluated
prior to deployment in new environments. For real-time stream
analysis, individual frame inference must be completed in under
160 milliseconds to maintain the necessary throughput, with
100 milliseconds being preferable for optimal performance. On
the employed hardware, the original PyTorch-based
YOLOv8 model achieved an inference time of approximately
150 milliseconds per 1920 × 1,080 frame using GPU acceleration.
To further optimize runtime, the model was converted to a
TensorRT engine, which enables more efficient utilization of
GPU tensor cores. This conversion reduced inference time to
approximately 100 milliseconds per frame.

3.5 Improvements of detection on pre-
recorded UAV footage

Case B exhibited challenges stemming from an excessively high
object density and a disproportionately small object size relative to
the image dimensions. Case C demonstrated the difficulties
associated with both suboptimal object sizes and occlusion by
intersecting vegetation.

In environments where the object density is high (Case B),
distinguishing between objects and background becomes
increasingly complex, an essential aspect for reliable object
detection. Under such conditions, object detection models may
prove insufficient, and the problem domain begins to overlap
with that of image segmentation.

3.5.1 Tiling
One way to address the issue of small object size if sufficient

image resolution is available is through the application of a tiling
strategy. To determine an appropriate tiling resolution, a
representative frame from Case B was analyzed using various tile
configurations. Due to the substantial number of objects present in
the frame, manual annotation was considered impractical; thus, the
number of detections was used as a proxy indicator of detection
efficacy. The results demonstrated a clear trade-off between grid
resolution and computational cost, with higher tiling densities
markedly increasing inference time (Figure 4).

Performance improved as tiling resolution increased up to a grid
size of 10 × 10, plateaued between 10 × 10 and 14 × 14, and
subsequently declined beyond 14 × 14 (Figure 4). This pattern
suggests that tiling can enhance model sensitivity to small objects
to a certain extent, but overly fine grids may introduce redundancy
or fragmentation effects that degrade performance.

The limitation of the detection caused by the counterproductive
effect of tiling process as it is resulting in fragmentation of objects,
making them more difficult to detect, or they may be detected
multiple times due to their presence in different tiles. In an attempt
to avoid the aforementioned issue, a dual tiling method is employed,
where the image is divided into two different tiling sizes, the model
analysis both of them, and the obtained results are merged, based on
IoU 0.5 threshold. In order to avoid the problem of overlapping
gridlines, it was necessary to use a consecutive number of tiles. There
are other potential options to consider, including the utilization of n
and 2n tiling, as well as the implementation of a single type with a
shift of half the tile size. Both methods would result in larger
distances between the gridlines, thereby possibly leading to more
stable detections. However, the discrepancy in tile size could
potentially lower the amount detections.

It is evident that the analysis of the entire image, utilizing the
double tiling method, necessitates a substantially greater temporal
investment. As previously observed, the presence of overly dense
tiling is associated with diminished detection capabilities in this case
as well with similar curve for the detections however the number of
detections nearly doubled.

Both methods were tested on case B: simple tiling with 10
(Supplementary Video S4) and double tiling with 10 + 12
(Supplementary Video S5). These are the ones showing the
highest detection increase with moderate inference time. The
double tiling 10 + 12 was chosen because the 1920 × 1,080 image

TABLE 5 Sensitivity analysis of the necessary FPS for tracking.

FPS Detected

15 9

10 9

6 9

3 41
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is divided into tiles with integer sizes and the grids exhibit minimal
overlapping.

After the tiling process is implemented, the use of the YOLO-
built tracker becomes infeasible for tracking over tiles, therefore a
custom iteration of the BoT-SORT tracker was used.

The single-tiling approach resulted in a total of
2,610 detections, whereas the application of the double-tiling
strategy yielded 3,633 detections, indicating a substantial
increase in the number of detected objects when employing
the more complex tiling method. Supplementary Video S4
demonstrates the influence of the grid structure on the
detection process, as the shifting grid leads to noticeable
displacement of the BBs. Up to this point, a rudimentary
simplification has been applied, whereby a detection is
considered a TP. In case B, the substantial presence of plastic
pollutants renders this approach largely accurate; however, a
considerable number of FN detections are still observed in the
video. A further limitation is the inaccurate re-identification of
objects: the same object is frequently detected multiple times
under different IDs after a temporary disappearance, indicating
that the re-identification algorithm fails to correctly associate
subsequent instances with the original detection. Both issues are
present in the single- and double-tiling methods alike, ensuring
a fair comparison and highlighting the superior performance of
the double-tiling approach.

