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Digital technologies are increasingly vital catalysts for industrial green transitions,
yet their heterogeneous decarbonization impacts across development countries
tiers remain underexplored. We pioneer a novel Hypothetical Extraction Method
(HEM) to quantify digital empowerment, revealing asymmetric pathways using
sectoral data from 43 economies: Advanced economies exhibit a U-shaped
trajectory where digitalization initially reduces emissions/intensity but induces
rebound effects beyond optimal thresholds, while emerging economies show an
inverted U-curve for domestic digital inputs. Mechanistic analyses confirm
technology and scale effects wuniversally exist, but structural effects
diverge—digitalization raises capital returns in advanced economies yet
reinforces coal dependence in developing contexts. Foreign digital sources
demonstrate positive environmental returns in  emerging economies.
Sectorally, digital technologies function as carbon catalysts in manufacturing
through automation efficiencies but act as transitional carbon amplifiers in
services due to platform-induced energy rebounds. These findings challenge
linear decarbonization assumptions and provide empirical foundations for
bifurcated digital-climate policies tailored to national development stages.

digital empowerment, carbon emission, carbon intensity, value-addeddecomposition,
structural evolution

1 Introduction

The Anthropocene’s climate crisis has entered an acute phase. 2024 witnessed a historic
acceleration in atmospheric CO, accumulation, with annual growth reaching 3.58 ppm - the
steepest increase since Mauna Loa records began in 1958 (UKMO, 2024). This alarming
trend coincides with the World Meteorological Organization’s confirmation of a 1.55 °C
global temperature rise above pre-industrial levels (WMO, 2024), driving systemic
biospheric destabilization through intensifying megadroughts, marine heatwaves, and
tropical cyclone intensification (IPCC AR6, 2023). As industrial carbon emissions
continue outpacing decarbonization efforts—with global CO, from energy combustion
rising 0.8% in 2024 despite COP29 pledges (IEA, 2024)—the paradox of technological
progress becomes stark: the economic engine of industrialization now threatens the
foundation of civilization, urgently in need of a breakthrough in the green transition.

Amid this crisis, the digital revolution presents a dual-edged sword. Digital technologies are
widely recognized for their low-carbon potential and efficiency gains (Wang et al., 2023c),
enabling smart manufacturing and Al-driven optimization that are reshaping global industries
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TABLE 1 Descriptive statistics of key variables.

Variable Obs Mean Std. Dev Obs

Total sample

Advanced economies

10.3389/fenvs.2025.1659906

Mean Std. Dev Obs Mean Std. Dev

Emerging economies

LnCO 31,346 5.816 2.839 20,731 5.754 2.835 10,615 5.938 2.842
LnCV 31,173 -3.21 2.675 20,690 -3.073 2.566 10,483 -3.481 2.859
DE 31,643 0.054 0.145 21,038 0.057 0.145 10,605 0.05 0.145
InX 31,644 8.726 2.232 21,039 8.948 2172 10,605 8.287 2.284
CLR 31,641 0.022 0.23 21,039 0.016 0.132 10,602 0.036 0.351
LP 31,641 0.229 0.625 21,039 0.304 0.742 10,602 0.082 0.202
OPEN 31,644 0.248 0.275 21,039 0.26 0.281 10,605 0.223 0.26

TABLE 2 Results of the baseline regression.

(2) (5)
Variable InCO InCV
Advanced Emerging Advanced Emerging
DE —1.2450 ~1.480** 0.175 —1175% ~1.500%* 0.117
(0.303) (0.391) (0.626) (0.268) (0.350) (0.633)
InX 0367+ 04444 0.167+ ~0.578** ~0.467* ~0.838*+
(0.027) (0.034) (0.030) (0.026) (0.031) (0.032)
CLR —0.114 0.0187 —0.125% ~0.0907++ 0.0143 ~0.0882%**
(0.015) (0.020) (0.013) (0.014) (0.024) (0.010)
LP ~0.0458* ~0.065 -0.0288 0.07024%% -0.0332 0560+
(0.024) (0.040) (0.089) (0.021) (0.027) (0.126)
OPEN 0.0711 0.143* -0.103* 0.00975 0.101* ~0.268"**
(0.043) (0.059) (0.058) (0.043) (0.057) (0.054)
InTE 0.5154+ 04534 0.689*+ 0.524%% 0.457+%% 0.721%%
(0.025) (0.031) (0.021) (0.025) (0.030) (0.021)
_cons ~2.060* ~2.319% ~1.767%* ~2.9274%% ~3.006"* ~3.167*
(0.128) (0.159) (0.285) (0.127) (0.136) (0.300)
Country*Year Y Y Y Y Y Y
Industry*Year Y Y Y Y Y Y
N 30,920 20,546 10,368 30,898 20,537 10,355
adj. R-sq 0.9 0.888 0.926 0.881 0.86 0.921

Standard errors are calculated by clustering over country * year level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

(Okuyelu and Adaji, 2024). Empirical studies highlight their role in
boosting total factor productivity (Cao et al, 2025) and repositioning
countries within global value chains (Jin et al., 2024). Yet this optimism
obscures a troubling divide: advanced economies are using industrial
IoT and blockchain to achieve annual carbon intensity reductions
exceeding 5% (OECD, 2024), while emerging economies experience
an 18%-22% rise in energy demand due to digital infrastructure
expansion (World Bank, 2025). This imbalance exposes not only the
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flaws in climate-economic models that presume uniform technology
adoption but also deep inequities in climate justice, wherein global
disparities in digital capacity lead to asymmetrical decarbonization
burdens. This imbalance not only reveals inherent limitations in
climate-economic models that assume uniform technological
diffusion but also accentuates deep-seated disparities in climate
justice—where global inequities in digital capacity exacerbate uneven
burdens in decarbonization efforts.
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TABLE 3 Results of the nonlinear regression.

