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Introduction: This study explores the time-varying connectedness and spillover
transmission among supply chain disruptions in China, clean energy technology,
energy prices (BRENT), U.S.—China trade tensions (UCT), and economic policy
uncertainty (EPU). Understanding these interdependencies is crucial for assessing
how shocks propagate across economic and environmental systems.
Methods: Using quarterly data from 2006 to 2024, the analysis employs the
Time-Varying Parameter Vector Autoregression (TVP-VAR) and Quantile VAR
(QVAR) approaches. These models capture both dynamic and distribution-
dependent spillover effects across markets and policy variables.

Results: Findings indicate that Chinese supply chain disruptions act as the primary
net transmitter of shocks, especially during crises such as COVID-19, trade
conflict escalations, and the recent global energy shock in the Red Sea
region. After 2020, climate technology emerges as a more influential
transmitter in high-quantile regimes, while BRENT and UCT alternate their
roles across quantiles. Robustness tests using network-based quantile analysis
confirm the nonlinear and state-dependent characteristics of these
spillover effects.

Discussion: The results provide new insights into how domestic disruptions in
China’'s carbon-intensive supply chains reverberate through broader
environmental, economic, and policy systems. The study offers essential
implications for resilience planning, sustainable technology.

KEYWORDS

supply chain, climate-technology index, U.S.-China trade tension, EPU, Qvar

1 Introduction

With the trade war between the United States and China, continued supply chain
ruptures, and energy security impoverishing the world, the fragility of the global economic
systems has emerged, amplifying the urgency for clean energy transitions and resilient
supply chain strategies (Allan and Nahm, 2024; Yang and Fu, 2025). We also know that the
dynamics of financial markets have changed since the shift towards climate resilience and
clean energy investment came into play, especially in times of high policy uncertainty and
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global crises, including the COVID-19 pandemic (C19P), the
Russia-Ukraine conflict (RUC), and the
Although previous studies have examined the mutual effects

Red Sea tension.

between, e.g., economic policy uncertainty and oil shocks on
specific sectors, such mutual and time-varying transmission
relationships among these central variables across markets
remain largely understudied. To address this gap, we explore the
dynamic spillover structure and quantile-dependent connectedness
in five key areas U.S.-China geopolitical tension (UCT), energy
(Brent), Economic Policy Uncertainty (EPU), Climate Technology
(NEX), and China’s supply chain (GSCH). In this study, the focus is
on China-specific supply chain disruptions, which we denote as
GSCH. This series reflects disruptions in China’s domestic and
export-related supply chain activities, and therefore differs from
the Global Supply Chain Pressure Index (GSCPI), which is global in
scope. These sub-domains are bridged via multiple transmission
channels through which shocks in one sector matter for outcomes in
the other. The first is the effect of technical and innovation
spillovers, in the sense that advances (or, from another point of
view, disruptions) in clean energy technology influence supply-
chain efficiencies as well as input sourcing decisions and
production costs; a technological shock gives rise to a shock on
supply chain stress. Investment and financing connections are
second in that flows of capital (e.g., foreign direct investment;
green finance) can facilitate or impede the clean energy/lower
carbon technology diffusion, suggesting that financial investment
may slow the growth in clean energy deployment. Third, regulatory,
market, and policy pathways mediate how shocks spread: trade
policies, carbon pricing, and subsidy regimes can determine the
influence that climate-technology shocks exert on industrial activity
or supply chain stability. A third point is that nonlinear scale and
composition effects mean that \(the \) size of the shock matters, as
do stage of production based on economic and technological
development % early adopters may get significant efficiency gains
from a clean energy shock. At the same time, in less developed
sectors, costs may dominate initially. Using advanced econometric
methods, including TVP-VAR and QVAR models, we offer strong
evidence of how the shocks spill over from one area to another,
particularly during extreme quantile events. The implications for
policymakers, investors, and stakeholders trying to strengthen
resilience in light of geopolitical, environmental, and market
uncertainties are substantial.

The abnormal operations of supply chains will cause the Global
Supply Chain to remain troubled for a long time. In today’s
international competitive business environment, the specialization
of labor is becoming increasingly detailed, and the rise of
outsourcing businesses and the development of economic
globalization have created a longer and more complex supply

Abbreviations: CSCH, China Supply Chain Disruptions; CTCH, Climate
Change Technology; EPU, Economic Policy Uncertainty; NEX, Invesco
WilderHill Clean Energy; BCI, Business Continuity Institute; NOAA, National
Oceanic and Atmospheric Administration; GSCPI, Global Supply Chain
Pressure Index; PMI, Purchase Manager Index; SDG, Sustainable
Development Goals; ICT, Information and Communication Technology;
COP26, the 26th UN Climate Change Conference of the Parties; FSI,
Financial Status Indicator; GPR, Gross Profit Ratio; BIC, Bayesian
information  criterion; TVP-VAR, Time-Varying Parameter Vector
Autoregression; QVAR, Quantile Vector Autoregression.
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chain (Baghersad and Zobel, 2021; Laguir et al., 2022). Problems
caused by unpredictable events in the external environment may
spread rapidly and cause GSCPI. Geopolitical conflicts, international
financial crises, major natural disasters, and other black swan events
will lead to GSCPI and cause serious consequences (Ali et al., 2025;
Umar and Wilson, 2024; Wang et al., 2025). The supply chain has
been closely embedded with economic and social life. The outbreak
of C19P has caused many Global Supply Chain, which has brought
severe challenges to all aspects of the basic supply chain, such as
basic manufacturing, healthcare, food processing, and energy
security (Parast and Subramanian, 2021). As of October 2022,
C19P has not completely ended, and the RUC that occurred in
February 2022 is still ongoing. Combined with adjustments in trade
policies between countries, there is a high risk of disruption to
supply chains. The comprehensive and far-reaching impact of C19P
superimposed on RUC on lobal supply shain has not yet been
revealed and needs to be further studied by the academic community
(Mariotti, 2022). The resulting uncertainty is the most important
and critical factor driving supply chain management (Zheng et al.,
2019; El Baz and Ruel, 2021). According to a 2019 report by the
Business Continuity Institute (BCI), with more than 56% of
companies worldwide suffering from global supply chain issues
each year, companies have begun to take global su-pply chain
more seriously.

