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Purpose: Biochar application is considered a promising strategy for mitigating
agricultural phosphorus (P) shortages. However, it remains uncertain whether
biochar enhances soil phosphorus availability for crops beyond functioning as an
external phosphorus source. Additionally, the role of phosphorus-solubilizing
bacteria (PSB) in phosphorus transformation during biochar amendment is poorly
understood, including whether PSB exerts a net positive or negative effect.
Methods: Four different soils were incubated with or without phosphorus-
depleted biochar (PDB), followed by Hedley phosphorus fractionation and
leaching column experiments. Illumina MiSeq high-throughput sequencing
targeting the phoD gene was used to analyze PSB diversity and community
structure. Soil phosphatase activity and related properties were quantified.
Results: Hedley fractionation revealed that PDB application reduced labile
phosphorus while increasing HCl-extractable and residual phosphorus across
all soils. Leaching experiments confirmed that PDB reduced inorganic and total
phosphorus leaching in all soil types. Acid phosphatase activity was inhibited by
PDB in upland soils (a peach orchard, a tea plantation, and a vegetable field).
phoD-based sequencing indicated an increased relative abundance of dominant
PSB genera in upland soils but a decreased abundance in paddy soils under PDB
treatment. PDB did not significantly alter PSB diversity.

Conclusion: Phosphorus-depleted biochar reduces potentially available
phosphorus fractions and mitigates phosphorus leaching, supporting aquatic
ecosystem protection. However, it does not enhance short-term soil phosphorus
fertility in agricultural systems. Both the mechanisms underlying PSB abundance
shifts after biochar application and the ways in which plants respond to the
altered P fractions require further investigation.

biochar amendment, phosphorus loss, phosphorus fractionation, phosphatase activity,
phosphorus-solubilizing microorganisms
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1 Introduction

Soil phosphorus (P) depletion poses a growing global threat
(Alewell et al, 2020). An estimated 29%-32% of the world’s
cropland exhibits soil phosphorus deficits, despite intensive fertilizer
inputs (Lun et al, 2018; MacDonald et al, 2011). This deficiency
stable  soil-bound
phosphorus, as explained by the precipitation—particulate and
2020).  Consequently,
global phosphorus-use efficiency averages only 46%, with Eastern
Asia recording the lowest value (23%) (Lun et al., 2018). Enhancing
soil phosphorus utilization efficiency, particularly by converting bound

primarily stems from the formation of

adsorption—penetration  theories (Barrow,

phosphorus to plant-available forms rather than increasing application
rates, is therefore a critical strategy for sustainable agriculture.

Biochar soil amendments can modulate plant-available phosphorus
pools, especially the inorganic and soluble fractions (Hossain et al,
2020; Zhang et al., 2025). This dynamic carries significant implications
for both crop productivity and aquatic ecosystem protection. The
prevailing literature suggests that biochar typically increases surface
soil available phosphorus by 45%-260% (Gao et al., 2019; Joseph et al,,
2021). However, contradictory findings exist (Li et al., 2020), rendering
biochar’s net impact contentious. Crucially, agricultural constraints
more commonly involve scarcity of available phosphorus than
insufficiency of total phosphorus. Biochar enriched with inherent
phosphorus functionally resembles direct fertilizer application. The
core agronomic value of biochar is its ability to mobilize recalcitrant
native soil phosphorus to improve utilization efficiency. This function,
however, requires that the confounding effects of biochar-borne
phosphorus be minimized. Variations in biochar feedstock induce
substantial heterogeneity in phosphorus content (Tesfaye et al,
2021), while soil type and biochar-soil interactions further modulate
outcomes (Gul and Whalen, 2016).

Phosphate-solubilizing bacteria (PSB) mineralize insoluble
phosphorus into plant-accessible forms and may critically mediate
phosphorus bioavailability under biochar amendment (Bai et al,
2024; Fan et al, 2025). For instance, rice straw biochar stimulated
Bacillus mucilaginosus phosphorus solubilization, increasing dissolved
phosphorus by 43% versus controls (Lu et al,, 2023). PSB exhibits high
community diversity across soils (Kour et al, 2021). However, a
fundamental question remains unresolved: does biochar amendment
enhance or inhibit PSB-mediated phosphorus transformation?