10.3389/fenvs.2025.1659906

Variable (1) (2) (3) (4) (5) (6)
DE —1.416*** —2.100*** 2.352%% —1.224%%* —1.875%** 2.573%%*
(0.354) (0.438) (0.631) (0.334) (0.428) (0.587)
DE2 0.067 0.222** —6.168*** 0.019 0.134 —6.965***
(0.107) (0.108) (1.126) (0.107) (0.115) (1.132)
InX 0.367*** 0.444¢ 0.162*** —0.578*** —0.467*** —0.842%**
(0.027) (0.034) (0.030) (0.026) (0.031) (0.032)
CLR —0.114*** 0.019 —0.126*** —0.091*** 0.014 —0.089***
(0.015) (0.020) (0.013) (0.014) (0.025) (0.011)
LP -0.0459* —-0.0654 —0.0487 0.0702*** —-0.0336 0.527%*
(0.024) (0.040) (0.088) (0.021) (0.027) (0.126)
OPEN 0.072* 0.143** —0.117** 0.010 0.101* —0.284***
(0.043) (0.059) (0.057) (0.043) (0.057) (0.055)
InTE 0.5157* 0.453*** 0.688** 0.5240%¢ 0.4570¢ 0.720**
(0.025) (0.031) (0.021) (0.025) (0.030) (0.021)
_cons —2.051*** —2.284*** —1.691*** —2.9244** —2.985%** —3.082%**
(0.130) (0.162) (0.288) (0.128) (0.140) (0.304)
Country*Year Y Y Y Y Y Y
Industry*Year Y Y Y Y Y Y
N 30,920 20,546 10,368 30,898 20,537 10,355
adj. R-sq 0.9 0.888 0.926 0.881 0.86 0.921

Standard errors are calculated by clustering over country * year level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Supported by mature digital infrastructures, clean energy
systems, and robust policy frameworks, successfully integrate Al,
IoT, and blockchain into systematic low-carbon transitions (Jin
etal,, 2022b; Peng et al., 2024). In contrast, emerging economies face
constraints such as carbon-intensive energy structures, digital
divides, and limited institutional capacity, which hinder the full
realization of digital decarbonization potential (Wang et al., 2022).
This divergence underscores the necessity of development-level-
specific research. This divergence further highlights the importance
of conducting research while distinguishing between different
national development levels. Therefore, this article delves deeply
into the impact of digital empowerment on industrial carbon
efficiency and its underlying mechanisms. In particular, it focuses
on the heterogeneity of the carbon reduction effects of digital
technologies among countries at different development levels,
aiming to assist various countries in effectively utilizing digital
technologies to promote carbon emission reduction according to
their own characteristics and maximizing the potential of digital
technologies.

In conjunction with the existing literature, the prospective
contributions of this paper revolve primarily around the
following three points: First, we systematically examine the
nonlinear relationship between digital transformation and
industrial decarbonization across heterogeneous development
tiers, employing a dual-lens analysis of both absolute carbon
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emissions and carbon intensity metrics. While extant research
recognizes digitalization as a critical pathway for sustainable
industrialization, our work pioneers a comparative framework
that disentangles differential technological adoption patterns and
environmental outcomes between advanced and emerging
economies. The findings provide critical insights for reconciling
the apparent paradox between digital leapfrogging and carbon lock-
in effects in developing nations.

Second, we develop a novel measurement paradigm using
Hypothetical Extraction Method (HEM) to directly quantify
digital empowerment, circumventing the measurement bias
inherent in conventional composite indices and proxy variables.
In addition, using a unique structural evolution perspective, this
paper examines the influence mechanism of digital empowerment
on industrial decarbonization in countries with different levels of
development. The study thoroughly deconstructs the three principal
driving mechanisms: factor structure, industrial structure, and
energy structure. To the best of our knowledge, this represents
the inaugural in-depth exploration of this field from a structural
perspective.

Third, we empirically examine the impact of digital
empowerment on industrial carbon efficiency using a global
dataset covering 56 sectors in 43 major economies from 2000 to
2014. This extensive data set allows us to discern heterogeneous
effects across sectors in economies at different stages of
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TABLE 4 Results of endogeneity treatment and 2SLS estimation.