In supply chain management, the impact of CTCH factors
cannot be ignored. Since the 1960s, the greenhouse effect, nuclear
pollution, and extreme weather have erupted worldwide, triggering
continuous public panic, social conflicts, and environmental
protection movements (Streeby, 2018; Zhang et al., 2021). Any
sudden environmental and climate deterioration events may
cause global su-pply chain disruption, leading to potential
problems affecting the national economy and people’s livelihoods
(Sazvar et al, 2018; Niu et al, 2022). Improving the country’s
environmental governance capabilities, rationally coordinating
economic development, maintaining the smooth operation of
various supply chains, and effectively implementing green
innovation have become important dimensions of the
government’s administrative and modernization capabilities (Al-
Maadid et al., 2025; Mohammed et al., 2025). The current circular
economy, low-carbon life, climate resilience, smart supply chain,
etc., all of these theories and practices involve the connection
between environment, technology, economy, and transaction
(Yadav et al, 2021; Zhou et al, 2020). Technological updates
may lead to various ecological and environmental problems, but
technological application is also one of the most important means to
2025).
Technological development guarantees steady economic growth

achieve sustainable transformation (Alkaraan et al,

and orderly operation of supply chains. Human society’s green
and sustainable transformation is inseparable from the green
revolution of technology (Hu et al, 2022). Similar to Climate
Change Technology, policymakers need to consider EPU in
managing global su-pply chain issues (Dbouk et al., 2020; Zhou
2020). The established
macroeconomic goals by formulating and adjusting economic

et al, government achieves the
policies (Liu et al., 2021). Influenced by the characteristics of
economic policies and the external environment, economic
policies naturally have different degrees of uncertainty (Hou

et al., 2021). The financial crisis swept the world in 2008, and
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various countries introduced economic stimulus policies to alleviate
the dilemma (Peters et al., 2011). Some events in the five permanent
members of the United Nations, such as Sino-US trade friction,
Brexit, and RUC, have reshaped the geopolitical landscape
2022).
background, global EPU presents a long-term upward trend and

(Proedrou, Against a complex and severe global
increased volatility (Ding et al., 2021). China’s economy has entered
a stage of high-quality development rather than just pursuing a
growth rate. Policies to support the economy are often introduced,
and the uncertainty brought about by them is an EPU issue, which
has received extensive attention from scholars (Bourghelle et al,
2021; Huang et al., 2021; Zhu et al., 2021; Wang et al., 2022a).
Existing literature shows that corporate capital investment decreases
significantly when uncertainty about future policies rises (Gulen and
Ton, 2016). Other scholars have found that when EPU rises, banks
will reduce their credit supply (Valencia, 2017). EPU causes
companies to be more cautious when raising funds, and it also
significantly weakens the effect of loose monetary policy on
investment efficiency (Bloom, 2009), hindering corporate
innovation (Colak et al, 2017; Jens, 2017). Wang et al. (2022a)
found that EPU can serve as a predictor for interdisciplinary factor
correlation analysis, especially under normal market conditions.
EPU severely affects the energy supply chain, resulting in frequent
spillovers between oil and gas resources, precious metals, and
foreign exchange transactions (Ding et al., 2021).

Less academic attention has been paid to the complex
relationship between supply chains, energy price volatility, and
geopolitical ~tensions, notably those stemming from the
U.S.-China trade relationship. The U.S.-China trade war has
already disrupted of production and
technology and has added to the uncertainty in both traditional

cross-border  flows
and green industries. Meanwhile, prices for Brent crude oil, an
internationally used benchmark for energy costs, have been highly
volatile as a result of geopolitical events, OPEC + actions, and the
post-pandemic recovery, with its effects on transportation costs,
input prices, and the effectiveness of the adoption of clean energy.
These are not independent; more and more are cross-related and
time-dependent, especially in extreme market scenarios.

This paper lies at the crossroads of supply-chain shatters, energy
costs, clean-energy technologies, and macro-uncertainty. While
related literature studied mainly one of the two supply-chain
pressures in isolation or focused on a bilateral relationship (e.g.,
linking policy uncertainty to oil shocks), our study encompasses
these areas within an interlinked framework. Our study contributes
to the literature in two primary ways. We first argue how shocks are
transmitted across markets via quantile-dependent dynamics of states,
and show asymmetries between low- and high-stress ranges. Second,
we document a post-2020 regime change after C19P, RUC, and Red
Sea energy shocks that saw strong transmission channels for supply
chains, energy, and clean technology. This more extensive mapping
situates our study at the intersection of supply-chain pressures
research and the nascent literature on energy-uncertainty—climate
interdependencies.

