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In the era of large models, massive amounts of Synthetic Aperture Radar (SAR)
scattering data need to be synthesized to meet the demand for interpretation
training, which calls for clear temporal patterns of time-series SAR for sequence
generation. However, the temporal evolution trends of SAR scattering
coefficients have been neither comprehensively studied nor explicitly
modelled. To address the issue, this paper takes the long-sequence temperate
woodlands as the research object for analysis and explicit modelling, where the
trend analysis provides explainable motivations for model design. Using Sentinel-
1A ground range detected data with a 12-day revisit cycle, two SAR image
sequences are constructed, each consists of VV or VH intensity images of
174 consecutive moments spanning from April 2019 to December 2024. By
classifying geographically matched multi-temporal optical images through a
fine-grained multi-scale convolutional neural network, the woodland area is
identified, and 9.48million VV/VH scattering coefficient sequences are extracted.
The seasonal Mann-Kendall test evaluates the annual changes in scattering
intensity, while seasonal-trend decomposition using LOESS provides seasonal
patterns. Correlation analysis shows a high correlation between the average
temperature and the average scattering intensity. Based on the analysis, a
scattering intensity model is constructed using a modified Transformer
network, which predicts scattering intensity sequences for woodlands. The
evaluation of the synthetic sequence for year 2024 indicates minor deviation
of the average intensity prediction, which confirms the effective modelling and
the necessary analysis.
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1 Introduction

Synthetic Aperture Radar (SAR) can penetrate cloud cover for day-and-night, all-
weather Earth observation. The temporal consistency facilitates easier acquisition of time-
series SAR data compared to time-series optical data, such that time-series SAR data
provide more stable observational sources for long-term dynamic studies such as vegetation
monitoring and surface deformation detection at the high-resolution scale. The sequential
SAR data have achieved success in quantitative remote sensing, which can be used for the
retrieval of soil water content, agricultural growth status, and vegetation index.
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Interferometric SAR sequences are also widely used to monitor
subtle subsidence and assess environmental dynamics.

However, the interpretation of SAR data is difficult, as manual
annotation is needed and not easily performed. Optical image
interpretation has entered the era of large-scale models. For
natural images, the Segment Anything Model (SAM) (Kirillov
et al., 2023) segments all objects in a picture. Relying on a huge
number of parameters and massive training data, SAM has learned
general concepts about objects, enabling it to generate masks for any
object in any image. SAM can be applied directly to new image
domains without additional training. Some large interpretation
models have also emerged in the field of remote sensing.
EarthMarker (Zhang et al., 2024a) interprets remote sensing
images at the granularity of images, regions, or points, and solve
visual reasoning tasks. Unfortunately, SAR images are challenges for
all the large-scale models. Although the EarthGPT model (Zhang
et al., 2024b) initially supports SAR image interpretation, the limited
training data makes the interpretation results fail to satisfy practical
application.

SAR images can be synthesized to enrich the application of
large-scale models. Compared to the clear spectral and textural
patterns in optical time-series data, the temporal characteristics of
time-series SAR data remain ambiguous due to non-intuitive
interpretability. Therefore, SAR annotation relies on professional
knowledge and incurs high costs. This leads to long cycles for
preparing training data, difficult few-shot target recognition, and
poor interpretation ability. As a data augmentation method,
synthetic images can significantly enhance the generalization
ability of models under few-shot conditions, driving the explosive
growth of microwave application research.

Some studies have adopted the Generative Adversarial Network
(GAN) framework to generate SAR-style images. Unconditional
generation was implemented in (Song et al., 2022; Guo et al., 2023).
Given land categories and imaging attributes, conditional generation
was accomplished in (Sun et al., 2023; Ju et al., 2023; Zeng et al.,
2024). However, these studies were all conducted on single images,
ignoring the temporal attributes of SAR and failing to ensure the
numerical accuracy of generated results.

Although time-series SAR scattering coefficients have been
partially analyzed, no work yet modelled the sequence. Steffen
and Heinrichs (2001) presented a study on the sequential
scattering characteristics. They selected sample regions for eight
different ice types, studied their temporal backscatter variations, and
used the observed backscatter values from ERS-1 satellite to
characterize the radar signatures of the ice surfaces, while the
time series of twenty-four SAR images over a 3-month period
provided new insights into the degree of temporal variability of
each surface. Similar works were done in (Pulliainen et al., 1996; van
der Woude et al., 2024; Soudani et al., 2021; Shimizu et al., 2019;
Udali et al., 2021). However, more definitive answers are needed to
uncover the temporal patterns possibly existing in sequential SAR
scattering coefficients quantitatively, and to model the trends in an
explicit way. Apparently, understanding the temporal properties can
help to model SAR scattering coefficients.

To model the time-series SAR scattering coefficients in an
explicit way, this study conducts exploratory research focusing on
woodland areas, including: 1) extracting 9.48 million woodland
sequences from 174 consecutive Sentinel-1A SAR images from

April 2019 to December 2024; 2) analyzing annual and seasonal
trends of SAR scattering coefficients; 3) quantitatively measuring the
correlation between SAR scattering coefficients and temperature; 4)
and modeling time-series prediction of SAR scattering coefficients
via neural networks. Our analysis provides the trends of the average
woodland SAR scattering coefficients, which guides the design of the
prediction model beling linked to temporal properties. The
conclusions derived from these investigations offer insights for
leveraging temporal patterns in translation or synthesis tasks.

The contributions of this work are summarized below.

1. This work reveals the temporal trends of the Sentinel-1A
scattering coefficients over forest-covered areas.

2. This work predicts time-series Sentinel-1A scattering
coefficients for forest-covered areas, which lays the ground
for SAR sequence interpolation or synthesis.

3. This research provides a demonstration for explainable neural
networks by joint analysis and modelling.

The rest of the paper is organized as follows. Section 2 introduces
related work. Section 3 presents the data and methods for temporal
analysis. Section 4 presents the results of temporal analysis,
including the land cover areas, annual and seasonal patterns, and
correlation to temperature. The temporal trend is modeled in
Section 5. Section 6 discusses some impact factors for analysis
and modelling. Section 7 draws conclusions based on the findings.

2 Related work

The research of analyzing and applying multi-temporal trend of
SAR sequences are reviewed. A few works are investigated which
mentioned the intensity changes of time-series SAR. Quantitative
remote sensing or interpretation are also investigated, categorizing
relevant studies from multiple aspects such as soil moisture,
wetlands, agriculture, geological disasters, urban areas, and ice
and snow. The interferometric application of multi-temporal SAR
has also been partially demonstrated. Generating SAR images were
recently emphasized to solve the issue of lacking available data in
training neural networks, which is also investigated as the possible
development benefiting from this work.

2.1 Backscattering intensity changes in time-
series SAR

Very few works explored the dynamics of SAR intensity and the
relation to environmental changes. Pulliainen et al. (1996)
investigated the correlation between the backscattering coefficient
and forest stem volume (biomass) with regard to canopy and soil
moisture. Paluba et al. (2025) used Sentinel-1 SAR data to estimate
Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI) which were typically derived from optical
satellites. van der Woude et al. (2024) investigated the sensitivity of
temporally dense Sentinel-1 backscatter data to varying disturbance
intensities in temperate forests, and the influence of confounding
factors such as radar backscatter signal seasonality, shadow, and
layover on the radar backscatter signal at a pixel level, and concluded
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that backscatter seasonality is dependent on species phenology and
degree of canopy cover. Soudani et al. (2021) used Sentinel-1A and
1B data over 5 years to characterize the phenological cycle of a
temperate deciduous forest. Shimizu et al. (2019) investigated the
Sentinel-1 time-series data with regard to disturbances in tropical
seasonal forests. Udali et al. (2021) investigated the temporal
stability through the use of backscatter from multiple seasons
and years of acquisition. These works analyzed the intensity
variations of long time-series SAR data in woodlands, which
provided a basis for disturbance detection and other related
applications.