10.3389/fenvs.2025.1659906

Variable (1) (2) (3) (4) (5) (6)
DE —1.037*** —1.604*** 2270 —0.872%** —1.372%%* 2.491%*
(0.284) (0.327) (0.803) (0.309) (0.366) (0.840)
DE2 0.0377 0.159** —6.044*** -0.00714 0.0704 —6.799***
(0.067) (0.073) (1.332) (0.074) (0.083) (1.406)
InX 0.371* 0.449%¢ 0.169*** —0.572%** —0.460*** —0.836***
(0.016) (0.020) (0.030) (0.016) (0.019) (0.031)
CLR —0.117*** 0.0145 —0.128*** —0.092*** 0.012 —0.090***
(0.016) (0.029) (0.018) (0.022) (0.038) (0.019)
LP -0.0458* -0.0663* —0.0421 0.0698*** —-0.0363 0.535%*
(0.023) (0.038) (0.079) (0.021) (0.027) (0.116)
OPEN 0.0790** 0.153** -0.113* 0.0183 0.111** —0.280***
(0.038) (0.050) (0.061) (0.039) (0.051) (0.061)
InTE 0.509** 0.447¢ 0.679** 0.519%** 0.4520%* 0.714*
(0.014) (0.017) (0.018) (0.014) (0.017) (0.019)
Country*Year Y Y Y Y Y Y
Industry*Year Y Y Y Y Y Y
N 28,840 19,163 9,671 28,820 19,155 9,659
First stage
v —1.037*** —1.604*** 2.270%** —0.872%** —1.372%%* 2.4917
(0.284) (0.327) (0.803) (0.309) (0.366) (0.840)
1v2 0.038 0.159** —6.043*** -0.007 0.070 —6.799***
(0.067) (0.073) (1.332) (0.074) (0.082) (1.406)
F statistic 972.07 774.89 518.29 235.06 126.00 290.30

Standard errors are reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

development. In doing so, we provide more targeted empirical
evidence and insights for policy formulation related to industrial
development and environmental protection. This viewpoint not
only broadens the spectrum of potential operational strategies for
industrial green development but also supplies new evidence
supporting the environmental benefits of digital empowerment.
The rest of the paper is organized as follows: Section 2 is devoted
to literature review and theoretical analysis. Section 3 constructs
empirical specifications and data sources. Empirical results are
presented in Section 4. Finally, Section 5 concludes the paper.

2 Literature review, theoretical analysis,
and research hypotheses
2.1 Literature review

The rapid advancement of digital technology has transformed
economic models and attracted significant scholarly interest. While

many studies highlight its economic benefits—such as driving
economic growth (Huang et al, 2023), enhancing technological
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innovation (Wang et al., 2025b), and boosting employment and
resilience (Zhang, 2023)—the environmental implications of the
digital economy remain contested. Some researchers argue that it
supports carbon efficiency and environmental performance (David
etal, 2023; Jin et al,, 2025). Others, however, point to its high energy
consumption and rebound effects that may intensify environmental
burdens (Tao et al.,, 2023). Additional studies suggest a nonlinear
relationship, such as an inverted U-shaped curve between
digitalization and pollution, export-embodied carbon, and
emission intensity (Zheng et al, 2023; Ma et al, 2023; Wang
et al,, 2023a). Scholars have explored digital empowerment’s role
in enhancing industrial carbon efficiency. However, these studies
often focus on single countries or sectors, limiting generalizability
and overlooking variations across different development levels.
Regarding industrial carbon efficiency, research has identified
multiple influencing factors at macro and micro levels. Macro
studies focus on energy structure (Yin et al, 2022), green
innovation (Chang et al, 2023), market and government
dynamics (Liu et al., 2023), and urbanization (Ma and Shi, 2023).
Micro-level analyses examine environmental regulation (Wang and
Guo, 2024; Meng et al., 2023), green credit (Tian et al.,, 2022), and

04 frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659906

Yue et al.

TABLE 5 Results of the mechanism inspection: technical effect test.

10.3389/fenvs.2025.1659906

Variable (1) (2) (3) (4)
DE 0.613* 1.0130* 0.493+¢ 0.794¢
(0.110) (0.119) (0.061) (0.045)
DE2 —0.082*** —0.283*** —0.108*** —0.388***
(0.027) (0.074) (0.019) (0.047)
InX 0.210%* 0.198*** 0.079* 0.088*
(0.007) (0.007) (0.001) (0.003)
CLR -0.012 -0.001 0.014* —0.012***
(0.008) (0.002) (0.003) (0.002)
LP 0.043*** —-0.016 —0.0104*** 0.029
(0.011) (0.021) (0.003) (0.026)
OPEN 0.354** 0.545%** 0.0941* 0.157***
(0.024) (0.036) (0.004) (0.006)
InTE -0.003 -0.018*** 0.002*** 0.009***
(0.002) (0.004) (0.001) (0.002)
_cons —-1.761*** —1.417*** —0.927*** -1.010%**
(0.079) (0.062) (0.013) (0.012)
Country*Year Y Y Y Y
Industry*Year Y Y Y Y
N 20,742 10,404 20,751 10,417
adj. R-sq 0.452 0.573 0.679 0.611

Standard errors are calculated by clustering over country and year level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

corporate green transitions in manufacturing and steel sectors (Tan
etal,, 2025). For instance, Wang et al. (2025a) show that green bonds
emerge as a particularly timely policy instrument for emission
reduction, while artificial intelligence is perceived as a more
durable and consistent facilitator for progress towards carbon
neutrality.

2.2 Theoretical analysis and research
hypotheses

Digital technologies, known for high value-added and low-
carbon features, play a pivotal role in enhancing industrial
carbon efficiency (Li et al., 2019; Jin et al., 2024). They facilitate
the development of clean technologies (Zhu and Lan, 2024) and
improve governmental monitoring and precision in environmental
regulation (Wang and Guo, 2024), thereby encouraging
emission reductions. However, digital empowerment may also
increase carbon emissions through scale and rebound effects.
Expanded production scale raises fossil fuel dependence (Dzwigol
et al, 2024), while improved energy efficiency can stimulate
greater energy consumption and lower energy prices (Zhou and
Liu, 2024), leading to a rebound in overall energy use. Thus,
we propose.