3.5.2 Blurring
To test the effect of the blurring preprocessing step three

different types of blurring kernels, each with a range of sizes,
were applied to a representative frame from case C. Blurring was
implemented through the convolution of a kernel with the image.
The tested kernels included Box blur, which computes the arithmetic
mean of all pixel values within the kernel window, assigning equal
weight to each; Median blur, which replaces the center pixel with the
median value of the surrounding pixels; and Gaussian blur, which
applies a weighted average where the weights follow a Gaussian

distribution centered on the kernel. Hence the blurring method is
denoted by the blur type and its kernel size, e.g.: Gaussian 15.

To gain valuable insight the frame was annotated to create GT to
calculate the standard indicators.

Although several configurations were evaluated, only Median
5 and Box 4 proved to be viable candidates based on their
performance. The primary objective was to enhance R, while also
considering P, given the persistent importance of accurate detection.
Ultimately, Median 5 was selected for further analysis, as it yielded a
higher R (Figure 5).

As case C exhibits disproportionately small object sizes relative
to the image implementing the double tiling 10 + 12 was tested to
further enhance the detection performance of the model. (Figure 6).
The pipeline is as follows: (i) blur the entire frame (Figures 7A,B); (ii)
apply two tiling configurations to the blurred frame and analyze
each tile separately (Figures 7C,D; detections on the original full
frame are shown in Figure 7E); and (iii) merge the two detection sets
using an IoU-based matching rule (Figure 7F). This approach
typically increases detections in vegetated areas and for small
objects; however, it does not guarantee recovery of all items
visible in the unprocessed frame, nor of all items previously
detected on the original frame (compare Figures 7E,F).

Applying median blurring with a kernel size of 5 resulted in an
improvement across all standard performance metrics. When both
enhancement techniques, median blurring and tiling, were applied
simultaneously, a notable increase was observed in R, mAP@50, and
mAP@50–95. However, P decreased, falling even below the level
observed on the raw, unprocessed image (Table 6). Although this
reduction in P suggests an increase in false detections relative to the
GT, manual inspection revealed that several of the resulting FN
detections were in fact valid plastic pollutants that had not been
annotated. These included objects that were present in the scene but
were omitted from the GT due to factors such as low visibility,
partial occlusion, or visual ambiguity.

Case C was analyzed using both enhancement methods
previously tested on the representative frame (Supplementary

FIGURE 4
Detected BBs and fame analysis time as a function of single and double tiling.
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FIGURE 5
Effects of the tested blurs and kernel sizes on the standard indicators.

FIGURE 6
Detections (blue) and GT (yellow) with blur filter Median 5 and tiling 10 + 12.
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Video S6). The model continued to exhibit limited detection
performance in areas with dense vegetation, where object
visibility was substantially reduced. However, with the application
of the enhancement techniques, the number of detected plastic
objects increased markedly: 163 detections were recorded,

compared to only 16 in the unprocessed (raw) version of the
video (Supplementary Video S3).

4 Discussion

4.1 Interpretation of validation metrics in the
context of related work

During training, only Model B exhibited signs of overfitting,
indicating that it had reached the limits of the training dataset under
the given hyperparameter configuration. In contrast, the other two
models, trained with input images at half the resolution,
demonstrated stagnating validation performance but did not

FIGURE 7
Processing pipeline for UAV footage with dense, obscuring vegetation. (A) Unaltered frame cropped from Case C. (B) Median-blurred frame (kernel
size = 5). (C)Detections on the original full frame; corresponding detections overlaid in blue on the cropped image. (D)Detections on the blurred, tiled image
(tile size= 10); tile borders inwhite and detections in red. (E)Detections on theblurred, tiled image (tile size = 12); tile borders inwhite and detections in yellow.
(F) Merged detections on the blurred, double-tiled image (tile sizes 10 and 12); detections in magenta overlaid on the original cropped image.

TABLE 6 Standard indicators of enhancement on case C.

Pre-processing P R mAP@50 mAP@50-95

Raw 0.652 0.147 0.135 0.042

Blur 0.800 0.157 0.156 0.048

Blur + Double tile 0.591 0.250 0.202 0.076
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overfit, suggesting that the small object detection challenge persists
at the dataset level. While Model B achieved the highest R, its P was
slightly lower than that of Model C (Table 3). The overall
performance of Models B and C was comparable; however,
Model C showed better generalization capabilities. It is likely that
Model C could have outperformed Model B if trained on images of
the same resolution. However, hardware limitations prevented
training with such high-resolution inputs, as this would have
resulted in a batch size of only six, potentially leading to noisy
gradient estimates and unstable convergence due to gradient
oscillations. In its current form, Model C also exhibited
significantly longer inference times (1.5–2× slower) compared to
Model B, without yielding a substantial improvement in detection
performance. Given its higher computational demands, Model C
may also be less suitable for practical deployment.