2.2 Applications of multi-temporal SAR data

The inversion of soil water content based on time-series SAR has
been widely studied and applied. Bai et al. (2017) coupled the water
cloud model and the advanced integral equation model to estimate
the surface soil moisture in the northeastern Tibetan Plateau from
time-series VV-polarized Sentinel-1A images. Chen et al. (2020)
retrieved the soil moisture of karst rocky desertification area with
multi-temporal Sentinel-1 data and the Alpha approximation
model, and analyzed the spatial and temporal variation and
impact factors. Fernandez-Carrillo et al. (2019) investigated the
outcome of prescribed burns in eucalypt forests of Western
Australia with the radar burn ratio index, in which the multi-
temporal L-band PALSAR-2 images were used. Merzouki et al.
(2019) estimated surface soil moisture over bare fields with the
compact polarimetry configuration of the RADARSAT
Constellation, in which 63 RADARSAT-2 fully polarimetric
images acquired between 2012 and 2017 were used, as well as the
calibrated integral equation model multi-polarization
inversion approach.

Multi-temporal SAR was also used for monitoring disasters and
sea ice. Ramsey et al. (2016) mapped Marsh canopy structure from
2009 to 2012 in the Barataria Bay, Louisiana coastal region to
investigate the impact of oil spill to the causes for the previously
revealed dramatic change in marsh structure from prespill to
postspill, and the occurrence of structure features that exhibited
abnormal spatial and temporal patterns. Siddique et al. (2024) used
multi-temporal Sentinel-1A images for a time-series analysis to
obtain flood patterns. Tomppo et al. (2019) detected snow load
damage and estimated growing stock volume in damaged forest
areas, both with multi-temporal Sentinel-1 data. Mahmud et al.
(2016) used 4,457 RADARSAT images over sea ice in the northern
Canadian Arctic Archipelago to generate a new time series of melt
onset from 1997 to 2014, and analyzed average melt onset date and
its relationship to changed solar energy absorption and September
sea ice coverage. To distinguish multiyear ice and first-year ice in
Arctic, Zhang et al. (2019) used active microwave data from
QuikSCAT and Advanced Scatterometer along with passive
microwave data for joint classification, and obtained the daily sea
ice classification dataset during the winter from 2002 to 2017.

Time-series SAR can track agricultural growth status and crop
planting structures. Erten et al. (2015) made temporal mapping of
the crop height to tracked the plant growth of rice paddies by
interference of polarized TanDEM-X images. Liu et al. (2023a)
effectively combined crop growth patterns with plant height

models by introducing a dual-polarization SAR growth model for
rice plant height, considering the correlation between crop growth
changes and phenological stages. Guo et al. (2024b) analyzed six
phenological stages of rice with multi-temporal compact
polarimetric SAR data by exploring the polarimetric information
of general compact polarimetric SAR data and the target scattering
characterization capabilities under different imaging modes,
extracting general compact polarimetric features through the
Delta alpha B/alpha B target decomposition method, and
classifying with the features. Zhong et al. (2025) developed a
method for rapidly extracting the range of rice fields using a
threshold segmentation approach and employed a U-Net deep
learning model to delineate the distribution of rice fields. Useya
and Chen (2019) used Sentinel-1 time series to detect the subtle
changes that occur to the crops and fields respectively, hence to
detect cropping patterns on small-scale farmlands, and
implemented Fourier time series modeling to determine the
trends on the study sites. Wang et al. (2021) used parcel-based
temporal sequence SAR to extract the crop planting structure in
South China karst area, and analyzed the spatial coupling
relationship between crop planting structure and karst rocky
desertification. Jain et al. (2024) used dual polarized Radar
vegetation index (DpRVI) to identify phenological stage for
soybean, where the sequence data was used to track DpRVI
changes throughout the entire growth process. Haldar et al.
(2016) explored time series polarimetric C-band data for
vegetation state monitoring to understand the mechanism of
growth and phenology for important winter crops in India, in
which the co-polarization phase difference, amplitude ratio, and
polarization indices were investigated.

Instead of the commonly used vegetation indices from optical
images, new radar vegetation indices were constructed based on
time-series SAR data. Mandal et al. (2020a) jointly utilized the
scattering information in terms of the degree of polarization and
the eigenvalue spectrum to derive a new vegetation index (DpRVI)
from dual-polarized SAR data, assessed the utility of this index as an
indicator of plant growth dynamics for canola, soybean, and wheat,
over a test site in Canada, and confirmed the DpRVI trend plant
growth dynamics by a temporal analysis of DpRVI with crop
biophysical variables at different phenological stages. At the same
time, Mandal et al. (2020b) investigated the potential of the
Generalized volume scattering model based Radar Vegetation
Index (GRVI) for monitoring rice growth at different
phenological stages, which utilized the concept of geodesic
distance to measure the similarity between the observed
Kennaugh matrix (representation of observed Polarimetric SAR
information) and the Kennaugh matrix of a generalized volume
scattering model (a realization of scattering media).

Using time-series SAR data, some change detection studies
extracted changes in land cover categories. Pan et al. (2019)
developed a method with the SAR time series data and a spectral
angle mapping to detect the short-term land use changes, which was
tested with Sentinel-1 SAR data for urban change detection. Vanama
et al. (2021) proposed a flood mapping framework using multi-
temporal Sentinel-1images and WorldView-3 images, implemented
two semi-automatic change detection techniques, and analyzed the
2018 flood event of Kerala, India. To detect urban changes and
activities in an automatic way, Zitzlsberger et al. (2021) used
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sequential multispectral and SAR data with synthetic labeling to
train a neural network. Baek and Jung (2019) investigated change
detection of multi-temporal SAR images with amplitude
or coherence.

Sequential Interferometric SAR (InSAR) data provides phase
change information which is widely used to monitor subtle
subsidence. Raucoules et al. (2013) used the archive of ERS and
Envisat satellite images to produce surface deformation-velocity
maps for different periods by differential SAR interferometry,
which was applied to monitor variable uplift and subsidence of
urban ground from 1993 to 2010 in the metropolitan area of Manila,
Philippines. Sharma et al. (2016) carried out a time series
interferometric analysis of UAV L-band SAR data captured from
July 2009 to August 2014 to assess both the spatial and temporal
variation of subsidence on Sherman Island in California’s
Sacramento-San Joaquin Delta. Liu et al. (2023b) measured land
motions in Yellow River delta using L-band ALOS images with
multi-temporal InSAR, illustrating multiple obvious surface sinking
regions and a maximum annual subsidence velocity of up to
130 mm. The findings are useful for understanding the land
motion patterns and sustainably managing groundwater in the
delta-wide scale. Li et al. (2023) analyzed the land subsidence of
the Parowan Valley in USA by interferometricly processing
155 Sentinel-1 scenes from 2014 to 2020, confirmed the
approximately 30 cm of ground subsidence, and establish the
relationship between ground deformation and groundwater
extraction. Wang et al. (2023) developed an approach for
monitoring ground displacement in mining areas with sequence
INSAR by integrating persistent scatterer, slowly decoherent
filtering phase, and distributed scatterer based on signal-to-noise
ratio to increase the spatial density of coherent points.