Frontiers in Environmental Science

Hypothesis 1: Digital empowerment can reduce industrial carbon
emissions and intensity, though its benefits may be partly offset by
scale expansion and the energy rebound effect.

Cross-country  disparities in developmental trajectories,
industrial structures, and technological capabilities lead to
significant variation in the carbon mitigation efficacy of digital
technologies between advanced and emerging economies. This
heterogeneous decarbonization outcome is analyzed through
three distinct channels: technological effects, structural effects,
and scale effects.

Technologically, advanced economies leverage Industry 4.0 to
integrate R&D, production, and market systems, advancing frontier
innovation and reducing energy intensity via smart manufacturing
(Wang and Guo, 2024; Huang et al., 2022). In contrast, emerging
economies experience constrained upgrading: digital adoption often
optimizes local efficiency but reinforces technological dependence,
creating a “digital veneer effect” that locks them into carbon-
intensive segments of global value chains (Wei et al., 2024).

Structurally, —advanced economies  witness  high-skill
complementarity, with automation shifting investment toward
smart infrastructure and renewable-digital synergy. Meanwhile,
emerging economies face structural stickiness: digital tools are
often co-opted to optimize fossil-based systems, resulting in
“high-carbon  efficiency traps,” while slow capital-labor
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TABLE 6 Results of mechanism inspection: structural effect test.

10.3389/fenvs.2025.1659906

Variable (1) 2) (3) (4)
DE 15.480* —10.70*** —-0.108 0.283***
(4.589) (2.843) (0.080) (0.069)
DE2 —3.247%** 8.057*4** —-0.023 —-0.068
(0.906) (2.007) (0.023) (0.042)
InX 0.472%%* 2.042%% 0.002 0.012%**
(0.172) (0.220) (0.002) (0.002)
CLR —1.739**%* —0.537*** 0.017*** —0.010***
(0.353) (0.159) (0.003) (0.003)
LP 2.909** —-3.059** 0.016* 0.001
(1.381) (1.246) (0.008) (0.007)
OPEN 0.985%** 1.2870** —0.040*** -0.015
(0.221) (0.243) (0.006) (0.009)
InTE —0.408*** —1.141***
(0.098) (0.155)
_cons —-1.147 —4.209*** 0.0384*** —-0.0201
(0.868) (0.734) (0.011) (0.013)
Country*Year Y Y Y Y
Industry*Year Y Y Y Y
N 20,751 10,417 20,729 10,417
adj. R-sq 0.312 0.113 0.696 0.661

Standard errors are calculated by clustering over country and year level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

substitution prolongs reliance on low-skilled, carbon-intensive
activities.

In terms of scale effects, advanced economies internalize high-
value digital activities (e.g., carbon data services), boosting domestic
value-added and reducing carbon-intensive intermediate trade.
Emerging economies use digital platforms to access end-markets
directly and streamline supply chains via digital twins, yet often
remain dependent on semi-finished imports.

Hypothesis 2: The technological, structural, and scale effects of
digital empowerment heterogeneously affect carbon reduction and
intensity across advanced and emerging economies.

3 Empirical model design, variable
construction, and data sources

3.1 Empirical model design

The main purpose of this paper is to examine the heterogeneous
impact of digital empowerment on the industrial carbon efficiency
from a global perspective. Based on the above theoretical analysis,
the regression model is built as follows:

Cijt = ay +ﬂlDE,‘t +a2DEiZt +Zy+p~+€ijt (1)
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In Equation 1, the subscripts i, j, and ¢ refer to country, industry
and year, respectively; C represents the numerical values of
industrial carbon emissions and carbon intensity; DE measures
the intensity with which the industry is empowered by the digital
industry. Z is a vector of control variables; g is the fixed effects, and
&;j; represents the random error term. Following Jin et al. (2022a), we
adopt the fixed effect of country, industry and year dummies.

To exclude the influences from other determinants on the final
results, referring to the existing literature, we include a vector of
sector-level control variables in Equation 1 as follows: (1) Industrial
scale (InX) is represented by the total industrial output value. (2)
Capital-labor ratio (CLR) is ratio of the input of capital to the input
of labor in production (the proportion of capital per unit of labor. (3)
Labor productivity (LP) is a representation of the total output per
unit of labor. (4) External dependence (OPEN) is the proportion of
export products in the total output. (5) Total factor productivity
(TFP) is decomposed by DEA Malmquist productivity method to
measure the technical level of the industry.

3.2 Variables construction

3.2.1 Measurement of digital empowerment (DE)
Drawing on the methodology of Los et al. (2016) and applying
the “hypothetical extraction” principle, we develop a novel indicator
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TABLE 7 Results of mechanism inspection: scale effect test.