Based on this, from the perspective of the connectedness of
supply chains, this paper examines the exogenous factors,
multifaceted consequences, and corresponding internal and
external management countermeasures of global su-pply chain in
series to deepen and improve managers’ and other relevant subjects’
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understanding of global su-pply chain. Also, this study investigates
the connectedness among China’s global supply chain, UCT, Brent,
EPU, and NEX. Our analysis contributes to the literature on the
interrelations between macroeconomic uncertainty, the energy
markets, climate innovation, and global production systems in
several important ways. To our knowledge, few studies jointly
examine supply-chain pressure, energy prices, clean-energy
technology, and macro-uncertainty — within a  unified
connectedness framework. Closest predecessors include work
linking uncertainty and energy/clean-tech markets (e.g., Wang
Xiong et al., 2022b; Bouri et al,, 2022), spillovers among climate
change, technological innovation, and uncertainty (Khalfaoui et al.,
2022), the role of green technologies and climate uncertainty for
supply-chain performance (Cheng et al., 2023), and recent evidence
on climate risk and supply-chain adaptation (Pankratz and Schiller,
2024), as well as post-COVID supply-chain transformation and
policy-driven shocks (Handfield et al., 2020; Appolloni et al., 2022).
Building on these strands, our incremental contribution is threefold:
Firslty, we integrate the four strands, China supply-chain pressure
(GSCH), Brent, EPU, and UCT—with a clean-energy index (NEX)
in a single system to map cross-market propagation, particularly in
the recent period, including the US-China trade tension and the
energy tension in the Red Sea. Thus, by accounting for these
dimensions, the analysis considers the multi-level transmission of
systemic shocks, which is typically missed by standard single-market
analyses. Relevance to current trends and issues, drawing from past
times of crisis. The study timeframe (2006-2024) spans clinically
significant global events-the financial crisis of 2008, U.S.-China
trade war, C19P, URW vaccination disaster, and energy market
shocks- and supports a detailed evaluation of how global systems
react to acute and chronic sources of uncertainty. Secondy, while
prior literature has examined the impacts of economic policy
uncertainty, energy shocks, and political risk on financial markets
separately, this study is the only one that integrates with
environmental innovation (through clean technology indices),
geopolitical conflict (by accommodating U.S.-China tension), and
conventional macroeconomic fluctuation (by including EPU and
Brent oil prices) for a comprehensive assessment of spillover effects
during crises and normality. Thirdly, applying TVP-VAR and
QVAR approaches helps us capture the time-varying and
quantile-dependent nature of spillover dynamics. This two-
pronged methodology allows for strong and fine-grained insights
into how relationships evolve in standard or extreme market
conditions. The rest of the paper is structured as follows: in
section 2, after a brief literature review, we introduce the data
and methods. We subsequently present empirical results,
robustness checks, and policy implications, and finally, we
conclude with the main results and recommendations for
future research.

2 Related literature

2.1 The supply chain in a dynamic
environment

Numerous papers have examined global su-pply chain in
dynamic environments, with a particular focus on manufacturers,

frontiersin.org
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platforms, finance-related linkages, capital exports, and trade credit
(e.g., Dubey et al., 2017; Oberg, 2021; Moretto and Caniato, 2021;
Lin and Zhu, 2025; Liu et al., 2025). Pankratz and Schiller (2024)
demonstrate that companies change the make-up of their supply
chains as suppliers encounter greater climate risks, such as extreme
heat or flooding. Lin and Zhu (2025) observe that diversification of
supply chains enhances productivity and raises the resilience of
renewable energy companies. Liu et al. (2025) stress that supply
chain and inflation shocks combined with consumption shocks
could hamper green technology, and digitalization increases the
degree of adaptability. Agrawal et al. (2024) assert that technologies
from Industry 5.0 can help alleviate climate-induced supply chain
disruptions and promote sustainability. The focus is primarily on
factors causing global su-pply chain rather than the potential impact
of other aspects after the outage and possible measures to address the
outage. As markets globalize and the operating environment
becomes more dynamic, managers pursue lean supply chain
management practices (Blackhurst et al., 2005; Min et al., 2019),
where supply chains are optimized into more economical and
networks.  These
opportunities for supply chain development (Ghadge et al,

responsive  industrial trends  present
2020), placing significant pressure on a stable operating
environment and increasing the risk of vulnerability and
disruption (Katsaliaki et al., 2021). Global su-pply chain indicates
that a company cannot meet the supply or demand required for
normal operations (Hendricks and Vinod, 2005). While revealing
the sudden disruption, Wilson (2007) explains global su-pply chain
from the perspective of logistics and transportation. He defines
global su-pply chain as events in which disruptions to logistics cause
the movement of goods to stop suddenly. The global supply chain is
characterized by unplanned abruptness and sudden events that can
disrupt the expected flow of materials, information, and components
(Skipper and Hanna, 2009; Butt, 2021).

Extreme weather, sudden disasters, and policy factors often lead
to global su-pply chain. The U.S. National Oceanic and Atmospheric
Administration (NOAA) has recorded 212 disasters since 1980,
causing approximately $1.2 trillion in damage (Katsaliaki et al,
2021). Natural disasters such as the 2004 Indonesian tsunami and
the 2011 Great East Japan Earthquake severely affected the supply
chains of multiple products for companies such as Apple, Samsung,
and Toyota, with the fragile chains immediately disrupted,
negatively affecting the reputations and earnings of these
2012). The CI19P outbreak in
2020 severely restricted factory production around the world, cut

companies (Chongvilaivan,
off logistics routes, and disrupted basic supply chain operations
(Araz et al, 2020). Statistics from the Federal Emergency
Management Agency (FEMA, 2015) show that approximately
50% of small and medium-sized businesses find it difficult to
reopen after a disaster. In human factor disruptions, the risk of
production failures for just-in-time carmakers and other
manufacturers with similar operations has risen following Brexit
(Banker, 2019). Recently, RUC has caused an imbalance in the global
economic and political order, unstable energy and resource supply,
blocked or interrupted supply chain networks to varying degrees,
and a decline in the health index of residents (Mariotti, 2022;
Malchrzak et al., 2022; Piccoli et al., 2022).

According to Luo and Kwok, 2020, C19P takes a 40% negative hit

to China’s supply chain. Benigno et al. (2022) developed a new
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barometer to measure different dimensions of GSCPL It offers
data on the United States. In addition, it embeds 27 different
metrics, including logistics networks, transportation, container
shipping costs, and Purchase Manager Index (PMI) surveys.
Investigate the link between the environment and GSCPI using
panel quantiles and document a strong association between the
global su-pply chain and environmental degradation. Scholars have
highlighted the problem of global su-pply chain in the literature. This
topic increasingly challenges the stability of product supply chains and
the efforts of core companies to consolidate their supply and demand
relationships. Supply chains cross each other into networks, and
chains are interdependent. Disruptions can snowball, with severe
consequences for all relevant supply chain echelons. Although the
Global Supply Chain Pressure Index (GSCPI) is frequently used in the
literature, in this study, we rely instead on a China-specific measure
(GSCH). This choice reflects the focus on China’s domestic
disruptions and their international spillovers.