By detecting height changes, sequential InSAR is also used to
assess environmental dynamics and disasters. Amani et al. (2021)
produced coherence products over the entire province of Alberta,
Canada (similar to 661,000 km(2)) using the Sentinel-1 data
acquired from 2017 to 2020, which were employed along with
large amount of wetland reference samples to assess the
separability of different wetland types and their trends over time.
To review the deformation history of the Zhongbao landslide and
prevent the threat of secondary disasters, Yang et al. (2024) applied
small baseline subsets to process 59 synthetic aperture radar (SAR)
images captured from Sentinel-1A satellite for the time series
deformation of the landslide along the radar line of sight
direction, and calculated the Hurst exponent of the surface
deformation along the two directions to quantify the hidden
deformation development trend and identify the unstable
deformation areas. Zheng et al. (2025) used time-series InSAR to
monitor potential geohazards at various elevations.

Optical images can be integrated with time-series SAR for
remote sensing observations. Albanesi et al. (2021) presented a
case study on a possible combination of SMAP radiometer data
with X-band radar data from TerraSAR-X and COSMO-SkyMed,
which was performed in Germany and Brazilian Amazon,
respectively, to explore very different vegetation conditions.
Bourgeau-Chavez et al. (2021) developed high accuracy peatland
maps for the Pastaza Maranon Foreland Basin using a combination
of multi-temporal SAR and optical remote sensing in a machine
learning classifier. Liu et al. (2025) integrated Sentinel-1 and

Sentinel-2 imagery to map coastal salt-affected soil and
vegetation patterns and address spatial heterogeneity and
dynamic environmental conditions for a coastal region in China.
By integrating a multi-sensor and multi-temporal approach from
optical (Sentinel-2 and PlanetScope) and SAR (Sentinel-1 and
TerraSAR-X) data, Wendleder et al. (2021) presented a
summertime series of supraglacial lake evolution on Baltoro
Glacier in the Karakoram from 2016 to 2020. Zhang Y. et al.
(2024) used time-series Landsat eight and Sentinel-1 images to
quantitatively estimate aboveground biomass carbon, and
recognized that extreme gradient boosting (XGBoost) can explore
the contributions of spatiotemporal features to the estimation.

2.3 Conditional SAR image generation

In the era of large data, the development of interpretation
technologies of SAR images faces challenges posed by insufficient
training data. Labeling SAR images relies on specialized expertise.
The high costs leads to difficulties such as painful data accumulation,
inaccurate few-shot recognition, and poor generalization ability. As
a data augmentation method, synthetic images can enhance a
model’s generalization ability under few-shot conditions, driving
explosive growth in SAR application. Aware of this need, several
studies have already initiated research on synthesizing SAR images,
which is termed microwave vision generation. Two types of
approaches were explored, including generating from scattering
conditions and translating from optical images.

The microwave vision generation based on scattering conditions
is implemented using the Generative Adversarial Network (GAN)
framework. Song et al. (2022) first proposed the unconditional
generation of SAR images using GAN. Guo et al. (2023)
employed a causal adversarial autoencoder to achieve
disentangled representation of SAR images, introducing a cyclic
high-frequency embedding method and a symmetric conditional
encoding module to assist unconditional generation. On the basis of
unconditional generation, multiple studies have further constrained
generation results by introducing specific feature conditions, such as
land cover types, azimuth angles, and semantic maps. Sun et al.
(2023) incorporated land categories and azimuth attributes to
constrain the generation process. Ju et al. (2023) added location
information and category labels to generation. In addition to
category and azimuth attributes, semantic maps were introduced
in (Zeng et al., 2024) as additional conditions to enhance diversity.

In recent years, some studies have focused on supervised optical-
to-SAR image translation for microwave vision generation. Fu et al.
(2021) proposed an improved Pix2Pix generative adversarial
architecture with multi-scale cascaded residual connections,
tested on GF-3 and UAV-borne SAR. Guo et al. (2024a)
introduced deformable convolutions and attention modules into
the generator, along with Wasserstein loss and frequency-domain
loss. Bao et al. (2024) enhanced generation diversity using pairwise
distance loss, enabling translation networks to be trained with fewer
samples. Rangzan et al. (2024) proposed a SAR temporal shift
model, which takes optical images at the target timestamp and
SAR images with the same imaging geometry but different
timestamps as inputs, combined with change detection maps
derived from intermediate-period optical images, to finally

Frontiers in Environmental Science frontiersin.org04

Yin et al. 10.3389/fenvs.2025.1665409

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1665409


generate SAR images at the target timestamp. Additionally, some
studies (Li et al., 2020; Shi et al., 2022; Wang et al., 2022; Wu et al.,
2024) aim to achieve optical-to-SAR image translation from an
application perspective, primarily to address the shortage of SAR
ship image data in ship detection tasks.

3 Materials and methods

3.1 Study area

The study area is located at 51°21′4′′ − 51°59′45′′N,
29°51′56′′ − 31°29′34′′E near Chernihiv Oblast, Ukraine
(Figure 1). It lies at the north of Ukraine adjacent to Belarus,
situated within the alluvial plain of the middle reaches of the
Prypiat River. The area falls within the temperate continental
climate zone of Eastern Europe, with an average annual
temperature of approximately 6.5°C. Precipitation is concentrated
from June to August, dominated by spring snowmelt and river
flooding. Vegetation in the region is primarily characterized by
mixed coniferous and broadleaf forests. As a resettlement zone
established after the 1986 Chernobyl nuclear accident, woodland
within a 30-km radius has been incorporated into a strictly
controlled exclusion zone. This ecosystem represents a mid-
latitude forest with low human disturbance, so is suitable for
continuous observation.

3.2 SAR and optical satellite data

The SAR data used in this study were acquired from the
Sentinel-1 satellite. Launched in 2014, the Sentinel-1A satellite

carries a 5.4 GHz C-band SAR sensor. The level-1
Interferometric Wide Swath (IW) mode Ground Range Detected
(GRD) data were utilized with dual polarization modes (vertical-
vertical, and vertical-horizontal, VV and VH). Preprocessing
includes thermal noise removal, geometric correction, radiometric
calibration, denoising, and topographic correction. The systematic
processing chain converted digital number values into
geographically linked backscattering coefficients.

Optical data were also employed to support the analysis of SAR
data. Analysis of SAR data was conducted separately on single land
cover type, for which the land cover classification (or semantic
segmentation) is needed. SAR data is not intuitive when interpreting
terrain content, as it is difficult to label and can lead to significant
errors. Therefore, to ensure the high accuracy of land cover
boundaries, optical data were used to extract spatial extents of
specified land cover types. Multi-temporal optical data were
acquired from multispectral data of the Sentinel-2 satellite. The
Sentinel-2 satellite constellation (comprising Sentinel-2A and
Sentinel-2B) carries a high-resolution multispectral imager (MSI)
designed to provide the timely observation of vegetation, soil, and
water, where the level-1C multispectral (MSI) Sentinel-2 data were
utilized with blue, green, red, and near infrared (B/G/R/NIR) bands
for classification.

3.3 Meteorological data

In addition to the trend analysis, the correlation between
scattering coefficient and temperature will also be discussed. The
scattering coefficient is directly related to atmospheric density,
which is not easily obtained. Given the standard atmospheric
distribution model, the current value of atmospheric density is

FIGURE 1
Study area (marked as dark). It lies at the border between Ukraine and Belarus falling within the temperate continental climate zone.
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obtained through the formula ρ � 1.293 × (P/P0) × (273.15/T),
where P and P0 represent the current and standard atmospheric
pressures, respectively, and T represents the current Kelvin

temperature. There is generally a stable negative correlation
between changes in atmospheric density and changes in
temperature. For example, when temperature rises due to

FIGURE 2
Structure of the classifier to identify woodland. Four DSBs are cascaded for multi-scale downsampling. The four serial convolutions in the MRB
identify fine-grained features. (a) main network, (b) downsampling block (DSB), (c) multiscale residual block (MRB).