As shown in Table 7, the performance of our model is lower than
that of most other approaches in similar environment, which aligns
with expectations. The primary objective of this study is to enable
real-time analysis on cost-effective hardware platforms.
Consequently, large-scale architectures such as YOLOv5x
(86.7 million parameters), VGG19 (143.7 million parameters),
and Inception-ResNet-v2 (55.9 million parameters), used in the
referenced studies, are not suitable for the intended application. In
contrast, the most comparable models, typically belonging to the
YOLOv5s/m or YOLOv8s/m family, demonstrate superior
performance, but are trained on substantially larger datasets. This
highlights the potential for performance improvement through the
collection of additional training images.

Although the model developed in this study currently lags
behind in detection accuracy, it represents a solid foundation for
a scalable, real-time monitoring system. Its deployment in
continuous field measurements can facilitate the accumulation of
large quantities of new training data. Furthermore, the inference
results of the current model may be used as a basis for semi-
automatic annotation, where human annotators are required only

to correct model predictions rather than label scenes from scratch,
thereby significantly accelerating dataset expansion.

4.2 Reflection on dataset limitations

Although the present dataset is modest and geographically
concentrated, several factors support transferability of the
approach. Macroplastic bottles—the primary target class
here—exhibit consistent visual characteristics worldwide and are
widely reported as a prevalent component of riverine litter, making
them useful indicators of pollution levels (van Calcar and van
Emmerik, 2019; González-Fernández et al., 2021; Hurley et al.,
2023; Cowger et al., 2024). Background appearance, including
bank texture, water color, and turbidity, is typically secondary to
object shape and color for the detector, and in our study cases
turbidity already limited observations to surface-floating items,
which aligns with the intrinsic scope of image-based monitoring.
In practice, the authors expect reasonable out-of-region
performance with light fine-tuning on a small local set.

Despite being trained on a modest and geographically limited
dataset, the model performs reliably across diverse settings,
providing a practical base for field deployment and for collecting
additional training data and enabling semi-automated pre-
annotation, ultimately supporting the training of site-specific and
more advanced models.

At the same time, several site-specific factors can constrain
performance and should be acknowledged. Optical water
properties and illumination (for example suspended sediment,
algal films, sunglint) can reduce object–background contrast and
thus effective detectability (Kataoka and Nihei, 2020; Garcia-Garin
et al., 2021; Salgado-Hernanz et al., 2021). Camera geometry and
optics also matter: field of view, focal length, altitude or stand-off
distance, and frame rate jointly determine ground sampling distance
and motion blur, which in turn set the minimum reliably detectable

TABLE 7 Performance of model B in comparison with related work, for training data the whole dataset is indicated regardless of its allocation for training,
testing and validation, for multi class detection works the average mAP is indicated.

Model Training dataset
(augmented)

Precision
(P)

Recall
(R)

mAP@
50

mAP@
50-95

Model B (this study) YOLOv8s 1,667 (8,335) 0.85 0.70 0.77 0.45

Lieshout et al. (2020) CNN + Faster R-CNN 1,272 0.69

Wolf et al. (2020) Tile wise
classification CNN

6,892 tiles 0.77 0.77

Kylili et al. (2021) YOLOv5x 1,650 0.99 0.92

Marin et al. (2021) Inception-ResNetV2 2,395 0.92 0.92

Papakonstantinou et al.
(2021)

VGG19 30 793 0.84 0.72

Armitage et al. (2022) YOLOv5s 33461 0.98 0.88 0.85

Teng et al. (2022) YOLOv5x 2050 0.99

Veerasingam et al. (2022) YOLOv5m 0.91

Wang and Zhao (2024) YOLOv8s 2000 0.83 0.45

Reddy et al. (2024) YOLOv8m 16703 (50109) 0.98 0.99 0.99 0.78
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object size (Lieshout et al., 2020; Geraeds et al., 2019; Yang et al.,
2024). Vegetation and debris introduce occlusions and clutter that
degrade counting and tracking (Hurley et al., 2023; de Vries et al.,
2021). These considerations reinforce the value of local calibration
and modest fine-tuning, as well as careful station siting and camera
configuration, when transferring the approach to new rivers or
hydrological settings.