2.2 Climate change technology and
environmental challenges

In the current era of deepening globalization, informatization,
and ecological processes, as well as major changes in geopolitics and
international environmental politics, it is urgent to re-examine the
importance of climate technology transfer in the reshaping of global
su-pply chain and environmental governance, as well as its face new
challenges and opportunities, and actively explore innovations in
technology transfer models (Petricevic and Teece, 2019; Collins
et al, 2021; Anderson, 2022). CTCH is a specific technological
innovation designed to reduce the impact of product production on
the natural environment, covering processes, products, services, and
business management updates (Razzaq et al., 2021; Irfan et al., 2022).
Information technology has made tremendous progress in the past
decade and has penetrated all aspects of daily life (Guo et al., 2020).
Among them, CTCH meets the needs of social progress and business
development without compromising climate and natural resources
(Yap etal, 2021). Research on CTCH mainly focuses on sustainable
economic development, energy conservation,
technology upgrades, and their impacts on the natural
environment (Shan et al., 2021; Tan et al., 2021; Li et al., 2022).

Among the observed associations between CTCH and

manufacturing

sustainability issues in different regions, Razzaq et al. (2021) find
that green innovations mitigate carbon emissions, particularly at
higher emissions quantiles, by examining the asymmetric
interdependence between carbon emissions and green innovation
for BRICS economies from 1996 to 2017. Shan et al. (2021) consider
the STIRPART model and find that innovation in climate
technology plays an important role in achieving the SDG by
keeping production processes on track with minimal negative
impact on the environment in Turkey. Chien et al. (2021)
demonstrate that information and communication technology
(ICT)
significantly reduce environmental degradation when considering

can help improve supply chain effectiveness and
the SDG framework. With the help of the bootstrap autoregressive
distributed lag (BARDL) technique from 1990 to 2018, Meirun et al.
(2021) believe that despite the remarkable economic growth

achievements in Singapore, it still faces severe environmental-
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related problems, and technological innovation is an effective way to
achieve environmental sustainability. In addition, many studies have
explored the dynamic causal relationship between CTCH and
environmental issues and have largely recognized their positive
role in supply chain management, energy conservation, and
emission reduction (Du et al., 2019; Jiao et al., 2020; Yang et al.,
2020; Yin et al., 2020; Hao et al., 2021).

Given the uniqueness of environmental and climate issues (e.g.,
externalities, noncompetitiveness, transboundary, complex, temporal,
and spatial heterogeneity, irreversible consequences, etc.), there is an
urgent need to strategically promote and manage the invention,
innovation, dissemination, and transfer of environmental
technologies and use (Good et al, 2019; Gupta et al, 2021).
Research on the relationship between green technology or CTCH
and China’s economy or supply chain is rarely mentioned. China’s
role is changing from a mere recipient of environmental technology
transfer from developed countries to a technology supplier to other
developing countries (Pandey et al., 2022). As significant emerging
economies, China and developing countries face numerous challenges
in economic transformation and supply chain upgrading, and they
share many relevant development experiences. Learning from all
parties involved and finding solutions makes CTCH critical to the
effectiveness of supply chain environments.

2.3 Trade uncertainty and supply chain
disruption

Recent literature emphasizes that the U.S.-China trade war has
revolutionized the global supply chains through direct tax shocks and
general trade policy risk. Mao and Gorg (2020) show that the
cumulative and indirect effects of tariffs employed during the trade
war had a wide-reaching impact on bilateral trade and third parties,
negatively affected by the embedded involvement in trade in global
value chains. Wu et al. (2021) build on this work using the OECD
Inter-Country Input-Output model to develop a methodology for
quantifying the cumulative tariff impact of both direct and indirect
contributions. Their results indicate that the U.S. and China bore the
highest indirect costs regarding the ripple effect, with the U.S. and
China incurring $10 billion and $6.5 billion, respectively. In contrast,
other third-party economies such as the EU, Canada, and Mexico also
had to bear significant spillover effects, which would increase by 30%-
70% due to full tariff pass-through. Similarly, Benguria and Saffie
(2024) also illustrate how firms re-purposed exports towards substitute
destinations following tariff shocks, with the re-allocation constrained
by financial conditions and prior supply linkages. Fan et al. (2022) offer
firm-level evidence on how U.S. firms with deep sourcing connections
to China experienced deteriorating operating performance, especially
those with complex sourcing networks. Kong et al. (2024) found that
the cost of innovation for Chinese firms was quite significant when
facing U.S. tariff exposure. However, some strategically increased
innovation so as not to fall behind. From an environmental
(2023) supply chain
restructuring led to an increase in emissions worldwide as

standpoint, Yuan et al reveal how
production moved to carbon-intensive economies. Recent works by
Padhi et al. (2024) and Tsao et al. (2024) highlight how Industry
4.0 technologies can mitigate supply chain risk under increasing global

uncertainty. Similarly, as Blessley and Mudambi, (2021) observed,
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resilience relies on resource reconfiguration and strategic alliances, as
well as, further, as Handfield et al. (2020) followed, recurring
disturbances (i.e., tariffs) and permanent changes (i.e, pandemics)
are speeding up the transformation of GVCs into regionalized and
adaptive GVCs. These studies highlight that the U.S.-China trade war
has significantly reconfigured supply chains with implications for
innovation, sustainability, and resilience in global industries.

2.4 EPU on supply chain

The role of EPU in achieving the SDG, environmental
governance, and supply chain resilience has been a key issue in
academic research (Ali et al., 2025; Cheng et al., 2023; Kim et al,,
2024). Economists have found that increased uncertainty can inhibit
the flow of capital in supply chains and thus affect the normal
functioning of supply chains, causing shocks.