TABLE 1 Evaluation of classification results.

Metric Overall accuracy Overall recall F1-score Kappa

score 0.9609 0.9592 0.9581 0.9264
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seasonal changes, the current air pressure usually decreases, leading
to a decrease in air density, and vice versa. Therefore, the air
temperature is linked to the scattering coefficient for
correlation analysis.

Precipitation is not considered in the analysis. Precipitation
affects soil moisture, which in turn influences the VV coefficient.
When precipitation saturates soil moisture, the VV coefficient
increases by 2–4 dB. Additionally, rainfall can disrupt canopy
structures, leading to a short-term increase in the VH coefficient
(approximately 3 dB). However, rainfall is not a direct impact factor,
as it interacts through soil. Moreover, rainfall is locally observed
which complicates the identification of global patterns. More
critically, rainfall-induced changes in scattering coefficients
represent short-term phenomena that can be considered as the
noise in long-term patterns. Therefore, in our analysis, we
minimized the impact of rainfall through the averaging operation
over large regions.

The meteorological data is sourced from the Integrated Climate
Data Set (https://www.ncei.noaa.gov/maps/daily) published by the
National Oceanic and Atmospheric Administration (NOAA). The

selected meteorological station is located within 100 km of the center
of the study area. The weather variables are daily maximum
temperature, daily minimum temperature, and daily mean
temperature. A total of 174 daily temperature data were extracted
from 24-April-2019 to 29-December-2024 with an interval
of 12 days.

3.4 Extracting woodland covers via multi-
temporal classification

Geographically matched optical images are used to determine
the category of land cover, which will be identified pixel by pixel
through our previously designed fine-grained multi-scale
classification network (FGMCN). High-resolution satellite
imagery exhibits rich scale diversity. The scope of woodlands can
be either large or small with no fixed scale. Traditional classifiers can
only learn features at a given scale. In contrast, the fine-grained
multi-scale classifier provides greater flexibility in terms of the scope
of woodlands, thereby improving the classification quality.

FIGURE 3
Woodland area extracted from multi-temporal optical images. The extracted woodland cover is from the common pixel locations that are shrunk
with morphological filtering to avoid ambiguous labels in transition zones.
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FGMCN employs convolutional neural networks (CNNs) for
feature extraction. We have made experiments on multiple
satellite images and concluded that CNNs deliver optimal
efficiency in scenarios requiring partial human annotation of
image pixels, outperforming Transformers in classification
accuracy by using fewer labeled samples. FGMCN utilizes
multiscale residual blocks (MRBs) for feature extraction, as
illustrated in Figure 2.

Within the FGMCN architecture, eachMRB incorporates multi-
level residual connections and two multiscale residual submodules
to achieve discriminative receptive fields at fine-grained levels. Four
parallel branches extract features across distinct scales. The MRB

constructs hierarchical residual connections within a single residual
block, thereby expanding the scope of receptive fields. Consequently,
the network dynamically adapts to the most scale-appropriate
features for the input image content. The final output maintains
identical channel dimensions to the input, with uniform channel
allocation across all branches.

Parameters of FGMCN are given for training and inference. The
categorical cross entropy loss is used. The batch size is set to 64. The
optimization uses stochastic gradient descent (SGD) optimizer and
trains 200 epochs. The learning rate is 0.001 in the 101–200 epochs
and 0.0005 in the 100–200 epochs. The input patch has
27 × 27 pixels.

TABLE 2 Trends of VV intensity by seasonal Mann-Kendall Test.

month Image amount Correlation degree τ Significance level α Trend Significance

1 14 −0.38462 0.06270 descending significant

2 11 −0.09091 0.75550 descending non-significant

3 13 0.07692 0.76033 ascending non-significant

4 14 0.38461 0.06270 ascending significant

5 16 −0.11667 0.55835 descending non-significant

6 14 −0.12088 0.58407 descending non-significant

7 16 −0.13333 0.49946 descending non-significant

8 16 −0.26667 0.16281 descending non-significant

9 15 0.08571 0.69218 ascending non-significant

10 15 −0.00952 1 descending non-significant

11 15 0.08571 0.69218 ascending non-significant

12 15 0.04762 0.84309 ascending non-significant

overall 174 −0.04216 0.45844 descending non-significant

TABLE 3 Trends of VH intensity by seasonal Mann-Kendall Test.

month Image amount Correlation degree τ Significance level α Trend Significance

1 14 −0.27473 0.18889 descending non-significant

2 11 −0.05455 0.87627 descending non-significant

3 13 0.07692 0.76033 ascending non-significant

4 14 0.20879 0.32442 ascending non-significant

5 16 −0.13333 0.49946 descending non-significant

6 14 −0.03297 0.91281 descending non-significant

7 16 −0.08333 0.68533 descending non-significant

8 16 −0.05000 0.82189 descending non-significant

9 15 −0.00952 1 descending non-significant

10 15 −0.02857 0.92116 descending non-significant

11 15 −0.02857 0.92116 descending non-significant

12 15 0.06667 0.76653 ascending non-significant

overall 174 −0.03204 0.57311 descending non-significant
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We also employed post-processing to ensure that the extracted
land cover types were exactly woodland. In each optical image,
sample patches were manually annotated to train FGMCN. The
trained network was then used to extract the full woodland extent for
that specific image. The overlapping woodland regions obtained
from multi-temporal optical images were combined to derive the
woodland areas that remained unchanged in land cover class
throughout the study period. Although the classification accuracy
for woodland is high, misclassifications could still occur in transition
zones between classes. To mitigate misclassifications, morphological
erosion filtering was applied to remove isolated and marginal labels.

Following these processing, a high-precision mask was obtained
marking the long-term woodland area.

3.5 Trend analysis methods

We will analyze the annual and seasonal trends of the scattering
coefficient. Seasonal analysis gives the conclusions about magnitude
changes of the scattering coefficient across different seasons. Before
conducting seasonal analysis, an annual trend analysis is preceded to
evaluate whether the scattering coefficient exhibits annual

FIGURE 4
Results of STL decomposition. The left is for VH and the right is for VV. The curves from top to bottom are in turn the intensity data, the trend-cycle
component, the seasonal component, and the residual component. Seasonal cycles are clear in the third row.

TABLE 4 Pearson correlated coefficient between temperatures and backscattering coefficients.

Polarization mode Daily temperature Correlation coefficient Significant value Significance level

VV Minimum 0.7489 7.09E-28 significant

Maximum 0.7068 1.04E-23 significant

Average 0.7554 1.38E-28 significant

VH Minimum 0.7571 8.90E-29 significant

Maximum 0.7161 1.47E-24 significant

Average 0.7612 2.97E-29 significant
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stationarity, which will determine the applicability of seasonal
analysis methods.

We employed the seasonal Mann-Kendall test to analyze the
fluctuation in SAR backscattering coefficients. It compares the
changes of the same month across multiple years, and concludes the
overall trend across multiple years. As a non-parametric approach, it
relies solely on the relative ordering of data values without considering
their magnitudes, thereby mitigating impacts from potential seasonal
anomalies, missing or undetected values in backscattering coefficients.
The length of the time-series backscattering coefficients significantly
influences trend detection. Sequences shorter than 5 years may not
assess the accurate trend, whereas the excessively long sequences (e.g.,
longer than 8 years) may smooth trends. Thus, the trend analysis in this
study is theoretically reliable which uses every 12 days of backscattering
coefficient lasting 5.7 years.