10.3389/fenvs.2025.1659906

Variable (1) (2) (3) (4)
DE 5297 8.641* 0.612%* 11540
(0.477) (0.463) (0.078) (0.068)
DE2 —1.081*** —3.963*** —0.132%%* —0.578***
(0.156) (0.470) (0.024) (0.068)
InX 1.040* 0.941* 0.120%** 0.122%%*
(0.020) (0.020) (0.002) (0.004)
CLR 0.111%% -0.0122 0.0295*** —0.0131***
(0.021) (0.010) (0.004) (0.003)
LP —0.101*** —0.290*** —0.0163*** 0.0569
(0.021) (0.080) (0.004) (0.052)
OPEN 1.44104* 1.884%** 0.13270* 0.219***
(0.037) (0.055) (0.006) (0.009)
InTE -0.0379** 0.0719*** 0.00182 0.0161***
(0.018) (0.016) (0.001) (0.003)
_cons —-2.870*** -3.361*** —0.508*** —0.583***
(0.103) (0.073) (0.018) (0.019)
Country*Year Y Y Y Y
Industry*Year Y Y Y Y
N 20,681 10,374 20,751 10,417
adj. R-sq 0.898 0.89 0.714 0.652

Standard errors are calculated by clustering over country and year level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

to quantify the enabling effect of the digital economy on industrial
sectors. Consider a home country s and a composite region r
encompassing all other economies. Let industry i represent digital
economy-related activities', and industry j cover all other sectors.
Following Koopman et al. (2014), gross domestic product (GDP)
can be expressed as Equation 2:

GDP=V(I-A)'Y

Vi o I-AL T-A] I-AL T-A[ ¥ Ve
Vs ([ AR I A I AL T-ARY gy
Vi || 1-an 1-ag 1-ab -4y |y g,
villr-af 1-al 1-ai 1-a3 1157 v

@)

Here, Vg denotes the ratio of industry i added value to total
output of country s. A is the input coefficient matrix. Y represents
final demand. I represents final demand. The GDP of industry j in
country s GDP! is the sum of the corresponding rows in GDP.

1 Based on the WIOD database released in 2016, as mentioned by Jin et al.
(2025), the digital economy-related industries in this paper are: Computer,
electronic and optical products; Publishing activities; Motion picture, video
and television program production, etc. Telecommunications; Computer

programming, consultancy and related activities, etc.
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To estimate the contribution of digital industry i to the value
added of industry j in country s, we construct a counterfactual
scenario in which all linkages between industry j and digital
industry i are removed, while keeping the rest of the economic
structure unchanged (Yan and Tian, 2020). That is, all elements
associated with industry i are set to zero. The corresponding
counterfactual GDP under this assumption can be derived as
Equation 3:

GDP* = V*(I - A*)'Y*

o o 0 0 0 (U
| v 0 1-A 0 1=l |yl oyl |
0 0 0 0 0 0 0

villo 1-az o 1-agllys 5,

The digital-enabled portion of industry j’'s GDP is then defined
as the difference between the actual and counterfactual GDP values.
To control for scale effects, we express this contribution as a share of
total GDP, yielding our digital empowerment (DE) index in
Equation 4:

GDPi - GDPi*

DE! = :
GDP!

(4)

Originally developed to quantify cross-industry linkages at the
national level, the HEM has been widely adopted in economic
research. Recently, some scholars have extended its application to

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659906

Yue et al.

10.3389/fenvs.2025.1659906

TABLE 8 Results of heterogeneity inspection: Domestic and foreign sources of digital empowerment.

Variable (1) 2) (3) (4) (5) (6) () (t)
DDE —1.758*** 41150 —1.443%%* 41240
(0.501) (0.761) (0.506) (0.715)
DDE2 0.0784 —13.31%** -0.075 —14.16"**
(0.180) (2.350) (0.199) (2.293)
DFE —10.36"** —6.209** —10.66*** —1.545
(1.562) (2.692) (1.420) (2.692)
DFE2 5.175%* -6.314 4.887** —-37.13**
(2.076) (15.958) (2.018) (15.520)
InX 0.443*¢ 0.162*** ~0.468*** —0.842*** 0.4520¢ 0.166*** —0.459*** —0.840***
(0.034) (0.030) (0.031) (0.032) (0.034) (0.030) (0.031) (0.033)
CLR 0.0188 —0.126*** 0.0141 —0.089*** 0.0193 —0.128*** 0.015 —0.090***
(0.020) (0.013) (0.025) (0.011) (0.020) (0.013) (0.024) (0.010)
LP —-0.0624 —0.0479 —0.0281 0.5287** -0.0653 -0.0479 -0.0352 0.531°*
(0.039) (0.088) (0.027) (0.126) (0.040) (0.087) (0.027) (0.125)
OPEN 0.115* —0.0831 0.0766 —0.249*** 0.287*** 0.00596 0.2514** —0.213***
(0.061) (0.057) (0.059) (0.053) (0.067) (0.071) (0.064) (0.067)
InTE 0.454*%* 0.689*** 0.458** 0.721* 0.450*** 0.687** 0.453*** 0.719*
(0.031) (0.021) (0.030) (0.020) (0.031) (0.021) (0.030) (0.021)
_cons -2.316*** —-1.606*** —-3.019*** —2.985%** —2.390*** -1.716%** -3.0754** —=3.122%**
(0.163) (0.294) (0.140) (0.312) (0.155) (0.289) (0.131) (0.305)
Country*Year Y Y Y Y Y Y Y Y
Industry*Year Y Y Y Y Y Y Y Y
N 20,546 10,368 20,537 10,355 20,546 10,368 20,537 10,355
adj. R-sq 0.888 0.926 0.86 0.921 0.888 0.926 0.86 0.921

Standard errors are calculated by clustering over country and year level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

assess short-term production changes caused by disasters or
disruptions. This approach involves hypothetically “removing” a
particular industry and estimating the resulting loss in GDP, which
reflects the degree of interdependence between that industry and
others, thereby indicating its economic importance. Building on this
concept, our study adapts HEM to measure the extent to which
digital industries empower other sectors (Dictzenbacher et al., 2019).
This assumption-based method offers an intuitive and theoretically
consistent metric for estimating the value added generated by digital
economic activities within a given industry. We define this
contribution as “Digital Empowerment” (DE), and express it as a
share of total GDP.