On the one hand, EPU can cause companies to delay or cancel
new supply chain network relationships that require upfront
investment. Existing empirical research corroborates this statement.
For example, establishing new supplier links requires start-up costs,
while closing existing plants or supply chains can incur high
separation costs such as severance, environmental cleanup, asset
write-downs, and, in some cases, financial punishment (Cohen and
Hau, 2020). In a cross-country study, Julio and Youngsuk, (2012)
show that companies reduced capital expenditures and slowed the
development of new markets and supply chains around elections.
Based on the analysis of real options theory and the irreversibility of
investment, the increase in EPU inhibits the capital output of
enterprises in supply chains. This inhibitory effect is more obvious
in enterprises with a higher level of investment irreversibility and a
higher reliance on government spending (Gulen and Ion, 2016; Alfaro
et al,, 2018). Akron et al. (2020) conducted empirical research using
data from companies in America’s hospital industry. They found that
EPU is negatively correlated with trade credit provided upstream in
the supply chains of hospitals. Therefore, in response to unpredictable
EPU, if companies cannot stabilize existing supply chains, they may
terminate ongoing relationships and explore other supply chains
(Charoenwong et al., 2022).

On the other hand, higher EPU may prompt companies to
mitigate potential future shocks by expanding new relationships
stronger supply chains, thereby preemptively
reducing operational risk (Sting and Arnd, 2014; Chaturvedi and

and building

de-Albéniz, 2016). Thus, more perceived uncertainty incentivizes
firms to increase the number of high-quality supplier relationships
and reduce the number of low-quality suppliers, leading to disruptions
in abandoned supply chains. Still, this behavior is only effective for
diversifiable risks (Ang et al. al. 2017). The research of Marcus (1981)
points out that in the EPU environment, it is difficult for enterprises as
microeconomic entities to evaluate the benefits and risks they will face,
so it is difficult to judge the impact of EPU on enterprise innovation.
Some economists have found that the increase in EPU inhibits supply
chains’ R&D or innovation. Xu (2020) argues that the increase in EPU
will increase the financing cost of enterprises, thereby reducing the
overall innovation ability of the supply chains. Firms with severe
financial constraints and firms that rely more on supply chain finance
are more negatively impacted by EPU (Nodari, 2014; Phan
et al,, 2021).
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Most scholars believe that the increase of EPU will significantly

reduce enterprises’ financing, investment, and innovation
capabilities in supply chains, causing trouble in supply chain
operations. From another perspective, the decline in corporate
investment and innovation has impacted the supply chain,
increasing the risk of global su-pply chain. As a result, EPU may
affect global su-pply chain through financing, investment, and
innovation channels.

Taken together, the literature indicates that these four strands,
supply-chain pressures, energy prices, EPU, and U.S.-China
geopolitical tensions, are not isolated but interconnected through
identifiable spillover mechanisms. Supply-chain shocks (e.g.,
logistics disruptions, black-swan events) amplify Brent volatility
through transportation and input costs, while oil price swings
feed back into supply-chain stress by raising production and
shipping expenses. EPU operates both directly, by altering
investment flows and financing conditions, and indirectly, by
magnifying volatility in oil and clean-tech markets; for instance,
policy uncertainty can delay clean-energy deployment, slowing its
stabilizing effect on supply chains. UCT shapes trade flows and
technology transfer, disrupting both GSPCI and clean-energy
innovation channels. Importantly, these channels are likely to
differ by quantile regimes: in lower quantiles (tranquil states),
shocks may be absorbed, whereas in higher quantiles (stress
regimes), spillovers intensify and cross-domain amplification
dominates. This framework motivates our empirical tests, which
explicitly measure quantile-dependent connectedness among the

four domains.

3 Data and methods
3.1 Data collection

This research aims to examine the connectedness of supply
chain disruptions in China, considering the CTCH Index, EPU,
commodity prices, and tension between the U.S. and China, using
monthly data from April 2006 to April 2024. Supply-chain stress for
China is proxied by the China Supply Chain Pressure Index
(GSCH). GSCH follows the NY Fed methodology used for the
GSCPI family and is China-specific. The Invesco WilderHill
Clean Energy ETF is used in this study to track NEX as an
index, which rates corporations based on their contribution to
clean energy, technical influence, and climate change (Bouri
et al, 2022; Wang Xiong et al, 2022b). The source of data is
downloaded from the Bloomberg terminal. The following select
index is the economic EPU, calculated by (Baker et al., 2022; Baker
et al, 2016) as an uncertainty measure. This index is obtained from
St Louis Fed Financial Stress. To measure the degree of tensions,
both geopolitical and trade-related, we use the UCT (U.S.-China
Tension Index) index. This index is constructed using keyword text
analysis of the top five U.S. newspapers and measures bilateral
tensions using the frequency and context of trade war and political
conflict frames. It has been extensively used in the literature to proxy
for trade policy uncertainty and geopolitical stress (Baker et al.,
2016). The UCT data is pulled from the Economic Policy
Uncertainty homepage maintained by the Economic Policy
Uncertainty Project, which provides”searchable time-series, for
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analysis of the economic policy. Brent crude oil is considered in
this work as a proxy for global energy and commodity market
behaviour. Brent is one of the world’s most widely used oil
benchmarks and is the reference price for energy pricing. Energy
Information Administration (EIA), a credible source of global
energy data and projections. The Brent crude series can be seen
as an aggregate market for energy in the sense that it summarizes
and eliminates partial demand and supply-driven movements in
energy prices, and it has been widely employed in fundamental
empirical analysis of the relationship that exists between the
commodity markets and the macroeconomic or environmental
uncertainty. The data is obtained from the official website of
EIA. Summary statistics of the data are shown in Table 1.