As for the seasonal trend analysis, Fourier transform and
Seasonal-Trend decomposition using LOESS (STL
decomposition) are possible candidates. Fourier transform can
quantify periodic intensity but is only suitable for stationary data.
STL decomposition can be applied to non-stationary data. The
selection of specific methods depends on the overall annual trend
derived from the seasonal Mann-kendall test.

4 Results of trends and correlation

4.1 Area of woodland covers

We evaluated the classification accuracy of the FGMCN
algorithm. Testing samples of forest land and non-forest land

FIGURE 5
Relations between backscattering coefficients and temperatures. They exhibit roughly the same trend at the peaks and troughs.

FIGURE 6
Relations between backscattering ratio, radar index, and average temperature. High correlation exists between VH/VV and radar index which both
reflects the visibility of dense trees.
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were manually labeled on the classification map, which are
randomly distributed across the entire map and do not overlap
with the training map. The classification results were assessed using
multiple metrics which are presented in Table 1. The overall
accuracy reaches over 95%, which indicates that the classification
results are highly reliable. A recall rate of 95.92%means there are few
missed classifications, effectively ensuring the integrity of the
woodland area. The F1-score shows that the model has no
serious bias between misclassification errors and missed
classification errors, thus proving that the classification system
has good stability and reliability.

The range of the woodland to be analyzed is shown in Figure 3. It
is obtained by classifying multi-temporal optical images with a size

of 8,000 × 10,980 using the FGMCN algorithm and then shrinking
the overlapping areas with morphological erosion. Multi-temporal
classification eliminates the impact of clouds and land cover
changes, and authorize the fidelity of the extracted woodland
range. The effective woodland range contains 9,484,574 pixels,
with an area of 948 km2, accounting for 10.8% of the entire area.

4.2 Annual trends from seasonal Mann-
Kendall test

The annual and seasonal analysis for the 6-year 12-day-
interval scattering coefficient sequences process with the

FIGURE 7
Framework of the model for prediction of SAR scattering coefficients. The complete SAR data was used for training. During inference, the data at
unknown moments is input as 0, and the SAR sequence is generated by the decoder.

FIGURE 8
Prediction results of the VV scattering coefficients in grouped locations.
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seasonal Mann-Kendall test can be briefly summarized into
three main steps: calculating the difference and its
corresponding variance month by month, summing them to
obtain the total variance, and then deriving the statistic values τ
and the significance level α. The fluctuation trend of the
scattering coefficient in the time series is jointly determined

by these two parameters. τ > 0 indicates a possible upward trend,
while τ < 0 indicates a possible downward trend. τ needs to be
evaluated in combination with α. α is a positive value, and the
smaller it is, the stronger the significance. Generally, α≤ 0.01
indicates a high level of significance, while 0.01< α≤ 0.1
indicates significance.

FIGURE 9
Prediction results of the VH scattering coefficients in grouped locations.

FIGURE 10
Prediction results of the VV scattering coefficients in single locations.
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Table 2 provides the annual and seasonal trend of VV, indicating
that VV did not exhibit an obvious changing trend in year-on-year
variations, either. In the monthly analysis, January and April are
evaluated as significant, while other months are non-significant. It is
noteworthy that the absolute τ value reached 0.3846 for both
January and April, suggesting drastic environmental fluctuations
within the seasons. The remaining months showed alternating
positive and negative trends, but none reached the significance
level, reflecting significant spatiotemporal heterogeneity in VV
changes, which may be related to seasonal precipitation
fluctuations and human activity cycles. The overall fluctuation
trend shows a slight downward trend, but it is not significant,
indicating that the VV scattering coefficient has approximate
annual stability.

Table 3 provides the annual trend of VH, indicating that VH
did not show an obvious trend in the year-on-year changes. In
the monthly analysis, all months did not reach the significance
level. The absolute τ value reached 0.2747 in January. The
monthly trends of VH are very similar to those of VV, with
10 out of 12 months being consistent, and deviations only
occurring in September and November. The overall

fluctuation trend shows a slight downward trend, but it is not
significant, indicating that the VH scattering coefficient has
higher annual stability than VV.

To conclude, both VH and VV exhibited overall weakly
decreasing trends during the study period, but the statistical
significance was insufficient to exclude the possibility of random
fluctuations. At the monthly scale, both displayed the synchronization
of trend changes in most months. Notably, VV showed a significant
decreasing trend in January and a significant increasing trend in April.
The most consistent time throughout multiple years occurs in
October for VV and September for VH, respectively.

A comparison of Tables 2,3 reveals the seasonal sensitivity of
different polarization modes to woodland. The co-polarization
information recorded by VV is dominated by direct surface
scattering, making it more sensitive to changes in bare soil
moisture. The cross-polarization information recorded by VH
primarily originates from volume scattering and secondary
reflections, showing high sensitivity to vegetation structural
changes such as biomass and canopy density. In most months,
the α value of VV is lower than that of VH except in May, October,
and December. This reflects that the cross-polarization mode of
Sentinel-1 can capture forest canopy dynamics more promptly than
the co-polarization mode.

4.3 Seasonal trends from STL decomposition

Since the seasonal Mann-Kendall test indicates weak
fluctuations in the annual trends, it is not a stationary random
process for the scattering coefficients. In this case, analysis with
Fourier transform would introduce errors, so we employ STL
decomposition to analyze seasonal trends. The STL model

FIGURE 11
Prediction results of the VH scattering coefficients in single locations.

TABLE 5 Comparison of sequence prediction algorithms.

Model Mode RMSE MAE

LSTM VV
VH

0.008534
0.002318

0.007735
0.002005

Informer VV
VH

0.008325
0.002193

0.007402
0.001869

Autoformer VV
VH

0.006070
0.001615

0.005165
0.001306
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employs locally weighted regression to decompose time series data
into three components: the trend-cycle component, the seasonal
component, and the residual component. The trend-cycle
component describes the overall directional changes of the data
on a long-term scale, and captures slow and persistent variations.
The seasonal component represents the fluctuating patterns that

repeat within a fixed period in the data. The residual component
stands for random fluctuations or measurement errors that cannot
be explained by trends or seasonality in the model.

Figure 4 presents the results of STL decomposition, where VV and
VH give similar trends. The trend-cycle components show that the
overall scattering coefficient experienced a slight decrease in 2023 and

FIGURE 12
Dynamic contributions of feature 1 (time-series VV coefficients). The maximum positive impact is at step 10. A positive value indicates a positive
correlation between the feature and the predicted value, and vice versa.

FIGURE 13
Dynamic contributions of feature 2 (daily average temperature). The maximum negative impact is at step 11. A positive value indicates a positive
correlation between the feature and the predicted value, and vice versa.
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2024, with a magnitude ranging from approximately 3%–6%. Seasonal
analysis reveals an obvious annual periodicity: 1) The scattering intensity
hits the highest in summer and the lowest in winter; 2) Local maximum
may occur in early winter; and 3) The recovery from the local minimum
is rapid which occurs in early spring. The residuals indicate anomalies at
the end of 2019 and the end of 2022. The anomaly at the end of 2019may
be related to the extremely rare drought persistent from summer to
autumn in 2019, which led to insufficient soil moisture and made the
attenuation of scattering intensity less than expected. In the winter of
2022, affected by the triple La Niña phenomenon, Ukraine experienced
its coldest winter in decades, which resulted in the scattering coefficient
being lower than that in normal years.