3.3 Data sources and statistical description
This study draws on two primary data sources. The first is the

2016 release of the World Input-Output Database (WIOD), which
comprises the World Input-Output Table (WIOT) and the Socio-
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Economic Account (SEA). It covers data from 2000 to 2014 for
43 major economies. The WIOT is used to compute the Digital
Empowerment (DE) index, while the SEA provides data for the
is the 2019 WIOD
Environmental Accounts, from which data on carbon emissions

control variables. The second source
and energy consumption are obtained. Furthermore, referring to
Jinetal., (2022b), 43 economies are classified as advanced economies
and emerging economies. Table 1 presents descriptive statistics for
the key variables used in the empirical analysis.

The selected timeframe (2000-2014) is highly representative and
offers substantial reference value. It corresponds to a critical period
during which digital adoption was primarily market-driven,
preceding the broad implementation of policy interventions that
defined subsequent years. For example, in China—often viewed as
representative  of
2005-2015 witnessed explosive growth in the digital economy,
whereas the period after 2016 has been marked by deep
integration and coordinated policy support. Similar transitions

rapidly digitizing economies—the years

began even earlier in advanced economies. Thus, our data
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TABLE 9 Results of heterogeneity inspection: Grouping of manufacturing and service industries.

Variable (1) 2) (3) (4) (5) (6) () (t)
DE —1.850*** —-1.663 —1.641*** —1.844* 2.624¢ 2.4390¢ 3.513%%* 42530
(0.586) (1.066) (0.558) (1.028) (0.729) (0.823) (0.698) (0.812)
DE2 0.184 0.359 0.125 0.177 —14.45%%* —14.44* —16.91*** —18.99***
(0.139) (1.456) (0.135) (1.413) (2.745) (3.042) (2.739) (3.066)
InX 0.518*** 0.2430¢ —0.398*** —0.743** 0.3957¢ 0.342°00¢ —0.566*** —0.650***
(0.032) (0.055) (0.028) (0.055) (0.036) (0.037) (0.037) (0.039)
CLR —0.289*** —0.967*** —1.161*** —1.319*** —0.261*** —-0.318*** —0.262*** —0.360***
(0.079) (0.121) (0.159) (0.099) (0.047) (0.060) (0.043) (0.051)
Lp 0.0525%** —0.287*** 0.141°* 0.181 —0.557*** —0.509*** -0.296*** 0.0816
(0.020) (0.097) (0.024) (0.114) (0.062) (0.130) (0.062) (0.134)
OPEN 0.0824 0.0229 0.0583 —-0.0239 0.0728 0.0271 0.173* 0.0531
(0.063) (0.078) (0.061) (0.077) (0.093) (0.100) (0.093) (0.099)
InTE 0.435%** 0.800*** 0.453* 0.819** 0.383** 0.439¢ 0.407%* 0.476***
(0.027) (0.032) (0.025) (0.032) (0.030) (0.032) (0.031) (0.033)
_cons —2.8444* —3.430*** —3.332%4* —4.599*** —1.331%** —-1.306*** —2.349*** —2.375%**
(0.145) (0.327) (0.134) (0.331) (0.282) (0.299) (0.293) (0.310)
Country*Year Y Y Y Y Y Y Y Y
Industry*Year Y Y Y Y Y Y Y Y
N 7,434 3,830 7,434 3,817 12,722 11,512 12,719 11,509
adj. R-sq 0.928 0.946 0.896 0.945 0.887 0.888 0.876 0.885

Standard errors are calculated by clustering over country and year level and reported in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

window covers a foundational era of digital expansion, providing a
unique opportunity to examine the organic relationship between
digital empowerment and industrial decarbonization with greater
internal validity.

4 Empirical results
4.1 Baseline regression results

In this section, we report the baseline regression results, which
are shown in Table 2. Specifically, columns (1), (2), and (3)
respectively represent the results of estimating the impact of
digital empowerment on carbon emissions in the cases of the
total sample, samples of advanced economies, and samples of
emerging economies. Columns (4) to (6) are similar to columns
(1) to (3), except that we will replace the explanatory variable with
carbon intensity to reflect the impact of the technical dimension. All
regressions are clustered to the country*year level.

As shown in columns (1) and (4) of Table 2, at the critical level of
1%, the digital weighting coefficient (DE) is always significantly
negative. This indicates that, on the whole, digital empowerment
significantly reduces carbon emissions and enhances carbon
efficiency. However, when considering the differences in the
degree of development, this conclusion is challenged. In the
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samples of advanced economies in columns (2) and (5), the
coefficient of the key variable DE remains negative and highly
significant, while in the samples of emerging economies in
columns (3) and (6), the coefficient of the key variable DE
becomes positive and is not significant. This reveals that digital
empowerment does have heterogeneous impacts on carbon
emissions and carbon intensity in economies at different levels of
development. Therefore, Hypothesis 1 has been well verified.