For better estimation, all data transform to return measure,
which can be described as follows:

To standardize all data series and obtain consistent comparative
results, we convert each variable to a return form, as expressed in

T
Ry =1In (ﬁ) (1)

Equation 1.

Where:
Tj: index at time t
T.;: indexattimet— 1

R;:: index return at the time

3.2 Definition of the method and model

3.2.1 Novel quantile connectedness

The novel quantile VAR proposed by Ando et al. (2022) is based
on quantile regression and a factor structure to distinguish between
common and distinctive error components. Consistent with recent
applications, we employ quantile-based techniques to capture tail-
dependent, state-specific spillovers and heterogeneity across market
conditions (Dogan et al., 2025). This approach is widely used to
quantify the connectedness in the time-frequency domain under
market conditions (bearish, normal, and bullish) (Chatziantoniou
et al., 2022; Cunado et al., 2022; Jain et al., 2022; Khalfaoui et al,,
2022). As we compute the connectedness of Diebold and Yilmaz
(2014), the mathematical representation of QVAR graphical analysis
is the QVAR model used in this study is defined in Equation 2, which
captures the conditional quantile dependence across variables.

P
he=y+) Dinra 2)

j=1

where h; and h;_; are endogenous series vectors, y is an intercept
vector error term, and & depicts the parameter matrix.

The TCI, shown in Equation 3, summarizes the overall risk
spillover across markets during the sample period.

k
TCI, = K™') FROM}, (3)

Jj=0

It measures the risk spillover over the total period.
Connectedness with others is defined as:
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TABLE 1 Data descriptive.

Variable Definition Sources
Invesco WilderHill clean CTCH -clean energy/index NEX Bloomberg terminal
energy
Supply chain China supply disruption/index CSCH Source: NY Benigno et al. (2022) methodology — China variant (same authors;
China, U.S., Europe, and global series available) https://www.newyorkfed.org/
research/policy/gscpi#
Economic policy calculated by (Baker et al., 2022; 2016) as an EPU St Louis Fed/https://fred.stlouisfed.org/series/
uncertainty uncertainty measure/index
US-China tension Measure the U.S. china tension and trade war ucr https://www.policyuncertainty.com/
Energy prices Represent the energy and commodities prices Brent https://eia.com/

Source: our elaboration.

The “FROM” measure, defined in Equation 4, represents the
degree to which a variable receives shocks from others within
the system.

k
FROM; = )" ¢ (H) 4)

i=Li# 1

It presents the connection of each variable receiving a shock
from other variables while

Conversely, the “TO” measure in Equation 5 reflects the extent
to which each variable transmits shocks to others.

k
TO;= ) ¢ (H) (5)

i=li# 1
is the return spillover transmitter. Finally, NET j; = TO;; — FROM j;

represent net directional connectedness and the difference between
from and to connectedness.

3.3 Time-varying VAR (TVP-VAR)
connectedness

As a sensitivity analysis of the quantile model, we also fit a time-
varying parameter VAR in which the AR coefficients and shock
variances can smoothly evolve. We estimate the model via a Kalman
filter/smoother with discount (forgetting-factor) specification, so that
recent observations receive more weight and older information is
down-weighted; initialization is based on an OLS fit to the early
sample, but the discount setting implies an effective memory of, say,
50 months, in line with our rolling-window reports. We calibrate the
lag order and the forecast horizon as in pictures (four lags; 10-step-
ahead horizon), and we update the time-dependent shock covariance
with a standard exponentially-weighted updating schedule. At each
time, we establish impulse-response dynamics and an order-invariant,
generalized variance-decomposition to summarize the information on
how much of the one-step-ahead forecast error variance in each series
can be traced back to shocks in any other series. We then calculate the
identical totals from, to, and net connectedness metrics as described in
QVAR, but over time, paths of measures indicating evolving
dynamics. Results are relatively insensitive to sensible variations in
the discount rate, horizon, or lag, and they reflect regime switches
identified by the quantile analysis (in particular after 2020).
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TABLE 2 Descriptive statistics.

BRENT EPU GSCH NEX UCT

Mean 0.007 0.073 0.010 0.007 -2,017
Median 0.016 0.000 0.016 0.013 -2,005
Maximum 0.598 2,141 0.726 0.315 -1,391
Minimum —-0.426 -0.619 —-0.433 —-0.350 -2,675
Std, Dev 0.106 0.410 0.109 0.078 0.170
Skewness 0.080 1,563 0.606 —-0.489 —-0.515
Kurtosis 9,230 7,298 12,950 6,027 4,749
Jarque-Bera 347,960 252,962 900,070 90,646 36,913
Probability 0.000 0.000 0.000 0.000 0.000

4 Novel QVAR results and discussion
4.1 Descriptive statistics

Table 2 shows summary statistics of all data variables. The mean
for all data series is positive and close to zero except for UCT, which
is 2.01, exhibiting a high return. In contrast, the SD of the EPU is
higher. The series kurtosis coefficients show excessive kurtosis (with
a kurtosis value of 3). The skewness values varied from zero,
suggesting that the series is not symmetric. Additionally, the
skewness coefficient for all series is positive except UCT,
indicating that outlier data were established in recent years
compared to the estimation of the early period. All series have
significant results for the JB test and not normality, indicating that
the series times do not follow a normal distribution.

4.2 Total connectedness of return

4.2.1 The connectedness of the total return

Figure 1 displays heatmaps with shaded and cooler hues to
indicate the degree of total return connection at various quantile
levels. The system is estimated based on 400 horizon forecastings
and lag length BIC. The shade color indicates high contentedness,
while the colder color shows lower total connectedness. The
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FIGURE 1

Quantile system VAR based on 50-month rolling windows, 10-
variate ahead forecast, and four lags.

heatmaps show that the TCI is significantly higher at the extreme
quantiles 0.05th to 0.2nd and 0.85th to 0.95th. The TCI (TCI) was
higher during C19P than during RUC, at more than 80%, and 50%,
respectively. Total connectedness is relatively minor at the extreme
quantile of the post subprime crisis and during the European
sovereign. This result is consistent with the previous studies.