4.4 Correlation to temperature

The Pearson correlation coefficient is used to assess the
relationship between the scattering coefficients and

temperatures, while the Pearson significance value describes
the statistical significance (less than 0.05 is generally
considered significant), as presented in Table 4. For VV
polarization, the correlation to daily minimum, maximum,
and average temperatures are evaluated as 0.7489, 0.7068, and
0.7554, respectively. For VH polarization, the corresponding
coefficients are 0.7571, 0.7161, and 0.7612, respectively. All
correlation coefficients passed the significance test, indicating
a statistically significant positive correlation between
temperatures and SAR backscattering. Notably, daily average
temperature shows higher correlation to scattering coefficients
than daily maximum and minimum temperatures. The
correlation coefficients related to VV are all slightly smaller
than those related to VH. Combined with the results of time
series analysis, both VV and VH polarization data exhibited a
seasonal pattern: backscattering intensity peaked in summer
(June–July) and reached its lowest point in winter,
demonstrating high synchronization with the interannual
fluctuations in temperature.

The dynamic relationship between temperature and backscatter
coefficients is drawn in Figure 5, which can be explained by
ecophysical mechanisms. In summer, the dielectric properties of
woodland trees are enhanced because high temperatures promote
photosynthesis and transpiration, leading to canopy biomass
accumulation and increased leaf water content. This change
enhances the intensity of volume scattering of SAR signals.
Especially in dense canopies, multiple interactions between radar
waves and branches/leaves cause simultaneous increases in cross-
polarization (VH) and co-polarization (VV) backscatter coefficients.
In winter, simplified canopy structure and reduced biomass make
surface scattering dominant. Backscatter coefficients are then
susceptible to environmental factors such as snow cover, freeze-
thaw cycles, or soil moisture changes, causing values to be
significantly lower than those in the growing seasons. The
correlation to daily average temperature is higher than that of
daily maximum and minimum temperature, which is accounted
for the cumulative thermal effect of physiological activities in trees,

TABLE 6 Seasonal analysis against LOESS window length.

Polarization mode LOESS window Residual variance Seasonal strength Relative residual

VV 7
9
11
13
15
17
19
21
23
25

0.000094
0.000099
0.000101
0.000101
0.000102
0.000102
0.000102
0.000102
0.000102
0.000102

0.6797
0.6447
0.6435
0.6429
0.6429
0.6477
0.6476
0.6476
0.6476
0.6475

1.000
1.049
1.077
1.077
1.079
1.081
1.082
1.083
1.084
1.084

VH 7
9
11
13
15
17
19
21
23
25

0.000018
0.000019
0.000020
0.000020
0.000020
0.000020
0.000020
0.000021
0.000021
0.000021

0.6153
0.6204
0.6169
0.6149
0.6138
0.6120
0.6110
0.6100
0.6096
0.6094

1.000
1.089
1.108
1.125
1.125
1.143
1.147
1.155
1.157
1.158

TABLE 7 Prediction accuracy against prediction length.

Data Prediction length RMSE MAE

3 0.006070 0.005165

6 0.006124 0.005188

VV 9 0.006229 0.005287

12 0.006828 0.005662

15 0.006657 0.005603

3 0.001615 0.001306

6 0.001620 0.001313

VH 9 0.001591 0.001289

12 0.001835 0.001442

15 0.001733 0.001392
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FIGURE 14
Spatial distribution of the VV prediction errors. The northern locations show more RMSE deviations.

FIGURE 15
Spatial distribution of the VH prediction errors. The northern locations show more RMSE deviations.
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whereas extreme temperatures are interfered by short-term
meteorological events such as abrupt cloud changes and heavy
precipitation.

For dual-polarization (VV + VH) Sentinel-1 data,
Nasirzadehdizaji et al. (2019) suggested the Radar Vegetation
Index (RVI) which is calculated by Equation 1 as

RVI � 4σ0VH,linear

σ0VV,linear + σ0VH,linear

, (1)

where σVV,linear and σVH,linear denote the linear backscattering
intensity, and the RVI value ranges typically between 0 and 1.
Values close to 0 indicate barren landscapes (such as bare land
and water surfaces), while larger values (usually larger than 0.5-0.6)
denote dense vegetation landscapes.

Figure 6 shows that the RVI values fall within the range [0.8,1.0],
indicating that the woodland is characterized by dense vegetation
and complex structure, with volume scattering as the dominant
mechanism. The ratio of VH to VV backscattering coefficients is
concentrated in the range [0.2,0.4], which further confirms that the
vegetation scattering characteristics in this area are dominated by a
moderate depolarization effect. These two types of indicators exhibit
a highly consistent synergistic variation trend over the temporal
dimension. Particularly in winter, both indicators show a significant
decline: the RVI value drops sharply to approximately 0.7, and the
VH/VV ratio also decreases synchronously. These variation patterns
are consistent with the land surface temperature time series, as the
time node of the sudden decline corresponds to the period of
persistently low temperatures. This indicates that the radar
backscattering intensity and polarization ratio have an obvious
response to temperature changes, implying the potential
regulatory role of thermal conditions in vegetation dielectric
properties, phenological status, or surface ice/snow cover
conditions.

The heterogeneity of finer woodland types affects the correlation
between temperature and scattering intensity. With coniferous-
broadleaf mixed woodland as the main type, the study area
exhibits structural heterogeneity. Coniferous forests, due to their
advantage in vertical structure, tend to generate strong volume
scattering in the VV polarization channel, while their scattering
in the VH polarization channel is dominated by canopy biomass. In
contrast, broadleaf woodland canopies are more likely to induce
depolarization effects due to randomness, and are more sensitive to
changes in soil humidity. Although this heterogeneity does not
dominate the statistical significance of the temperature response
across the entire study area, it weakens the consistency of trends in
local regions.

5 Predicting scattering coefficient in
woodland with explainable
neural networks

5.1 Model structure

The results in Section 4 indicate the seasonal repetition in SAR
scattering coefficients over woodland covers, which can be modeled
using sequence-based networks. Commonly used sequence

modeling methods include Autoregressive Integrated Moving
Average (ARIMA) model, Recurrent Neural Network (RNN),
Long Short-Term Memory (LSTM) network, Transformer,
Informer, Mamba, etc. Considering that seasonal trends are
included and the length of input data is limited, we employ
Autoformer (Wu et al., 2021; 2023) as the modeling basis.
Autoformer is a modified Transformer network addressing the
bottlenecks of complex temporal patterns and computational
efficiency. Two important innovations were proposed in
Autoformer. First, sequence decomposition in the preprocessing
step is integrated into internal operators to establish a progressive
mechanism gradually separating long-term trends and seasonal
components from intermediate prediction variables. Second,
conventional self-attention is replaced with an auto-correlation
mechanism, which computes subsequence similarities driven by
sequence periodicity to discover and integrate sequence
dependency. The first solution enhances analytical capabilities for
temporal dynamics, while the second solution reduces
computational complexity.

Figure 7 illustrates the structure of the network, where the
encoder receives multi-source inputs. The input is formed by
concatenating the VV scattering coefficient sequence, the VH
scattering coefficient sequence, and the daily average temperature
sequence, resulting in an input tensor with a dimension of
RLTrainLen×(dVV+dVH+dtemperature), where LTrainLen represents the sequence
length of input. This fusion strategy leverages the high correlation
among the three types of data and preserves the spatiotemporal
association between surface physical properties and
thermodynamic states.