To address this knowledge gap, we conducted an incubation
study using four distinct soils amended with phosphorus-depleted
(PDB). Through
fractionation, leaching experiments, and alkaline phosphatase

biochar integrated Hedley phosphorus

gene phoD-targeted Illumina MiSeq sequencing, we aimed to a)
eliminate the confounding effects of biochar-derived phosphorus, b)
track transformations among soil phosphorus pools, ¢) quantify
PDB-induced shifts in PSB abundance and diversity, and d)
determine cross-soil variability in these responses.
2 Materials and methods
2.1 Preparation of soils and biochar

The sampling sites were located in Danyang City, southern

Jiangsu Province, China, under a humid subtropical monsoon

Frontiers in Environmental Science

10.3389/fenvs.2025.1663371

climate (mean annual temperature: 16.5 °C; precipitation:
1,043 mm). Surface soils (0-20 cm depth) were collected in
February 2023 from four different field sites: a vegetable field
(VF), a tea garden (TG), a rice paddy (RP), and a peach garden
(PG). VF, TG, and PG represented upland soils, with VF and TG
having a cultivation history of >10 years and PG approximately
5 years. RP represented flooded paddy soil and was sampled post-
harvest. For each soil site, three replicate samples were collected
randomly. Soils were air-dried, ground, sieved (<2 mm), and stored
at 4 °C. Soil pH values were 6.2 (VF), 5.5 (TG), 5.3 (RP), and 5.3
(PG); additional properties (coordinates and phosphorus contents)
are provided in Supplementary Table S1. PDB derived from coconut
shells (Zhengzhou Niute Agricultural Technology Co., Ltd., Henan,
China) was used, detectable

content (Table 1).

exhibiting no phosphorus

2.2 Soil incubation and column leaching
experiment

PDB was thoroughly mixed into each soil at 5% (w/w), with
unamended soils serving as controls. Treatments included four
PDB-amended groups (VF + PDB, PG + PDB, TG + PDB, and
RP + PDB) and four unamended controls (VF, PG, TG, and RP),
each with three replicates. Subsamples from each treatment were
allocated to incubation and leaching experiments. The incubation
proceeded for 30 days at 20 °C in the dark. For leaching assays,
24 plexiglass columns (internal diameter: 80 mm; height: 500 mm)
were prepared with a 5-cm base layer of quartz sand, overlain by
20 cm of soil (1.00 kg). Deionized water (200 mL per event) was
applied in five events to simulate rainfall. The next event was
initiated only after the leachate from the previous event had
completely stopped flowing. The soil was maintained at saturated
water content during each leaching event. Inorganic phosphorus
(Pi) and total phosphorus (TP) concentrations in leachates
were quantified.

2.3 Analysis of Hedley phosphorus fractions
and soil properties

After incubation (as described in Section 2.2), the soil was
thoroughly homogenized and quartered to obtain a representative
subsample for subsequent extraction. Soil phosphorus fractions
were quantified using a modified Hedley sequential extraction
procedure (Yang et al., 2024). Soluble P, NaHCO;-P, NaOH-P,
hydrochloric acid-extractable P (HCI-P), and residual P were
extracted with deionized water, 0.5 mol-L™'! NaHCOs,
0.1 mol-L™! NaOH, 1.0 mol-L™" HCI, and mixed acid (H,SO,
and HCIO,), respectively. The phosphorus concentrations in all
extracts were determined by molybdenum antimony colorimetry
using a UV-1800 (Shanghai Mapada
Instruments Co. Ltd., China). Soil electrical conductivity (EC)

spectrophotometer

was measured in 1:5 (w/v) soil-water suspensions, while pH was
determined electrometrically in 1:2.5 (w/v) suspensions (DDS-
11A/PHS-3C, INASE Scientific Instruments Co. Ltd., Shanghai,
China). TP was quantified after strong acid digestion using the
same colorimetric method.
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TABLE 1 Key physicochemical properties of phosphorus-depleted biochar.