4.3 Performance evaluation on primary
deployment: pontoon-mounted camera

In the simulated pollution scenario (Case A), the model
demonstrated adequate performance in detecting floating
macroplastic objects. However, the simulation lacked one
important aspect: the absence of biotic debris, which is typically
abundant during flood events. Under real-world conditions,
driftwood often accumulates above pontoons, forming debris
traps that also capture plastic waste. In such environments,
accurate re-identification becomes critical, particularly for objects
that remain in the field of view of the camera over multiple days, to
avoid duplicate detections and erroneous counting. Furthermore,
objects may intermittently disappear and reappear in the frame due
to occlusion by debris. To mitigate this issue, it is recommended to
position cameras in locations less prone to the accumulation of
floating debris.

The detection capabilities of the current model do not cover the
full range of macroplastic pollutants. Specifically, its performance is
limited to objects of approximately plastic bottle size or larger;
significantly smaller items often remain undetected. Bottles are a
good indicator of plastic pollution. Despite this limitation, the model
in its current configuration is well suited for deployment in real-time
monitoring applications. Importantly, it enables the collection of
large volumes of image data under realistic field conditions. These
data, when used for iterative model refinement and re-training,
particularly through semi-automated annotation workflows, can
support the development of more accurate detection models in
future research.

Case A simulated continuous leakage via staged releases and
therefore did not capture the full complexity of flood-borne debris
such as driftwood, algal mats, and mixed organic rafts. These
conditions introduce severe occlusions, clutter, and color–texture
ambiguity that can degrade both detection and re-identification.
Even so, results from the Bodrog floodplain (Figure 2) show that the
model can detect plastic items under challenging field conditions,
including partial coverage and discoloration. To improve robustness
under flood conditions, the authors will prioritize site-specific fine-
tuning on additional real flood imagery from the deployment
locations and apply targeted pre-processing, notably median
blurring and if necessary tiling, to mitigate occlusions and
enhance small-object sensitivity.

4.4 Proposed monitoring system
configurations

The proposed model is suitable for integration into a large-scale
detection and quantification network for monitoring and early

warning applications. Due to its relatively low computational
requirements, the model can be executed locally at each
monitoring station, allowing for on-site processing. In this
configuration, only the processed results or summary data need
to be transmitted to a central server via the internet. A typical
deployment setup consists of an IP camera, a compact processing
unit equipped with a low-power GPU, and a router to enable data
transmission.

A major limitation of this approach is the need for multiple
physical devices to be installed at each site, which increases system
vulnerability and power consumption. However, it also offers
significant advantages: the system does not rely on high-
bandwidth internet connectivity, making it feasible for remote or
infrastructure-limited locations. Furthermore, the network is highly
scalable, as new monitoring nodes can be added with minimal
modifications to the overall system architecture.

An alternative system configuration is enabled by the
lightweight nature of the presented model. When executed on a
sufficiently powerful GPU, the model can run multiple inference
threads in parallel, allowing for the simultaneous analysis of video
streams from several IP cameras. In this architecture, only the IP
cameras and basic networking equipment (e.g., routers) need to be
deployed at the monitoring sites, while all processing is performed
centrally. This reduces the number of on-site components, thereby
decreasing system vulnerability and energy demand.

However, the viability of this configuration depends on the
availability of a stable high-bandwidth internet connection between
the monitoring site and the central processing server. One of the key
advantages of this approach is its compatibility with low-power
infrastructure: due to the minimal on-site energy requirements, such
systems can be powered by solar panels and batteries, making them
suitable for deployment in remote or off-grid environments.

The centrally processed system is not linearly scalable in terms of
cost. Once the processing capacity of the central server is reached,
additional computing units must be introduced, each representing a
significant investment. However, these units offer comparable
processing throughput to their predecessors. To maximize
resource efficiency, it is advisable to scale the system by
acquiring and integrating additional IP cameras concurrently
with the deployment of new processing units.

The two system architectures can be combined within a single
network by selecting the most suitable on-site configuration for each
deployment environment (Figure 8). This hybrid approach increases
the overall flexibility of the monitoring system, allowing it to adapt
to varying infrastructural and environmental constraints. Stations
designed for centralized processing are generally well suited to solar
power if the solar panel and battery are sized appropriately. On-site
inference draws more power and is less favorable for solar-
only operation.