The decoder adopts a dual-branch initialization mechanism to
guide prediction. The first branch initializes the VV/VH data to be
predicted as a zero tensor, and concatenates it with temperature data
at the prediction days to form a placeholder input of dimension
RLPredLen×(dVV+dVH+dtemperature), where LPredLen denotes the prediction
length. The second branch calculates the mean value of the
concatenated tensor along the time dimension to generate an
aggregated representation with preserved dimensions. The inputs
from both branches are jointly fed into the decoder, and progressive
information refinement is achieved through cascaded
decomposition blocks. This design inherits three core
mechanisms of Autoformer. First, the Series Decomp block
separates potential trends through a moving average operation
xt � AvgPool(Padding(x)). Second, the auto-correlation
mechanism models subsequence-level dependencies by calculating
the time-delay similarity Rxx(τ) � F−1(Sxx(f)) based on fast
Fourier transform. Last, time delay aggregation rolls and aligns
similar phase points according to the top-k periods τ1, . . . , τk.

The internal data flow of the framework strictly follows the
operator sequence of the original Autoformer. The encoder
gradually strips off the trend components of the input data
through stacking N layers, focusing on the extraction of seasonal
features. The decoder alternately performs autocorrelation
operations and decomposition operations through an M-layer
structure, and its output layer linearly superimposes the refined
seasonal term and the accumulated trend term to generate the final
prediction. This study introduces temperature covariates to enhance
multimodal representation capabilities, and uses zero-initialized
placeholders to realize the autoregressive prediction of VV/VH
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values in the prediction days. While maintaining the computational
complexity of O(L log L) of the original model, it improves the
physical interpretability of long-term prediction of surface
parameters.

5.2 Explainable consistency between
temporal trends and model structure

The Autoformer model has good interpretability for our work.
The key innovations–progressive sequence decomposition,
autocorrelation calculation, and subsequence attention
mechanism–match well with the issue of SAR intensity evolution
trends. The link between the issue and the model is discussed.

First, Autoformer adopts time series decomposition as a basic
operation module of the deep model rather than a preprocessing
step, decomposing hidden variables layer by layer to extract long-
term trend terms and seasonal terms. This structure makes the trend
and seasonal components of the prediction results traceable,
enhancing the transparency of the model’s behavior. Consistent
with the key design of the model, the results of the seasonal Mann-
kendall test and the STL decomposition in Section 4 have verified the
existence of long-term trends and seasonal trends in scattering
coefficients. In addition, this progressive decomposition enables
the model to explicitly separate patterns of different time scales,
ensuring that datasets constructed using different revisiting periods
can be modeled.

Second, Autoformer uses subsequence-level correlation of the
autocorrelation mechanism to replace the traditional point-to-point
self-attention, further meeting the needs of periodic sequences. A
large number of calculations in self-attention are wasteful for
periodic SAR scattering coefficient, because there is weak
correlation between two moments across seasons. The
autocorrelation mechanism calculates sequence periodicity
through Fast Fourier Transform (FFT) and aggregates similar
subsequences based on time-delay dependence. This periodic
intensity can be visualized, and the intensity of dominant cycles
(such as daily, weekly, or monthly) in the time series can be
intuitively displayed through autocorrelation weights, reflecting
the coherence of scattering intensity.

Finally, the subsequence aggregation in the network facilitates
the input of meteorological conditions. The weighted aggregation of
subsequences with similar phases, such as associating data at the
same moment in different cycles, can form a physically meaningful
expression of dependencies. This enables the network to discover the
correlation between daily average temperature and scattering
intensity and use it to guide predictions.

The coupling between the model and data demonstrates the
completeness of this work in providing explainable model. First,
seasonal patterns were summarized through trend analysis.
Second, a high correlation with average temperature was
identified via correlation analysis. Finally, seasonal trends and
temperature correlations were subtly integrated into the network.
These efforts have endowed the sequence neural network we used
with interpretability. In contrast, existing neural network
modeling generally neglects the explicit analysis of the
intrinsic properties of data, thus lacking credible model
interpretability.

5.3 Scheme of validation

The details of training and inference are given. Training data
consists of 9,484,574 pairs of VV/VH sequences from 143 images
between April 2019 and December 2023 of 12-day, encompassing
complete tree growth cycles and diverse interannual climate
variations. The testing utilized 31 observations from the year of
2024 to validate the model’s prediction capability for unseen time
periods. During training, the Mean Square Error (MSE) metric
served as the loss function. The optimization was performed
using the Adam optimizer with the initial learning rate as 1e-4.
The batch size is 32. The early stopping mechanism was used to
prevent overfitting.

The input, output, and conditional information of the network
are also provided. The length of the input sequence is 30, and the
output length is 3. In other words, data from the previous 30 time
instants are used to predict the data for the next three time instants
in each generation. In each inference, an average temperature
sequence is fed into the network along with the SAR sequence.

The test includes two types. One is the original data sequence,
which contains 9.48 million sequences. The other is 9,484 average
sequences obtained by randomly grouping these sequences and
taking the average, with each group consisting of 1,000 pixel
locations. The averaging operation roughly eliminates the
heterogeneity differences caused by random structural differences
(e.g., canopy shapes) and meteorological events (e.g., local rainfall).
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
are used to evaluate the prediction results.

5.4 Prediction results

The evaluation scores on the group average intensity are first
given. For VV, the RMSE deviation is 0.006070, and the MAE
deviation is 0.005165. For VH, the RMSE deviation is 0.001615, and
the MAE deviation is 0.001306. These errors are almost neglectable,
considering the average scattering coefficients are 0.1038 for VV and
0.0337 for VH, respectively. The average RMSE diviations are within
6% by dividing the average intensities. These scores indicate that the
sequence prediction model has a good ability to capture the changes
in the average backscatter coefficient.

To visually evaluate the model’s prediction performance, nine
samples were randomly selected from all samples for display. The
curves are shown in Figures 8, 9 for VV and VH, respectively. The
ground truth and predicted values are distinguished by colors and
line styles. The visualization results in Figures 8, 9 indicate that the
prediction curves of groups highly coincide with the ground truth
curves at most key phenological moments, such as the start of the
growing season, peak, and senescence period. The seasonal
fluctuation of backscattering coefficients are successfully captured.

As for the pixel-wise prediction, evaluation was made for VH
and VV over 9.48 million samples. For VV, the average RMSE is
0.035036 and the average MAE is 0.026703. For VH, the average
RMSE is 0.012932 and the average MAE is 0.009949. These errors
are at low values. The relative errors are around 30% by dividing
RMSE by the mean values. Random meteorological conditions and
complex ground structures make deviations unavoidable. These
errors fully indicate that our model can reflect the general trend
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of the woodland scattering coefficient. Figures 10, 11 present nine
samples of the prediction results for pixel-wise prediction. These
figures show the ground truth values of 60 time points from January
2023 to December 2024, as well as the prediction results of 30 time
points from January 2024 to December 2024. To conclude, the
changing trends of the prediction are roughly the same as those of
the ground truth. In the prediction interval of the sixth year (the
right of the vertical dashed line), the model accurately reproduces
key turning points of spring green-up and autumn leaf fall.
Individual peaks exhibit a slight lag of approximately two to
4 weeks, reflecting the response mechanism between tree growth
and accumulated temperature.