4.3 The transmission spillover

This section reports the net transmission of the spillover among
the supply chain, CTCH index, US-China tension, first-tramp
preference, Brent, and EPU returns, as shown in Figures 2A-D.
We employ a sequence of different quantiles, starting with the 5th
(lowest quantile) and ending with the 95th as the highest. The warmer
in this figure varies between blue (net receipt) and red (net transmit).
As shown, the supply chain confirmed the outcome in The index of
GSCH shows an always-present transition from being a net receiver
(blue) before 2016 to a net transmitter (red) after 2017, with the net
transmitters dominating in periods of significant worldwide
interruptions. In particular, the CI9P (2020), U.S.-China trade
tensions (2018-2019), and the eruption of the RUC (2022)
coincide with greater connectedness at higher quantiles (0.8-0.95).
The observation suggests that (supply chain) disruptions are
responding to changes on the demand side and amplifying
volatility during high uncertainty. The findings report that supply
chain connectedness is higher during C19P than in other periods of
crisis, explained by tens of thousands of jobs being lost, production
being disrupted, numerous airports and ports closing, and the cost of
the shipping industry rising. This finding confirms the previous
studies (Chowdhury et al,, 2021; Luo and Kwok, 2020). It is also
connected to domestic lockdown measures (Bonadio and Huo, 2020).
Moreover, strong evidence of the connectedness between the supply
chain and its determinants at extreme quantile levels highlights the
need to increase countries’ resilience to supply-chain-related shocks.
The supply chain and climate change index are closely connected
during crises and extreme quantiles. This result is consistent with Si
etal. (2022), who found links between environmental degradation and
the supply chain in advanced economies and emerging markets,
including China. The degree of connectedness ranges between
20 and 50 at the median quantile, influenced by the quality of
infrastructure associated with trade and transportation in China. It
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also demonstrated how logistics operations’ effectiveness and quality
impact China’s economic success (Hong et al, 2019). Economic
Policy Uncertainty acts largely as a net transmitter, especially at
the upper quantiles in high-stress times (e.g, C19P, U.S.-China
tension, RUC). The increase in the strength of red coloration since
2018, especially in the 0.85 quantiles and over, indicates EPU’s
increase of relevance in transmitting macroeconomic shocks. But
before 2016 and in lower quantiles (0.1-0.3), EPU presented itself as a
net receiver, implying that it seems to absorb rather than create shocks
in a near-constant policy environment. UCT Index presents the latter
with a more cyclical spillover structure. In the first stage of U.S.—~China
trade tensions (2013-2016), the index indicates that the transmission
is strong at intermediate to high quantiles (between 0.4 and 0.9). This
is especially the case around 2015, when President Trump was on the
campaign trail and making some of his initial trade threats. A second
wave of strong red clusters appeared around 2018-2019 and again
during the pandemic. There is some evidence that after 2020, the
index exhibits more symmetry in terms of net receiver role at lower
quantiles, which agrees with the diminished independent influence of
Pakistan outside the peak of geopolitical stress. The Brent crude oil
price index exhibits modest and period-specific spillovers. Notably,
the sudden redshift at higher quantiles circa 2014-2015 and during
the 2020 oil price crash (due to C19P lockdowns and the OPEC +
dispute) indicates Brent’s role as a transmitter in the event of extreme
market volatility. At lower quantiles and tranquil times, Brent acts
more as a net receiver, responding to demand-side economic shocks
instead of a source of system-wide stress. While we do not illustrate
this in the present figure when examining the Climate Technology
Index (e.g., NEX), it should act as a net recipient at the early stage of
innovation diffusion while becoming a transmitter in recent periods,
for example, green recovery agendas in the aftermath of the C19P era
and response to changes in global climate policies (e.g., COP26-28).
We anticipate more coupling at higher quantiles post-2020, as
markets are sensitized to climate-investment signals. Since the
COP26 declaration, the role of environmental CTCH, green trade,
public finance for infrastructure, and supply chain management for
technology and innovation has become increasingly important, in line
with the SDG (Dwivedi et al., 2022). Furthermore, the direction arrow
and transmission spillover from the supply chain to the technology
and climate index can explain how new technologies present the need
for the promising potential for improvement throughout the supply
chain (Gupta et al, 2021). Blockchain technology can potentially
decrease administrative expenses while increasing supply chain
transparency and traceability. Based on the framework of the
Sustainable Development Goals, we provide suggestions from the
perspective of the CTCH, considering economic uncertainty. First, an
enterprise is not just a production and manufacturing department.
Managers should enhance their understanding of corporate social
responsibility and quality to stay informed about policy trends while
operating. Microscopic individuals can also achieve macroscopic
Second, the
manufacturing sector may need to periodically upgrade its

sustainable  development  goals. industrial

technology to maintain the environmental performance of its
production processes. Third, policymakers should strengthen
environmental regulations and legislation, and industrial
production and manufacturing should be based on reducing
natural  resource public

consumption and  protecting

property resources.
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FIGURE 2
(Continued).

4.4 Robustness check

Firstly, to verify our results, we apply the QVAR approach and
analyze the network structure of the spillover links over a 70-month

We cross-validate results from the TVP-VAR framework anda  rolling window, with a forecast horizon of 20 and BIC-based
node-based Quantile VAR (QVAR) network analysis with different ~ automatic determination of lags. The analysis is carried out at

period rolling windows for robustness results.
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FIGURE 2

(Continued). (a) The total net connectedness of the supply chain return. (b) The total net connectedness of the EPU return. (c) The net total
connectedness of the climate and technology index (ECO) return. (d) The total net connectedness of the BRENT return.

(50th percentile), and high extreme (95th percentile). The resulting
networks are shown in Figure 3, with blue nodes being net
transmitters of shocks and yellow nodes being net receivers. The
thickness of the edge reflects the degree of directional connectedness
between the variables.