To support deployment planning, the authors provide indicative
per-station costs (2025 EUR). For centralized processing (edge-
light), typical components include a PTZ camera with optical
zoom and infrared capability (€300–800), a router (€50–100),
and off-grid infrastructure (solar panels, batteries, enclosure,
mounting) at about €1,250. Total capital cost is approximately
€1,000 where grid power is available and approximately
€2,000 for off-grid sites. For on-site processing (edge-heavy), add
a mini-PC with a Jetson Orin NX 8 GB (about €800); in this
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configuration, total cost is approximately €2,000 with grid power
and higher for off-grid deployments owing to the larger power
system required.

To ensure station weatherproofing and flood resilience,
deployments should address ingress protection, thermal
management, and siting relative to local high-water marks. The
authors recommend IP66-rated outdoor cameras, with ancillary
electronics housed in weatherproof enclosures that provide
adequate ventilation for GPU heat. Flood resilience is achieved
primarily through careful placement, for example on high banks,
on bridge structures, or on floating pontoons designed to remain
above anticipated flood levels, with cables and connectors positioned
above crest elevations where feasible.

4.5 Model performance in challenging UAV
deployments

Although the primary objective of the model is its integration
into the previously described monitoring system, its deployability
was also evaluated using pre-recorded UAV footage under moderate
(Case C) and heavy (Case B) pollution conditions. The goal in these
scenarios was to provide a rough estimation of plastic pollution
levels. However, the model struggled to perform both detection and
tracking tasks in these environments, largely due to the small relative
size of the target objects and the presence of dense vegetation. As a
result, detection performance on the raw footage was insufficient to
yield even a coarse estimate of pollution levels.

To address the issue of small relative object sizes in Case B, both
single- and double-tiling methods were applied to increase the
apparent size of objects within each analyzed region, thereby
enhancing the detection and quantification capabilities of the
model. Without any tiling, the model detected 80 plastic
pollutants, though this count included multiple detections of the
same objects due to faulty re-identification. With single tiling, the
count increased to 2,610, and with double tiling to 3,633; however,
both configurations still suffered from repeated detections of
individual objects caused by inadequate object re-identification.

Despite the substantial increase in detection count, the totals still
underestimated the true number of macroplastic items in the
footage. The high object density degraded performance by

reducing foreground–background separability, making bounding-
box detection less reliable.

In such scenes, segmentation (Kylili et al., 2021; Lieshout et al.,
2020; Shinichiro and Morita, 2020) or tile-wise classification
(Gonçalves et al., 2020; Pinto et al., 2021; Wolf et al., 2020) can
yield more stable abundance estimates by measuring area coverage
or density rather than counting discrete items. These alternatives
require well-annotated training data with explicit definitions of
object density for dense fields and will be explored in future
work to clarify operating envelopes and error trade-offs.

To mitigate the effect of occluding vegetation in Case C, a
blurring pre-processing step was introduced to reduce the visual
noise caused by small overhanging branches that overlapped with
macroplastic pollutants. The performance of the model improved
slightly when blurring was applied alone. However, when combined
with double tiling, a more substantial increase in performance was
observed. Although P decreased with the combined pre-processing
approach, manual inspection revealed that several of the resulting
false detections corresponded to macroplastic pollutants that were
present in the image but had not been recognized by the annotator
and were thus absent from the GT. This observation highlights the
inherent complexity of the detection task in such environments.

4.6 Recommendations for image
acquisition: fixed-camera and UAV
perspectives

For optimal placement of pontoon-, bank-, or bridge-mounted
cameras to maximize the usefulness of video streams and training
image quality, the following considerations are recommended. First,
the model is unable to reliably detect objects located far from the
camera; therefore, it is preferable to cover a shorter section of the
river at close range rather than a longer stretch aligned parallel to the
riverbank. Second, to minimize the risk of multiple counting due to
object entrapment within the field of view of the camera, areas that
are prone to accumulating large quantities of debris should be
avoided. Selecting locations with steady flow and minimal
obstruction improves both the accuracy of estimation of
macroplastic flux and the usability of the data for further
training purposes.

FIGURE 8
Monitoring system proposal with hybrid (on site and centralized) analysis.
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For future UAV deployments, similar principles apply. Wide-
angle views intended to capture large areas in a single overpass are
generally less effective than using a narrower field of view in
combination with a longer flight path over the area of interest.
This strategy provides higher spatial resolution and improved object
visibility, thereby enhancing detection and tracking performance
therefore yielding more reliable object counts. To further improve
the accuracy of object re-identification, both the UAV and its
camera should move slowly and steadily. This reduces motion
blur and facilitates the temporal association of object appearances
across frames, supporting more consistent and accurate
tracking results.