10.3389/fenvs.2025.1663371

Fineness Median Specific surface pH Electrical Total phosphorus Soluble
(mesh) diameter (um) area (m?kg™) conductivity (g-kg™) phosphorus
(uS-cm™) (g-kg™)
200 19.01 243.7 7.50 129.13 N.D. N.D.
N.D., not detected.
2.4 High-throughput sequencing of 3 Results

phosphate-solubilizing bacteria

Soil DNA was extracted from the incubated samples using a
FastDNA™ SPIN Kit for Soil (MP Biomedicals LLC, Santa Ana, CA,
United States). The phoD gene was amplified with primers phoD-
733F/phoD-1083R on a GeneAmp~ 9700 Thermal Cycler (Life
Technologies, Foster City, CA, United States). Amplicons were
sequenced on an Illumina MiSeq PE300 platform (Majorbio,
Shanghai, China). The sequencing process is described by Qin
et al. (2018). These sequences were deposited in GenBank under
the accession numbers SRX30327776-SRX30327799. Using
UPARSE (ver. 7.1, http://drive5.com/uparse/) at 97% similarity,
the sequences were clustered into operational taxonomic units
(OTUs) with chimera removal. Taxonomic annotation was
performed using the RDP classifier. Alpha diversity was assessed
using the Chaol (richness), Shannon/Simpson (diversity), and
coverage indices. The community composition analysis focused
on the top eight phyla and genera by relative abundance.
Sequence data will be deposited upon manuscript acceptance.

2.5 Analysis of soil acid phosphatase activity

Soil acid phosphatase (ACP) activity was determined using
disodium p-nitrobenzene phosphate as the substrate. For each
assay, 1 g of air-dried soil was incubated with 0.2 mL toluene (to
inhibit microbial activity), followed by sequential addition of 4 mL
hydrochloric acid buffer (pH 6.5) and 1
p-nitrobenzene phosphate solution. After 1 h of incubation at

mL disodium

37 °C, ACP activity was quantified by measuring p-nitrophenol
release at 420 nm using a UV-1800 spectrophotometer (Shanghai
Mapada Instruments Co. Ltd., China).

2.6 Statistical analysis

One- and two-way ANOVA (Duncan method) and stepwise
regression analysis were performed using IBM SPSS Statistics 18
(IBM, Chicago, IL, United States). Pearson correlation and stepwise
regression analyses were also conducted to evaluate the relationships
between PSB diversity indices and environmental factors.
Redundancy analysis (RDA) was conducted using Canoco
5 software (Microcomputer Power, Ithaca, NY, United States) to
examine the associations between environmental factors and PSB
community composition. Figures were generated using Origin 8.0
(OriginLab Corporation, Northampton, MA, United States), and the
final graphical composition (layout, color editing, and figure
assembly) was completed in Adobe Illustrator CS6 (Adobe

Systems, San Diego, CA, United States).
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3.1 Effects of PDB on soil properties and
phosphatase activity

A two-way ANOVA demonstrated significant main effects of
soil types and PDB amendment on all soil properties (Table 2),
with Figure 1 revealing distinct variations across the four
different soils. In non-amended soils, TP was highest in VF
(2.32 gkg™), significantly exceeding the other treatments,
whereas PG showed the lowest TP (0.48 g-kg™'); the addition
of PDB did not significantly alter the TP content. Soil pH in
unamended VF (6.21) was significantly higher than in the other
untreated soils (5.25-5.46), but PDB amendment increased
pH significantly (p < 0.05) across all soils tested (VF: 7.12,
+0.91 increase; TG: 6.56, +1.10; PG: 7.31, +1.99; RP: 7.21,
+1.93). EC  exhibited the following pattern: VF
(0.214 mS-cm™) > RP (0.0615 mScm™) > PG
(0.0325 mS-:cm™) = TG (0.0319 mS-cm™), and the addition of
PDB significantly elevated EC values by 0.121-0.1868 mS-cm™".
Crucially, the PDB application significantly reduced acid
phosphatase activity (F = 9.734; p < 0.01), with VF displaying
the highest baseline activity (significantly greater than that of RP/
PG); after amendment, VF + PDB and TG + PDB showed
significant decreases relative to their non-PDB controls. PDB
did not affect acid phosphatase activity in RP soil.

3.2 Effects of PDB on soil
phosphorus fractions

P fraction changes induced by PDB amendment are shown in
Figure 2. A consistent decrease in soluble P (H,O-P) occurred across all
four soils (a 6.6%-35.6% reduction), whereas the HCI-P and residual P
fractions increased by 5.7%-107.3% and 20.5%-62.5%, respectively.
Residual P dominated in PG soils, regardless of PDB treatment, while
NaOH-P and residual P prevailed in TG and RP soils. The effects of
PDB on the NaOH-P and NaHCOj;-P fractions were soil-specific:
NaOH-P decreased in VF (by 76.0 mgkg™), TG (by 253 mgkg™),
and RP (by 9.6 mgkg™) soils but increased in PG (by 24.3 mg-kg™) soils
following PDB addition. Conversely, the NaHCO;-P increased in TG
(by 21.5 mgkg™), PG (by 5.9 mgkg™), and RP (by 7.1 mgkg™) soils,
yet decreased in VF (by 58.5 mg-kg ™) soils with PDB amendment.