Furthermore, to examine the nonlinear relationship between
digital empowerment and carbon emission reduction, we report the
baseline regression results after adding the quadratic term of the key
explanatory variable, as shown in Table 3. Among them, columns
(1), (2), and (3) respectively represent the nonlinear estimation
results of carbon emissions by digital weighting in the cases of the
total sample, the sample of advanced economies, and the sample of
emerging economies. Columns (4) to (6) are similar to columns (1)
to (3). The difference is that we will use carbon intensity instead of
the explanatory variable. All returns are concentrated at the country
* year level.

As shown in columns (2) and (5) of Table 3, for advanced
economies, there is a significant U-shaped relationship between
digital empowerment and carbon emissions. This relationship also
exists for carbon intensity, but it is not statistically significant. This
indicates that digital empowerment has a more direct effect on
carbon emission reduction in advanced economies. However, in the

frontiersin.org


https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2025.1659906

Yue et al.

samples of emerging economies in columns (2) and (5), there are
significant inverted U-shaped relationships between digital
empowerment and carbon emissions and carbon intensity. This
indicates that in emerging economies, digital empowerment cannot
achieve an effective reduction in intensity in the short term. What’s
worse, it may lead to an increase in carbon emissions.

It is noteworthy that for advanced economies, the inflection
point of the U-shaped curve lies significantly above the current
average level of digital empowerment. This finding serves as an
important caution: higher levels of digital empowerment are not
invariably associated with improved outcomes. Beyond a certain
threshold, the environmental benefits resulting from it may begin to
diminish. In contrast, certain regions and industries in emerging
economies have already surpassed the inflection point of the
inverted U-shaped curve, suggesting that the environmental
advantages of digital empowerment are starting to materialize.
However, most sectors remain on the downward slope of the
curve, underscoring the urgency for emerging economies to
digital
industrial upgrading.

accelerate transformation ~ and  advance  green

4.2 Robustness checks

Considering the potential causal relationship between the core
explanatory variable (DE) and the explained variables, carbon
emissions and carbon intensity, it may lead to incorrect results
(Wang et al., 2023b). In this section, we estimate the model by
constructing instrumental variables using the 2SLS estimator.
Referring to Huang et al., 2022, we constructed the instrumental
variable of digital authorization (represented as DEIV). Specifically,
the fixed-line telephone users of each country in 1990 were used as
instrumental variables for DE. To explain the variables that might be
absorbed by the fixed effect, we cross-multiplied them with DE and
conducted an empirical analysis after a period of delay. The results
are shown in Table 4.

The first-stage regression shows that the coefficients of the
instrumental variables are highly significant, which proves that
the instrumental variables are highly correlated with the
explanatory variables. Furthermore, the larger Kleibergen-Paap rk
Wald F statistic indicates that the instrumental variable is very
strong. Compared with the results of nonlinear benchmark
regression, it is found that in the samples of advanced
economies, there is still a significant U-shaped relationship
between the core explanatory variable DE and the explained
variables, whether it is carbon emissions or carbon intensity. For
emerging economies, there is a significant inverted U-shaped
relationship between DE and the explained variable. This further
verifies the robustness of the mechanism regression.

4.3 Mechanism analysis

In this section, we empirically test the mechanisms analyzed in
Section 2—namely, the technology effect, structural effect, and scale

effect—with results presented in Tables 5-7. Specifically, Table 5
examines the impact of digital empowerment on industrial export

technology sophistication and global value chain (GVC) position,
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with odd-numbered columns representing advanced economies and

even-numbered columns representing emerging economies
(following the same layout in subsequent tables). Table 6 reports
the effects on the capital-labor return ratio (CL) and energy
structure, while Table 7 presents findings on domestic value-
added and its proportion.

The results in Table 5 shows the results of the technological
effects of digital empowerment. Digital empowerment exhibits an
inverted U-shaped relationship with industrial export sophistication
and GVC positioning across all economies. For advanced economies
(odd columns), due to the saturation of cutting-edge innovation, the
marginal benefit of technological complexity will decrease when the
degree of digital empowerment exceeds a certain stage. Emerging
economies (in a row) showed an earlier turning point, reflecting
limited absorption capacity - digital tools initially enhanced
processing efficiency but failed to promote fundamental
technological upgrades.

Table 6 shows the capital-labor return ratio (CL) and energy
structure responses confirm systematic divergence: Advanced
Economies: Digital penetration increases CL while reducing coal
dependency, evidencing smart capital substitution and renewable
integration. Emerging economies: Counterintuitively, CL decreases
with coal share rising, revealing automation’s limited penetration
(primarily in labor-intensive sectors) and fossil energy lock-in

effects. Mirroring Table 5, Table 7 demonstrates consistent
inverted U-shaped dynamics for scale effects in both the
magnitude and share of DVA. These findings collectively confirm

Hypothesis 2.

4.4 Heterogeneous analysis

This
differential effects of digital authorization sources and industry

section presents heterogeneity analyses examining
types, with results detailed in Tables 8, 9. Table 8 distinguishes
between domestic and foreign digital empowerment sources to
assess their distinct impacts on industrial decarbonization
pathways. Columns (1)-(4) report effects of domestic digital
sources, where odd-numbered columns represent advanced
economies and even-numbered columns emerging economies.
Correspondingly, columns (5)-(8) analyze foreign digital sources
under identical specifications.