4.7 Opportunities for further development
and future work

The next step in this research is the large-scale and real-world
deployment of the proposed monitoring system. Such an
implementation will enable the collection of data on macroplastic
flux across a network of stations positioned at various cross-sections
and river reaches, resulting in valuable continuous time series for
studying macroplastic pollutant transport processes. A widespread
monitoring network can also support pollution mitigation and
damage control by issuing real-time alerts when high pollution
levels are detected.

In addition to its operational benefits, continuous large-scale
deployment will facilitate the development of a substantial,
specialized image dataset which supports the training of more
accurate and robust detection models. Since each monitoring
station would collect data under its own specific environmental
and visual conditions, it will be possible to further enhance detection
and quantification performance at the local level by training station-
specific models.

A key objective is to integrate detection outputs with
environmental drivers to move from monitoring to prediction.
The authors envisage a workflow in which station-level time
series (e.g., item per day) are time-synchronized and analyzed
alongside hydrological and meteorological variables such as
discharge, stage, and antecedent rainfall over the contributing
watershed. In practice, this involves (i) computing lagged cross-
correlations between detection time series and hydro-meteorological
records to identify response times and thresholds, (ii) fitting
lightweight predictive models—such as ARIMA with exogenous
inputs, random forest, or neural networks—to nowcast and
forecast pollution pulses, and (iii) exploiting spatiotemporal
patterns across the station network to infer transport and
retention between reaches. Pilot correlations will become feasible
once sufficient continuous observations have been accumulated. The
present paper focuses on the operational concept; the outlined
analyses indicate how the networked design can evolve into
predictive, decision-support tools as longer time series
become available.

In addition, incorporating hydrodynamic modeling alongside
the station network can strengthen interpretation of transport
processes, help identify likely accumulation points along the
reach, and provide short-term forecasts under changing discharge
and stage conditions (Fleit et al., 2023). Even simple 1D/2D

hydraulic fields or particle-tracking surrogates can be coupled
with detections to guide station siting and intervention planning.

4.8 Our contribution to the field

Our contribution is twofold: (i) the authors defined a
measurement architecture, including decentralized and
centralized processing pathways, needed to operate real-time
detection reliably and affordably; and (ii) the authors
demonstrated methods that raise recall in difficult scenes
by pre-processing inputs, while maintaining runtime suitable
for low-power GPUs. Importantly, the networked-station
concept enables longitudinal tracking of pollution signals,
supports intervention planning (e.g., targeted cleanup
logistics), and provides a foundation for river-system early-
warning services.

5 Conclusion

This study presented a lightweight, real-time macroplastic
detection system designed for continuous river monitoring using
video streams from fixed or mobile cameras. The core detection
model, based on the YOLOv8 architecture, demonstrated acceptable
performance under controlled conditions and showed potential for
field deployment with further enhancements.

Through a series of tests involving different environmental
settings and video characteristics, the study explored challenges
such as small object size, occlusions by vegetation, and faulty re-
identification. Pre-processing techniques, namely tiling and
blurring, were evaluated to address these issues, and their
combination led to marked improvements in recall and detection
robustness, albeit with a decrease in P due to ground truth
limitations.

The proposed system is suitable for integration into a scalable
monitoring network, offering both centralized and decentralized
processing configurations. Its lightweight nature enables on-site
analysis or multi-stream centralized processing, depending on
infrastructural constraints. Once deployed, such a system could
facilitate the automated collection of large, diverse image
datasets, supporting iterative model improvement through semi-
automated annotation.

Ultimately, the framework lays the foundation for generating
high-resolution macroplastic flux data across different river sections
or entire river systems and time scales. When combined with
hydrological and meteorological datasets, this information can
support the development of predictive models and early warning
systems, contributing to improved understanding and mitigation of
plastic pollution in freshwater systems.

In summary, the novelty of this work is an operational, scalable
framework for real-time macroplastic monitoring that advances
field readiness from single cameras to networked deployments.
Fixed, low-power stations can be rolled out as multi-site
networks to provide reach-to basin-scale surveillance, while
complementary UAV campaigns enable rapid assessment and
hotspot identification. This architecture keeps hardware, and
energy demands modest enough for widespread adoption,
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including by NGOs, and establishes a practical pathway toward
continuous monitoring and decision support.
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