3.3 Effects of PDB on soil
phosphorus leaching

Phosphorus leaching responses to PDB amendment across
the four tested soils are shown in Figure 3. PDB addition

frontiersin.org
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TABLE 2 Two-way ANOVA of selected soil properties.

10.3389/fenvs.2025.1663371

Acid phosphatase activity Total P Electrical conductivity
Soil site(S) 3 6.721* 321.9%%* 314.5%%* 12.79%%*
Biochar (B) 1 ‘ 9.734** 2.021 ‘ 1,350 ‘ 386.7%%*
SxB 3 1.631 0.086 ‘ 17.46** ‘ 13.55%**
The asterisks represent significant differences based on a two-way ANOVA. %, p < 0.05; **, p < 0.01; ***, p < 0.001. DF indicates degrees of freedom.
(a) (b) (c) (d)
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FIGURE 1

Effects of PDB on some soil properties in different field sites. (a) Soil total P content; (b) Soil electrical conductivity; (c) Soil pH value; (d) Soil acid

phosphatase activity. VF, vegetable field; TG, tea garden; PG, peach garden; RP, rice paddy. Bars represent mean values; error bars indicate standard
deviations (n = 3). Lowercase letters denote significant differences (p < 0.05) among the four tested soils without PDB addition (one-way ANOVA and
Duncan's test), whereas uppercase letters denote significant differences (p < 0.05) among the four different soils with PDB addition. Asterisks
indicate significant differences between corresponding soils with (+PDB) and without (-PDB) biochar addition, determined using the independent

samples t-test (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

substantially reduced the cumulative losses of TP and Pi in VF
soils by 83.7% and 82.7%, respectively. Similarly, TP and Pi
losses in TG, PG, and RP soils decreased by 32.95%-61.38% and
1.04%-22.39%, respectively. Notably, without PDB amendment,
VF soils exhibited the highest cumulative TP and Pi losses after
five

rainfall leaching events, significantly exceeding all

other soils.

3.4 Effects of PDB on the diversity of soil PSB

The PSB diversity indices (Chaol, Shannon, Simpson, and
coverage) presented in Table 3 exhibited significant variation
across the soils tested (p < 0.001), but PDB amendment did not
significantly alter these metrics. Stepwise regression identified
NaOH-P content as the primary predictor of a-diversity
(Table 4), explaining its critical role in structuring PSB
communities.

Frontiers in Environmental Science

3.5 Effects of PDB on the relative abundance
of soil PSB

The PDB amendment increased the relative abundance of
dominant genera in upland soils (VF, TG, and PG; Figure 4).
According to the relative abundance data, Pseudomonas and
Stenotrophomonas were the dominant genera in VF soils;
Bradyrhizobium prevailed in TG; and PG was characterized by
Bradyrhizobium,  Dactylosporangium,  Phytohabitans,  and
Actinoplanes.  In  contrast, RP  soils—dominated by
Bradyrhizobium and Nocardioides—exhibited decreased relative
abundances of these genera post-PDB. Redundancy analysis
(RDA) at the genus level (Figure 5) indicated that RDA1 (axis 1)
and RDA2 (axis 2) collectively explained 50.79% of PSB community
variation. NaOH-P, TP, NaHCO;-P, and ACP explained 27.6%,
14.9%, 9.5%, and 6.5% of the constrained variance in bacterial
community composition, respectively. NaOH-P and TP contents
were positively correlated with the abundance of Pseudomonas and
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1 1.5 -150 -75 0 75

VF a
PG
TG

[ NaHCO;-P
RP a [ NaOH-P

B HCI-P
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FIGURE 2

Effects of PDB application on soil phosphorus (P) fractions in different soil sites. VF, vegetable field; TG, tea garden; PG, peach garden; RP, rice paddy.
(a) P content in soil P fractions without PDB addition. (b) P content in soil P fractions after PDB addition. (c) Change in P content of each fraction following
PDB application relative to non-amended soils. Lowercase letters denote significant differences (p < 0.05) among P fractions within the same treatment.