Three critical patterns emerge: First, advanced economies
exhibit statistically significant U-shaped relationships for both
domestic and foreign digital sources. This indicates initial carbon
reduction benefits diminish beyond optimal thresholds, consistent
with diminishing marginal returns to digital inputs. Second,
emerging economies demonstrate divergent dynamics: domestic
digital sources generate an inverted U-shaped effect on carbon
emissions and intensity, whereas foreign show a
U-shaped
conventional levels. Third, the inflection point for domestic

sources

pattern—though  statistically  insignificant  at
sources in emerging economies occurs at substantially lower
digitalization levels compared to advanced economies.

These findings substantiate our core thesis of asymmetric
decarbonization. The inverted U-curve for domestic digital
adoption in emerging markets reflects institutional absorption

constraints, while foreign digital inputs face compatibility barriers
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that delay positive environmental returns. This bifurcation
underscores how digital sovereignty mediates climate-technology
synergies—a mechanism obscured in aggregate analyses.

Table 9 maintains identical empirical specifications to Table 8
but examines sectoral heterogeneity. Columns (1)-(4) analyze
manufacturing industries, while columns (5)-(8) focus on service
sectors. The results reveal two distinct decarbonization models:
U-shaped
between digital empowerment and emission reduction, although

Manufacturing shows an economic relationship
statistically insignificant at 1%. On the contrary, the service industry
shows a stable inverted U-shaped curve, that is, digital
empowerment will lead to an increase in carbon emissions and
carbon intensity in the service industry first and then a decrease.
This difference highlights the asymmetric departmental impact of
digitalization: digital technologies act as carbon catalysts in
automation-driven

manufacturing through efficiency gains,

whereas in services, they function as transitional carbon
amplifiers due to rebound effects from platform expansion, with
data center energy demand offsetting early efficiency benefits until

network optimization matures.

5 Conclusions and policy
recommendations

This study pioneers a novel application of the Hypothetical
Extraction Method (HEM) to quantify digital empowerment,
revealing fundamental asymmetries in decarbonization pathways
across 43 economies. We demonstrate digital technologies act as
dualistic enablers: while catalyzing industrial green transitions, their
impacts diverge sharply across development tiers and sectors.
Empirical analyses confirm nonlinear trajectories: advanced
exhibit
economies show inverted U-curves. Mechanistic analyses confirm

economies U-shaped dynamics, whereas emerging
technology and scale effects universally exist, but structural effects
diverge—digitalization raises capital returns in advanced economies
yet reinforces coal dependence in developing contexts. Foreign
digital sources demonstrate delayed positive environmental

returns in emerging economies. Sectorally, digitalization

functions as carbon catalysts in manufacturing through
automation efficiencies but becomes transitional amplifiers in
services via platform-induced energy rebounds.

To translate these empirical insights into actionable policies,
we propose concrete measures tailored to diverse economic
contexts. In advanced economies, a digital carbon footprint
monitoring system should be established to track emissions in
real time and trigger alerts when thresholds are exceeded, thereby
mitigating rebound effects. Within the manufacturing sector,
policies should encourage the adoption of smart sensors and
Industrial Internet of Things (IIoT) technologies to enhance
real-time energy management, enable predictive maintenance,
and boost efficiency through automation. For data-intensive
sectors—such as finance,

service platform-based business

models, and cloud computing—regulators should enforce
stringent energy efficiency standards for data centers, introduce
carbon budgets for digital infrastructure, and provide incentives
for implementing green algorithms and low-carbon artificial

intelligence models. Concurrently, fiscal support should be
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directed toward energy-efficient digital infrastructure and the
accelerated development of next-generation green digital
technologies. In emerging economies, priority should be given
to building digital infrastructure powered by renewable energy
sources. Manufacturing can leverage digitally optimized
production lines and automation technologies driven by clean
energy to avoid fossil fuel lock-in. In the services sector, emphasis
should be placed on expanding green digital services such as shared
mobility platforms, smart grid-enabled power distribution, and
low-emission telecommunications networks. Policies should
further promote the integration of foreign technology with local
capacity-building and circular production models. Targeted
subsidies for small and medium-sized enterprises (SMEs) can
accelerate the adoption of energy-saving technologies. Globally,
policymakers must develop Differentiated Carbon Accounting
Standards

technology transfer under the Paris Agreement, and advance

reflecting varied digital responsibility, facilitate
sovereignty-sensitive decarbonization frameworks supported by
climate finance and technical cooperation.

To guide subsequent scholarly inquiry, we propose a focused
research agenda: Future studies should examine the decarbonization
implications of post-2015 digital technologies—such as large-scale
Al edge computing, and block chain—using more recent and
disaggregated data, especially
Research also needed on

in underrepresented regions.

is the political economy and
institutional conditions under which foreign digital adoption
leads to positive environmental spillovers, such as environmental
that

dynamic

regulations, identifying governance factors circumvent

technological ~ dependence.  Finally, modelling
incorporating digital sovereignty and global value chain dynamics
will be crucial for predicting long-term carbon lock-in risks and late-
mover advantages. These recommendations and research priorities
directly address the asymmetries identified in this study and provide
tangible inputs for evidence-based, digitally informed climate policy

across diverse economic contexts.
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