5.5 Performance comparison

To evaluate the performance of Autoformer, we compared it
with Informer and LSTM which are two types of mainstream
sequence models. All methods were set with a prediction length
of three. Table 5 presented the evaluated experimental results, which
shows that Autoformer has significant advantages in modeling the
issue in this study. For the VV band, the RMSE values of LSTM and
Informer are 40.6% and 37.2% higher than that of Autoformer,
respectively. For the VH band, the RMSE values of LSTM and
Informer are 43.6% and 35.8% higher than that of Autoformer,
respectively. In summary, our experiment shows that Autoformer
significantly outperforms the classical LSTM and Transformer-
based Informer in modeling time-series scattering intensity. This
verifies the unique advantage of Autoformer in capturing the
dynamic characteristics of microwave scattering intensity.

5.6 Explainable analysis

The explainability of our model differs from general concept.
The explainability of neural networks usually refers to
understanding the specific internal decision-making
mechanisms of the model through post analysis such as
feature importance and attention maps. However, this analysis
has limitations, as it often involves indirect understanding based
on an inherent black box, and the explainability itself may be
uncertain due to weak connections to the physical laws behind
the data. To enhance explainability, we conducted data analysis-
based modeling in this work. Our explainability focuses more on
the model’s design basis instead of explaining why the model
makes a certain prediction after training. To conclude, we use
statistical evidence to ensure that the rationality and reliability of
the modeling process for explainability.

To deeply analyze the decision-making mechanism of the
Autoformer model, we adopted the Integrated Gradients (IG)
method for explainable analysis. The feature values calculated by
IG quantify the contribution of each feature to the model’s
predictions. A positive value indicates that the feature is
positively correlated with the predicted value, and an increase in
this feature will raise the predicted quality. A negative value indicates
that the feature is negatively correlated with the predicted value, and
an increase in this feature will lower the predicted accuracy. The
analysis was performed on the VV mode focused on a multivariate

input sequence containing 30 steps, covering time-series SAR
(Feature 1) and daily average temperature (Feature 2).

The IG analysis presented in Figures 12, 13 reveals the dynamic
contribution patterns of each feature across the temporal dimension.
For Feature 1 (SAR sequence in Figure 12), the maximum positive
attribution value is observed at time step 10, indicating that the
feature information at this moment exerts the strongest positive
driving effect on the prediction result. In the time step range of
18–22, the attribution value remains consistently negative, which
suggests that an increase in the feature value during this period will
inhibit the prediction output. Notably, the attribution values of the
recent time steps approach zero since step 25, which is consistent
with the general rule in sequence prediction that the influence of
long-term features usually diminishes. For Feature 2 (daily average
temperature in Figure 13), it reaches a positive attribution peak at
step 11, which serves as a key positive reference point for the model’s
prediction. It demonstrates a stable positive contribution in the step
between five and 15, while transitioning to a stable negative impact
between 20 and 25 steps. Within the 10 to 12 steps, both features
exhibit a synergistic enhancement effect.

6 Discussions

6.1 Impact of window length for
seasonal analysis

The influence of STL’s window length on the analysis is revealed
here. Based on a 12-day revisit cycle, the number of annual
observation points is calculated as 365/12 ≈ 30.4, among which
the closest odd number, 31, is adopted as the seasonal period.
This enables the seasonal component to accurately reflect the
annual cyclic pattern. The optimal value of the LOESS window
length can be determined through systematic sensitivity tests. The
test range covers odd-numbered windows from seven to 25, with the
minimization of residual variance serving as the selection criterion.

Table 6 presents the results of the sensitivity analysis against the
LOESS window length. For both VH and VV data, a LOESS window
length of seven yields the minimum residual variance (0.000094 for
VV and 0.000018 for VH). As the window length increases, the
residual variance shows a monotonic increase. This indicates that a
larger LOESS window length leads to over-smoothing of the
seasonal signal by keeping more information in the residual
term. The seasonal strength of VH fluctuates between 0.609 and
0.620, with the maximum value occurring at a LOESS window
length of nine. In contrast, the seasonal strength of VV decreases
significantly from 0.6797 to 0.6475 representing a decrease of 4.7%.
To conclude, seven is the optimal LOESS window length for the
analysis task.

6.2 Impact of prediction length

The prediction length is changed to evaluate the robustness of
the Autoformer model. The prediction length is extended to 15 steps
allowing for prediction across 6 months. Table 7 presents the
evaluated experimental results, which shows that Autoformer
exhibits good adaptability over longer prediction horizons. Even
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when the prediction length significantly exceeds the initial short
period, the model can still maintain its prediction accuracy without
linear growth or collapse of errors. This strongly demonstrates that
Autoformer is well-suited to our problem and possesses the
robustness to capture long-term temporal dependencies.

The two polarization modes show different responses to
prediction length. The error of VV shows a mild increase as the
prediction length increases, but exhibits stabilization at the 15th step
(approximately 6 months). For VH data, when the prediction length
increases from three steps to nine steps, the error even decreases
slightly. When the prediction length is further extended to 12 steps
(approximately 4.8 months), the VH error rises, but tends to
decrease again at the 15th step. As the prediction length gradually
increases in both trends, the prediction error remains stable, with no
cumulative error or sharp decline in accuracy observed.

6.3 Impact of spatial heterogeneity

The RMSE errors were geolocated to form the spatial
distribution maps of RMSE as shown in Figures 14, 15, which
reveal the spatial heterogeneity within the prediction results. The
RMSE maps exhibit a spatial trend of gradual increasing from south
to north. This obvious north-south difference indicates that the
prediction performance of the model is not spatially uniform, and its
ability to capture the dynamic changes of backscattering signals in
the woodland areas of the northern part of the study area is relatively
weaker than that in the southern region.

The spatial heterogeneity within RMSE maps may be driven by a
variety of potential geospatial factors. Possible reasons are more
complex terrain (such as changes in elevation gradients or
differences in slope), a distinct distribution of woodland types,
spatiotemporal variability in soil moisture, or stronger atmospheric
and phenological processes (such as the frequency and intensity of
precipitation events). All these factors can significantly affect the
response mechanism of Sentinel-1 SAR signals and their time-series
characteristics. The current prediction model fail to fully characterize
the composite effects of all driven factors in the northern region,
leading to a systematic increase in prediction uncertainty. This result
suggests that future model should focus on integrating key
environmental covariates or spatial structural features that can
explain this north-south distinction.

7 Conclusion

This paper analyzed and explicitly modelled the trends of
woodland SAR scattering coefficients of dual-polarized Sentinel-
1A data. Taking the woodland areas in the border region of Ukraine
and Belarus as the study area, we constructed a sequence of
174 consecutive SAR images spanning from April 2019 to
December 2024 using Sentinel-1A GRD data with a 12-day
revisit cycle. We extracted the forest cover area in these images
by classifying geographically matched multi-temporal Sentinel-2
multispectral images using a fine-grained multi-scale
convolutional neural network. A total of 9.48 million pairs of
VV/VH scattering coefficient sequences were extracted for
analysis. For the sequence data, we conducted annual trend

analysis with the seasonal Mann-Kendall test and evaluated the
annual changes in scattering intensity. The seasonal-trend
decomposition using LOESS presented obvious seasonal trend.
The correlation analysis indicated a high correlation between the
average temperature and the average scattering intensity. Based on
these conclusions, we constructed a scattering intensity prediction
model using a neural network, which predicts the scattering
intensity at unknown moments by combining the scattering
intensity sequences at known moments and the temperature at
unknown moments. The evaluation of the annual sequence
synthesis results showed that the RMSE error of the average
intensity was within 6% towards the average intensity. These
studies on trend analysis and modeling temporal trend for
woodland demonstrate the potential of generating SAR sequences
pursuing quantitative accuracy, and set an example for time-series
research on other land cover categories.
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