Error bars represent standard deviations (n = 3).

Stenotrophomonas but negatively correlated with the abundance of
Bradyrhizobium, Dactylosporangium, Phytohabitans, Actinoplanes,
and Rhodoplanes.

4 Discussion

4.1 PDB reduces phosphorus bioavailability
across different soils

Although conventional biochar typically enhances soil
bioavailable phosphorus (Gao et al., 2019; Joseph et al., 2021),
this study is the first to demonstrate that PDB—excluding
interference from inherent phosphorus—consistently
diminished potentially available P fractions in all tested soils.
This finding is corroborated by our leaching experiments
showing reduced soluble phosphorus loss. Our results suggest

that available phosphorus reduction primarily occurs through

Frontiers in Environmental Science

the conversion of H,O-P into stable forms, specifically HCI-P
and residual phosphorus (Figure 2). The underlying mechanisms
might involve PDB-mediated transformation through the
following processes: (1) precipitation with surface cations (Mg/
Ca in alkaline soils; Fe/Al in acidic soils), which forms insoluble
crystals (Chen et al., 2018; Dai et al,, 2020) and (2) physical
adsorption via porous structures and a high surface area, which
limits phosphorus dissolution (Zhu et al, 2005). Crucially,
increases

phosphorus-rich  biochar potentially available P

fractions because (i) its exogenous phosphorus directly
supplements plant-available pools (Liu et al., 2018) and (ii)
pyrolysis-derived phosphorus compounds occupy adsorption
sites, increasing the surface’s negative charge and inhibiting soil
phosphorus adsorption (Zhao et al., 2017). This dual mechanism
resolves the apparent contradiction in the literature regarding
biochar’s phosphorus effects. It is important to note that this
was a short-term incubation study, and the findings do not

incorporate the potential influences of soil-plant interactions.
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FIGURE 3

Effects of PDB application on leachate inorganic phosphorus (a) and total phosphorus (b) content during five sequential leaching events. Asterisks
denote significant differences between the + PDB and —PDB treatments, as determined using an independent samples t-test (*, p < 0.05; **, p < 0.01; ***,
p < 0.001). Error bars represent standard deviations (n = 3).

TABLE 3 Response of PSB diversity indices to PDB application in different soil sites.

Soil site

Biochar application

Chaol index

Simpson index

Shannon index Coverage index

VF -PDB 3,333 + 268° 0.007 + 0.001° 6.216 + 0.117° 0.979 + 0.003¢
+PDB 1705 + 30° 0.042 + 0.010° 4.801 + 0.323" 0.990 + 0.001°
PG -PDB 1,614 + 105" 0.049 + 0.012° 4273 + 0.228° 0.990 + 0.002°
+PDB 740 + 31° 0.140 + 0.015° 2.957 + 0.143¢ 0.995 + 0.001°
TG -PDB 3,452 + 184° 0.006 + 0.002° 6.279 + 0.296° 0.978 + 0.002°
+PDB 1,580 + 240° 0.078 + 0.036" 4.061 * 0.553¢ 0.990 + 0.002°
RP -PDB 1820 + 78" 0.046 + 0.003¢ 4.465 + 0.078™ 0.988 + 0.000°
+PDB 752 + 46° 0.102 + 0.002° 3.259 + 0.082¢ 0.995 + 0.001°
DF F
Soil site(S) 3 317.8%%% 61.16*** 134,70 12490
Biochar (B) 1 0.733 0.028 0.171 1.650
Sx B 3 1333 6.253 4.509* 0.160

The data in the table are presented as the mean + standard deviation, N = 3. Different superscript letters indicate significant differences between treatments. The asterisks represent significant
differences based on a two-way ANOVA. *, p < 0.05; ***, p < 0.001. DF indicates degrees of freedom.

TABLE 4 Stepwise regression analysis between the diversity index and soil environmental factors.

Diversity index Soil environmental factor

Chaol index

NaOH-P, soluble P, HCI-P, and pH

Shannon index

NaOH-P, soluble P, and HCI-P

Simpson index

Coverage index

NaOH-P

NaOH-P, soluble P, and NaHCO3-P

Frontiers in Environmental Science
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Effects of PDB application on the relative abundance of PSB at
the genus taxonomic level.
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FIGURE 5

Redundancy analysis (RDA) illustrating the relationships between

PSB community structure at the genus level and environmental factors
across sample sites. Red arrows: environmental factors; black arrows:
bacterial taxa abundance. Acute angles between arrows indicate
positive correlations, whereas obtuse angles denote negative
correlations.