In the below quantile (0.05), which seizes extreme downside
conditions, GSCH and EPU show up as the main shock transmitters.
At the same time, BRENT and UCT are net receivers, which means
that global logistics impediments and policy ambiguity are sources
of market stress in the face of adverse market conditions.

Frontiers in Environmental Science

10

The mainstream becomes more connected at a quantile of
0.50, indicating a closer interplay between variables. GSCH and
BRENT both play a relatively stronger transmitter role. At the
same time, UCT and EPU are still potential shock receivers,
representing the evolution from exogenous risk to even more
endogenous spreading in regular market periods. On the other
hand, in the upper quantile (0.95), conditioned on extremely
positive outcomes, both NEX (climate tech) and BRENT become
significant transmitters of dominance, signaling that the positive
effects of innovative clean technology and energy markets have a
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FIGURE 3
Network of return frequency-domain spillover at the
0.95th quantile.

more substantial amplifying impact on the system. On the other
hand, GSCH, EPU, and UCT become net recipients again,
their
conditions. The frequency-specific network results corroborate

illustrating passive reaction to favorable market
the nonlinear and asymmetric characteristics of systemic risk

transmission among climate, energy, supply chain, and
geopolitical aspects. The diversity of node roles in quantiles
also adds evidence to the robustness of the quantile-based
connectedness framework to capture heterogeneous spillover
properties in different market states.

Secondly, Figure 4 shows the time-varying net pairwise
connectedness between five essential variables, which are NEX,

UCT, SCH, Brent crude oil, and EPU, under the -VAR model with
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a 50-month rolling window, 10-step-ahead forecast horizon, and
four lags. A positive value of the impact index means the variable is
a net transmitter of shocks, whereas a negative value signifies a net
receiver. The findings demonstrate significant heterogeneity in
transmission dynamics across time. The NEX index was in net
receiving countrydom until 2020, when it became a strong net
transmitter, when the world entered a new phase of post-pandemic
recovery and increasing global climate action, notably with the
COP26 summit. This change represents an increasing power of
green technologies to generate systemic market spillovers. In
comparison, the unithank index in the U.S.-China trade war
period (2013-2019) exhibited a significant net transmission,
which indicates an increase in the couple’s relationship
problems. However, UCT reverted to a net receiver after 2020,
meaning its effect became attenuated in the context of wider
There
variations throughout time for the GSCH index, which, after

geopolitical and macroeconomic upheavals. were
2018, became a net transmitter (especially after the C19P and
the related supply chain disruptions) and served as an
intermediary for the diffusion of economic shocks. Brent oil
prices, in sharp contrast, averaged near neutrality or, at most, a
marginal net receiver over the whole period, with only short
periods of net transmission coinciding with major oil market
shocks in 2008, 2014, and 2020. Third, the contagion effect of
the EPU index has transformed from a beneficiary in previous
years (2000-2007), to a majority gainer since 2008, and
significantly peaked during the CI9P crisis, the RUC, and
energy tension, demonstrating an increasing systemic impact of
economic policy uncertainty in stormy periods. Overall, the
resulting network maps four are consistent with the dynamics
of the identified dynamic spillover roles from the TVP-VAR-based
net PW connectedness. In sum, the consistency of findings on
these two different but complementary approaches, TVP-VAR and
quantile-based network analysis, offers strong empirical support
for the robustness, nonlinear, and quantile-dependent spillover
structures, guaranteeing the reliability and robustness of our
main results.

5 Conclusion and implications

This paper attempts to provide a comprehensive overview
of existing research, integrate GSCH, CTCH, uncertainty
and EPU
systematically analyze the impact and transmission mechanism

trade, energy, into a unified framework, and
theoretically. Results indicate a strong connection between
GSCH, CTCH index, US-China trade tension, Brent and EPU,
and the spread of C19P. Additionally, the Russia-Ukraine conflict,
the read sea energy shock, and China-US trade tensions
significantly influence the connectedness frequencies. Our
the

implications for theory and practice. The results provide

findings contribute to literature and have several
researchers with key information about what can be considered
fundamental work in this area.

We believe this paper’s findings may guide policymakers and
industry researchers in management decision-making and crisis
management. Based on the innovative data analysis in this

article, we provide managers with practical guidance on five areas
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Net pairwise connectedness on the return.

to promote the connectedness of GSCH, CTCH, energy prices, trade
uncertainty, and EPU. First, this study can help practitioners (e.g.,
presidents, COOs) to shift their corporate development focus to
technological advancements in their organizations, and the findings
of this study can be used to understand how CTCH, EPU, and US-
China trade tension intersect across sectors and management
domains for optimal management. Second, the findings reveal
how the impact of CTCH, which is associated with GSCH, is
considered in supply chain management. Third, in the process of
supply chain operation, EPU will have a greater impact, and
practitioners should predict in advance and properly handle it
afterward. Therefore, this study calls for the attention of
organizational decision-makers and professionals in operations
management, logistics, and information technology to consider
these factors.

Similar to previous studies, our study has some limitations,
which provide opportunities for future research. First, we
collect data at a point in time. The study has a cross-sectional
design, and we do not have the longitudinal data needed to
investigate causality over time. Therefore, in the long run,
longitudinal studies may provide useful insights into the
interplay between GSCH, climate technology, and EPU.
Second, our study mainly examines GSCH, CTCH, and EPU in
China, and future studies in other countries may provide new and
interesting conclusions. Finally, future research could investigate
measures to prevent disruptions and consolidate supply chains.
Further research may examine how other information processing
and technology levels affect GSCH. Finally, we believe that
industry practitioners may benefit from utilizing the innovative
research method of this paper to delineate the various fine-grained
research frontiers related to the specific components of supply
chains in different management domains, such as technology

research and development, transportation efficiency, and
data storage.
Frontiers in Environmental Science
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