4.2 PDB suppresses soil phosphatase activity

ACP mediates organic phosphorus mineralization in acidic
soils, a critical process in phosphorus-deficient ecosystems
(Eivazi and Tabatabai, 1977; Nannipieri et al., 2011). Although
phosphorus-rich biochar inconsistently affects ACP (positive:
Masto et al., 2013; Lu et al., 2023; negative; Jin et al., 2016; Song
et al., 2020; neutral; Yang et al., 2016; Pokharel et al., 2020), PDB
consistently inhibited ACP activity in our study, which could
limit the potentially plant-available P-pool in soils. We attribute
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this to the following: (1) direct enzyme adsorption: PDB’s porous
surface adsorbs ACP, inducing conformational changes that
reduce activity by >90% (Foster et al, 2018); and (2)
microbial mediation: altered electron shuttling and solute
transformation impair phosphatase-producing microbes (Yuan
etal.,, 2017). Although we did not observe a significant correlation
between pH and ACP, which could be attributed to the
constrained sample size, it is necessary to expand the study to
confirm these findings in the future.

4.3 PDB alone does not alter PSB a-diversity

Although biochar can enhance bacterial a-diversity by creating
distinct microenvironments (e.g., black soil under soybean; Yao
etal., 2017), the PDB amendment in our study showed no significant
effect on PSB diversity indices (Table 3). This discrepancy may stem
from soil-specific factors, particularly moisture and oxygen
gradients, which
microenvironments. Crucially, stepwise regression identified the
NaOH-P content as the primary predictor of a-diversity
(Table 4). NaOH-P originates from Al/Fe-bound phosphorus and
organic phosphorus in humic/fulvic acids (Qin et al., 2019). Given
that NaOH-P acts as a pivotal sink/source of labile-to-stable
phosphorus (Zheng et al., 2002) and correlates with dissolved

override the influence of biochar on

oxygen dynamics (Zhang et al, 2018), we propose that PDB
indirectly modulates PSB diversity through oxygen-mediated
regulation of NaOH-P fractions, such as Al- or Fe-bound P,
along with humic and fulvic acid P, rather than direct microbial
habitat alteration.

4.4 Land-use patterns mediate PDB effects
on PSB community composition

PDB amendment differentially altered PSB genus-level
abundances, with dominant genera increasing in upland soils
(VF, TG, and PG) but decreasing in paddy soils (RP) (Figure 4).
This divergence underscores a possible effect of land use, such as
water management, rather than cropping patterns, as the primary
control. For example, Bradyrhizobium (a multifunctional genus
involved in nitrogen fixation, denitrification, and phosphorus
solubilization; Mirriam et al., 2023) exhibited opposing responses
to biochar across studies: decreased (He et al., 2021; Yao et al., 2017)
versus increased at low application rates (Li et al, 2022). We
attribute this to PDB’s oxygen-modulating role: in flooded paddy
soils, biochar improves porosity and aeration, alleviating hypoxia to
favor Bradyrhizobium growth. RDA analysis indicated NaOH-P
(explaining 27.6% of genus variance; Figure 5) as the key driver,
consistent with its oxygen-dependent solubilization dynamics
(Zhang et al, 2018). This mechanistically links PDB-induced
oxygen shifts to NaOH-P bioavailability and ultimately PSB
assemblage. Additionally, a negative correlation between soil total
phosphorus and the relative abundance of Bradyrhizobium has been
documented (Griebsch et al., 2020). However, the specific reasons
for this correlation are not yet understood. We acknowledge that
other soil properties not measured in this study may also have
contributed to these changes.
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5 Conclusion

that biochar

application, irrespective of its phosphorus content, alters soil

In summary, this study demonstrates
phosphorus fractions, inhibits soil acid phosphatase activity, and
reduces soil phosphorus loss. These findings indicate that biochar
holds potential for maintaining soil nutrient status and
mitigating non-point source agricultural pollution. Notably,
the relative abundance of phosphate-solubilizing bacteria
varied significantly across different soils. In addition, the
elucidation of specific land-use types is an important field for
future research. Further investigation is necessary to elucidate the
interactions among biochar, phosphate-solubilizing bacteria, and
soil management
transformation.

practices concerning soil phosphorus
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